Suiform Soundings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Population, Distribution and Conservation Status of Sitatunga (Tragelaphus Spekei) (Sclater) in Selected Wetlands in Uganda
POPULATION, DISTRIBUTION AND CONSERVATION STATUS OF SITATUNGA (TRAGELAPHUS SPEKEI) (SCLATER) IN SELECTED WETLANDS IN UGANDA Biological -Life history Biological -Ecologicl… Protection -Regulation of… 5 Biological -Dispersal Protection -Effectiveness… 4 Biological -Human tolerance Protection -proportion… 3 Status -National Distribtuion Incentive - habitat… 2 Status -National Abundance Incentive - species… 1 Status -National… Incentive - Effect of harvest 0 Status -National… Monitoring - confidence in… Status -National Major… Monitoring - methods used… Harvest Management -… Control -Confidence in… Harvest Management -… Control - Open access… Harvest Management -… Control of Harvest-in… Harvest Management -Aim… Control of Harvest-in… Harvest Management -… Control of Harvest-in… Tragelaphus spekii (sitatunga) NonSubmitted Detrimental to Findings (NDF) Research and Monitoring Unit Uganda Wildlife Authority (UWA) Plot 7 Kira Road Kamwokya, P.O. Box 3530 Kampala Uganda Email/Web - [email protected]/ www.ugandawildlife.org Prepared By Dr. Edward Andama (PhD) Lead consultant Busitema University, P. O. Box 236, Tororo Uganda Telephone: 0772464279 or 0704281806 E-mail: [email protected] [email protected], [email protected] Final Report i January 2019 Contents ACRONYMS, ABBREVIATIONS, AND GLOSSARY .......................................................... vii EXECUTIVE SUMMARY ....................................................................................................... viii 1.1Background ........................................................................................................................... -
Chacoan Peccary
Chacoan Peccary Chacoan Peccary Catagonus wagneri conservation strategy Mariana Altrichter1,2, Arnaud Desbiez3, Harald Beck1,4, Alberto Yanosky5, Juan Campos6 1chairs IUCN Peccary Specialist Group, 2Prescott College, 3Royal Zoological Society of Scotland and IUCN SSC CBSG Brazil, 4Towson University, 5Guyra Paraguay, 6Tagua Project field coordinator, Paraguay Summary The Chacoan peccary (Catagonus wagneri), an endemic species of the Gran Chaco ecoregion, is endangered of extinction due mainly to habitat loss and hunting. The only conservation plan for the species was written in 1993. Because the situation continues deteriorating, and the rate of deforestation in the region is currently among the highest in the world, the IUCN SSC Peccary Specialist group saw the need to develop a new conservation strategy. A workshop was held in Paraguay, in March 2016, with representatives of different sectors and range countries. This paper presents a summary of the problems, threats and actions identified by the participants. The other two results of the workshop, a species distribution and population viability modeling, are presented separately in this same newsletter issue. Introduction The Chacoan peccary (Catagonus wagneri) or Taguá, as it is called in Paraguay, is an endemic and endangered species that inhabits the thorn forests of the Gran Chaco of Bolivia, Paraguay, and Argentina. The Gran Chaco is the second largest ecoregion in South America after the Amazonia. The species is listed as endangered by the IUCN Red List and in CITES I Appendix (IUCN 2016). In 1993, the entire Chacoan peccary population was estimated to be less than 5000 individuals (Taber, 1991 et al. 1993, 1994) and it has been declining since then (Altrichter & Boaglio, 2004). -
Variable Impact of Late-Quaternary Megafaunal Extinction in Causing
Variable impact of late-Quaternary megafaunal SPECIAL FEATURE extinction in causing ecological state shifts in North and South America Anthony D. Barnoskya,b,c,1, Emily L. Lindseya,b, Natalia A. Villavicencioa,b, Enrique Bostelmannd,2, Elizabeth A. Hadlye, James Wanketf, and Charles R. Marshalla,b aDepartment of Integrative Biology, University of California, Berkeley, CA 94720; bMuseum of Paleontology, University of California, Berkeley, CA 94720; cMuseum of Vertebrate Zoology, University of California, Berkeley, CA 94720; dRed Paleontológica U-Chile, Laboratoria de Ontogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile; eDepartment of Biology, Stanford University, Stanford, CA 94305; and fDepartment of Geography, California State University, Sacramento, CA 95819 Edited by John W. Terborgh, Duke University, Durham, NC, and approved August 5, 2015 (received for review March 16, 2015) Loss of megafauna, an aspect of defaunation, can precipitate many megafauna loss, and if so, what does this loss imply for the future ecological changes over short time scales. We examine whether of ecosystems at risk for losing their megafauna today? megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We Approach compare ecological impacts of late-Quaternary megafauna extinction The late-Quaternary impact of losing 70–80% of the megafauna in five American regions: southwestern Patagonia, the Pampas, genera in the Americas (19) would be expected to trigger biotic northeastern United States, northwestern United States, and Berin- transitions that would be recognizable in the fossil record in at gia. We find that major ecological state shifts were consistent with least two respects. -
Quaternary Records of the Dire Wolf, Canis Dirus, in North and South America
Quaternary records of the dire wolf, Canis dirus, in North and South America ROBERT G. DUNDAS Dundas, R. G. 1999 (September): Quaternary records of the dire wolf, Canis dirus, in North and South Ameri- ca. Boreas, Vol. 28, pp. 375–385. Oslo. ISSN 0300-9483. The dire wolf was an important large, late Pleistocene predator in North and South America, well adapted to preying on megaherbivores. Geographically widespread, Canis dirus is reported from 136 localities in North America from Alberta, Canada, southward and from three localities in South America (Muaco, Venezuela; Ta- lara, Peru; and Tarija, Bolivia). The species lived in a variety of environments, from forested mountains to open grasslands and plains ranging in elevation from sea level to 2255 m (7400 feet). Canis dirus is assigned to the Rancholabrean land mammal age of North America and the Lujanian land mammal age of South Amer- ica and was among the many large carnivores and megaherbivores that became extinct in North and South America near the end of the Pleistocene Epoch. Robert G. Dundas, Department of Geology, California State University, Fresno, California 93740-8031, USA. E-mail: [email protected]; received 20th May 1998, accepted 23rd March 1999 Because of the large number of Canis dirus localities Rancho La Brea, comparing them with Canis lupus and and individuals recovered from the fossil record, the dire wolf specimens from other localities. Although dire wolf is the most commonly occurring large knowledge of the animal’s biology had greatly predator in the Pleistocene of North America. By increased by 1912, little was known about its strati- contrast, the species is rare in South America. -
{TEXTBOOK} Is a Camel a Mammal?
IS A CAMEL A MAMMAL? PDF, EPUB, EBOOK Tish Rabe,Jim Durk | 48 pages | 04 Jun 2001 | HarperCollins Publishers | 9780007111077 | English | London, United Kingdom Is a Camel a Mammal? PDF Book Ano ang katangian ng salawikain? Retrieved 5 December Camel is an animal and is not an egg laying mammal. So we had what amounted to two pounds or more of rubber for dinner that night. Is camel a marsupial mammal? What rhymes with mammal? Center for Muslim-Jewish Engagement. Collared peccary P. The Oxford Companion to Food 2nd ed. Both the dromedary the seven-humped camel of Arabia and the Bactrian camel the two-humped camel of Central Asia had been domesticated since before BC. Red brocket M. In addition to providing the Roman Army with its best archers, the Easterners largely Arabs but generally known as 'Syrians' served as Rome's most effective dromedarii or camel-mounted troops. Even salty water can be tolerated, and between drinks it forages far from oases to find food unavailable to other livestock. Somalia a Country Study. White-tailed deer O. Namespaces Article Talk. Do camels lay eggs? Greenwood Publishing Group. View 1 comment. The reason why Cyrus opposed his camels to the enemy's horse was because the horse has a natural dread of the camel, and cannot abide either the sight or the smell of that animal. Archived from the original on 4 August Melissa Stewart. Camel Corps experiment. Is the word camel a short vowel word? ABC News. Consequently, these schools hold that Muslims must perform wudhu ablution before the next time they pray after eating camel meat. -
Zoo Placental Mammals
Order Perrisodactyla Odd-toed Ungulates • 3 families: horses, tapirs and rhinos Zoo Placental Mammals • Herbivorous • Simple stomachs (hindgut fermenters) The Ungulates • Native to Africa, Asia, and Orders Artiodactyla and the Americas Perrisodactyla • Unguligrade gait Diceros bicornis • Precocial young 1 2 Family Equidae Family Equidae Grant’s or Plains Zebra Domestic Horses • Found on the savannas of Sudan, • The Family Farm has several Ethiopia, south to eastern South Africa breeds • Like all zebras, has black and white • Donkeys were first striped pattern believed to confuse domesticated in the Middle predators East about 3,000 BC, and • Nasty kick will also discourage predators, mainly lions and hyenas the horse about 500 years • Good vision and sense of smell, fast later, from a wild horse runners species most likely in Asia • Stallion has a harem of several • females and foals within larger herd Bred as pack animals, pullers, transportation, • Graze on tops of high coarse grasses Equus ferus caballus as follow the rains in the Great sport and recreation Migration from the Serengeti to the Maasai Mara and back Equus burchelli 3 4 Family Equidae Family Equidae Miniature Horse Miniature Mediterranean Donkey • The designation of • Originated in the miniature horse is Mediterranean area of determined by the Northern Africa; more recently from the Islands of height of the animal. Sicily and Sardinia off the • Height is usually less west coast of Italy than 34-38 inches • Almost extinct in their measured at the last native land • Popular -
A Scoping Review of Viral Diseases in African Ungulates
veterinary sciences Review A Scoping Review of Viral Diseases in African Ungulates Hendrik Swanepoel 1,2, Jan Crafford 1 and Melvyn Quan 1,* 1 Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; [email protected] (H.S.); [email protected] (J.C.) 2 Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium * Correspondence: [email protected]; Tel.: +27-12-529-8142 Abstract: (1) Background: Viral diseases are important as they can cause significant clinical disease in both wild and domestic animals, as well as in humans. They also make up a large proportion of emerging infectious diseases. (2) Methods: A scoping review of peer-reviewed publications was performed and based on the guidelines set out in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews. (3) Results: The final set of publications consisted of 145 publications. Thirty-two viruses were identified in the publications and 50 African ungulates were reported/diagnosed with viral infections. Eighteen countries had viruses diagnosed in wild ungulates reported in the literature. (4) Conclusions: A comprehensive review identified several areas where little information was available and recommendations were made. It is recommended that governments and research institutions offer more funding to investigate and report viral diseases of greater clinical and zoonotic significance. A further recommendation is for appropriate One Health approaches to be adopted for investigating, controlling, managing and preventing diseases. Diseases which may threaten the conservation of certain wildlife species also require focused attention. -
Mammal Species Richness at a Catena and Nearby Waterholes During a Drought, Kruger National Park, South Africa
diversity Article Mammal Species Richness at a Catena and Nearby Waterholes during a Drought, Kruger National Park, South Africa Beanélri B. Janecke Animal, Wildlife & Grassland Sciences, University of the Free State, 205 Nelson Mandela Road, Park West, Bloemfontein 9301, South Africa; [email protected]; Tel.: +27-51-401-9030 Abstract: Catenas are undulating hillslopes on a granite geology characterised by different soil types that create an environmental gradient from crest to bottom. The main aim was to determine mammal species (>mongoose) present on one catenal slope and its waterholes and group them by feeding guild and body size. Species richness was highest at waterholes (21 species), followed by midslope (19) and sodic patch (16) on the catena. Small differences observed in species presence between zones and waterholes and between survey periods were not significant (p = 0.5267 and p = 0.9139). In total, 33 species were observed with camera traps: 18 herbivore species, 10 carnivores, two insectivores and three omnivores. Eight small mammal species, two dwarf antelopes, 11 medium, six large and six mega-sized mammals were observed. Some species might not have been recorded because of drought, seasonal movement or because they travelled outside the view of cameras. Mammal presence is determined by food availability and accessibility, space, competition, distance to water, habitat preferences, predators, body size, social behaviour, bound to territories, etc. The variety in body size and feeding guilds possibly indicates a functioning catenal ecosystem. This knowledge can be beneficial in monitoring and conservation of species in the park. Keywords: catena ecosystem; ephemeral mud wallows; habitat use; mammal variety; Skukuza area; Citation: Janecke, B.B. -
COX BRENTON, a C I Date: COX BRENTON, a C I USDA, APHIS, Animal Care 16-MAY-2018 Title: ANIMAL CARE INSPECTOR 6021 Received By
BCOX United States Department of Agriculture Animal and Plant Health Inspection Service Insp_id Inspection Report Customer ID: ALVIN, TX Certificate: Site: 001 Type: FOCUSED INSPECTION Date: 15-MAY-2018 2.40(b)(2) DIRECT REPEAT ATTENDING VETERINARIAN AND ADEQUATE VETERINARY CARE (DEALERS AND EXHIBITORS). ***In the petting zoo, two goats continue to have excessive hoof growth One, a large white Boer goat was observed walking abnormally as if discomforted. ***Although the attending veterinarian was made aware of the Male Pere David's Deer that had a front left hoof that appeared to be twisted approximately 90 degrees outward from the other three hooves and had a long hoof on the last report, the animal has not been assessed and a treatment pan has not been created. This male maneuvers with a limp on the affect leg. ***A female goat in the nursery area had a large severely bilaterally deformed udder. The licensee stated she had mastitis last year when she kidded and he treated her. The animal also had excessive hoof length on its rear hooves causing them to curve upward and crack. The veterinarian has still not examined this animal. Mastitis is a painful and uncomfortable condition and this animal has a malformed udder likely secondary to an inappropriately treated mastitis. ***An additional newborn fallow deer laying beside an adult fallow deer inside the rhino enclosure had a large round spot (approximately 1 1/2 to 2 inches round) on its head that was hairless and grey. ***A large male Watusi was observed tilting its head at an irregular angle. -
Platygonus Cf. P. Vetus from the Middle Pleistocene (Late Irvingtonian) Fairmead Landfill Locality, Madera County, California
PLATYGONUS CF. P. VETUS FROM THE MIDDLE PLEISTOCENE (LATE IRVINGTONIAN) FAIRMEAD LANDFILL LOCALITY, MADERA COUNTY, CALIFORNIA Niranjala Kottachchi, Joe A. Canchola and Robert G. Dundas, Department of Earth & Environmental Sciences, California State University, Fresno, California 93740 [email protected] INTRODUCTION The Fairmead Landfill locality in Madera County (Figures 1 and 2) is the largest middle Pleistocene (late p3 p4 m1 Irvingtonian) biota in the San Joaquin Valley of California. The site has produced 51 taxa from 40 acres p2 m2 m3 since its discovery in May 1993. Fossils are preserved in the upper unit of the Turlock Lake Formation. This study identifies several peccary (Figure 3) specimens from the site; an associated forelimb and p2 dentition (MCPC A321) (Figures 4 and 7), a dentary fragment with an unworn tooth (MCPC A322), and a m1 tooth fragment displaying two angular, high crowned cusps (MCPC A323). Comparisons were made with m2 p4 p3 peccary specimens at the University of Florida and University of Texas at Austin (Figures 5 and 6). m3 m3 m2 Specimen MCPC A321 consists of associated partial dentaries with teeth (left p2-m3 and right p3-m3) and m1 p4 p3 a partial right forelimb (Figure 7), including a proximal scapula, humerus, radius-ulna, carpals, metacarpals III and IV, and proximal phalanx. Right and left cheek teeth display a high, angular, bilophodont structure. m3 m2 m1 p4 p3 p2 The premolars and m1-m2 on both sides of the mandible are heavily worn, particularly on the lingual side. Both pairs of cusps connected by transverse crests are distinct on the m2-m3 but are worn down on the m1. -
Mixed-Species Exhibits with Pigs (Suidae)
Mixed-species exhibits with Pigs (Suidae) Written by KRISZTIÁN SVÁBIK Team Leader, Toni’s Zoo, Rothenburg, Luzern, Switzerland Email: [email protected] 9th May 2021 Cover photo © Krisztián Svábik Mixed-species exhibits with Pigs (Suidae) 1 CONTENTS INTRODUCTION ........................................................................................................... 3 Use of space and enclosure furnishings ................................................................... 3 Feeding ..................................................................................................................... 3 Breeding ................................................................................................................... 4 Choice of species and individuals ............................................................................ 4 List of mixed-species exhibits involving Suids ........................................................ 5 LIST OF SPECIES COMBINATIONS – SUIDAE .......................................................... 6 Sulawesi Babirusa, Babyrousa celebensis ...............................................................7 Common Warthog, Phacochoerus africanus ......................................................... 8 Giant Forest Hog, Hylochoerus meinertzhageni ..................................................10 Bushpig, Potamochoerus larvatus ........................................................................ 11 Red River Hog, Potamochoerus porcus ............................................................... -
Animal Inspected at Last Inspection
United States Department of Agriculture Customer: 3432 Animal and Plant Health Inspection Service Inspection Date: 10-AUG-16 Animal Inspected at Last Inspection Cust No Cert No Site Site Name Inspection 3432 86-C-0001 001 ARIZONA CENTER FOR NATURE 10-AUG-16 CONSERVATION Count Species 000003 Cheetah 000005 Cattle/cow/ox/watusi 000003 Mandrill *Male 000006 Hamadryas baboon 000004 Grevys zebra 000008 Thomsons gazelle 000002 Cape Porcupine 000002 Lion 000002 African hunting dog 000002 Tiger 000008 Common eland 000002 Spotted hyena 000001 White rhinoceros 000007 Spekes gazelle 000005 Giraffe 000004 Kirks dik-dik 000002 Fennec fox 000003 Ring-tailed lemur 000069 Total ARHYNER United States Department of Agriculture Animal and Plant Health Inspection Service 2016082567967934 Insp_id Inspection Report Arizona Center For Nature Conservation Customer ID: 3432 455 N. Galvin Parkway Certificate: 86-C-0001 Phoenix, AZ 85008 Site: 001 ARIZONA CENTER FOR NATURE CONSERVATION Type: ROUTINE INSPECTION Date: 19-OCT-2016 No non-compliant items identified during this inspection. This inspection and exit interview were conducted with the primate manager. Additional Inspectors Gwendalyn Maginnis, Veterinary Medical Officer AARON RHYNER, D V M Prepared By: Date: AARON RHYNER USDA, APHIS, Animal Care 19-OCT-2016 Title: VETERINARY MEDICAL OFFICER 6077 Received By: (b)(6), (b)(7)(c) Date: Title: FACILITY REPRESENTATIVE 19-OCT-2016 Page 1 of 1 United States Department of Agriculture Customer: 3432 Animal and Plant Health Inspection Service Inspection Date: 19-OCT-16