Description, Taphonomy, and Paleoecology of the Late Pleistocene Peccaries (Artiodactyla: Tayassuidae) from Bat Cave, Pulaski County, Missouri Aaron L

Total Page:16

File Type:pdf, Size:1020Kb

Description, Taphonomy, and Paleoecology of the Late Pleistocene Peccaries (Artiodactyla: Tayassuidae) from Bat Cave, Pulaski County, Missouri Aaron L East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2016 Description, Taphonomy, and Paleoecology of the Late Pleistocene Peccaries (Artiodactyla: Tayassuidae) from Bat Cave, Pulaski County, Missouri Aaron L. Woodruff East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Paleontology Commons Recommended Citation Woodruff, Aaron L., "Description, Taphonomy, and Paleoecology of the Late Pleistocene Peccaries (Artiodactyla: Tayassuidae) from Bat Cave, Pulaski County, Missouri" (2016). Electronic Theses and Dissertations. Paper 3051. https://dc.etsu.edu/etd/3051 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Description, Taphonomy, and Paleoecology of the Late Pleistocene Peccaries (Artiodactyla: Tayassuidae) from Bat Cave, Pulaski County, Missouri _____________________________ A thesis presented to the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences _____________________________________ by Aaron Levi Woodruff May 2016 _______________________________ Dr. Blaine W. Schubert Dr. Jim I. Mead Dr. Steven C. Wallace Keywords: Pleistocene, Peccaries, Platygonus compressus, Canis dirus, Taphonomy, Paleoecology, Bat Cave ABSTRACT Description, Taphonomy, and Paleoecology of Late Pleistocene Peccaries (Artiodactyla: Tayassuidae) from Bat Cave, Pulaski County, Missouri by Aaron Levi Woodruff The late Pleistocene faunal assemblage from Bat Cave, central Ozarks, Missouri provides an opportunity to assess specific aspects of behavior, ecology, and ontogeny of the extinct peccary Platygonus compressus. All identifiable elements referable to this taxon were catalogued and examined, and a minimum number of individuals of 70 was determined for the sample. The presence of distinct, non-overlapping age groups suggests that P. compressus utilized Bat Cave on a seasonal basis. A predator-prey relationship with Canis dirus, the second most abundant vertebrate from the Bat Cave site, is also described in this study. Damage patterns suggest that the feeding patterns of C. dirus at Bat Cave were consistent with its extant relative, and that these predators would periodically enter the cave to hunt and/or scavenge peccaries. Overall, the fossil material from Bat Cave is virtually unweathered and represents one of the most extensive and well-preserved late Pleistocene faunas from the Ozarks. 2 ACKNOWLEDGEMENTS I would like to thank the Illinois State Museum for loaning the Bat Cave material and allowing this research opportunity. I am grateful to my graduate advisor Dr. Blaine Schubert for his guidance through the course of this project and for providing transportation and funding throughout my time at East Tennessee State University. This thesis was greatly improved through reviews and discussions with Dr. Schubert and the remaining members of my graduate committee, Drs. James Mead and Steven Wallace. For supplementary information and advice which benefitted this project, acknowledgment must also go to April Nye, Shawn Haugrud, and Drs. Anthony Martin, Anna Behrensmeyer, Joshua Samuels, Julie Meachen, and Christopher Widga. 3 TABLE OF CONTENTS Page ABSTRACT . 2 ACKNOWLEDGMENTS . 4 LIST OF TABLES . 7 LIST OF FIGURES . 9 Chapter 1. INTRODUCTION . 12 2. BACKGROUND . 14 Bat Cave, Missouri . 14 Differences Between Pigs and Peccaries . 19 Extant Peccaries . 20 Flat-Headed Peccary (Platygonus compressus) . .24 Demographics . 28 Evidence of Predation . 29 Rodent Gnawing . 31 3. METHODS . 33 Abbreviations Used . 33 Specimen Preparation . 33 Demographic Assessment . 34 Evidence of Predation . 36 4 4. BAT CAVE MATERIALS . 42 Isolated Dentition . 42 Axial Skeleton . 50 Appendicular Skeleton . 54 5. RESULTS AND OBSERVATIONS . 62 Bone Quality and Preservation . 62 Skeletal Part Representation . 62 Minimum Number of Individuals . 67 Associated Materials . 69 Pathologies . 72 Demographics . 74 Carnivore Damage . 80 Other Biotic Taphonomic Factors . 91 6. DISCUSSION . 95 Behavioral Interpretations of the Bat Cave Platygonus compressus . 95 Predation & Other Biotic Taphonomic Forces . 97 7. CONCUSIONS . 102 REFERENCES . 104 APPENDICES . .. 114 Appendix A: Number of Identified Elements . 114 Appendix B: Catalogue Numbers . 117 Appendix C: Summary of Limb Elements . 120 Appendix D: Demographic Assessment . 122 5 Appendix E: Predator Damage Assessment . 124 VITA . 132 6 LIST OF TABLES Table Page 1 List of Vertebrates Identified from the Bat Cave Site by Hawksley et al. (1973) . 18 2 Age of Tooth Eruption in Extant Peccaries . 36 7 LIST OF FIGURES Figure Page 1 Location of Bat Cave in relation to the Ozark Plateau and Pulaski County, Missouri . 15 2 Map of Bat Cave, Pulaski County, Missouri . 16 3 Anterior view of the skulls of a pig, Sus scrofa , and a peccary, Pecari tajacu . 21 4 Collared Peccary (Pecari tajacu) . 22 5 White-lipped Peccary (Tayassu pecari) . 23 6 Chacoan Peccary (Catagonus wagneri) . 24 7 Known Rancholabrean sites which have yielded Platygonus fossils . 25 8 Composite skeleton and life reconstruction of the flat-headed peccary, Platygonus compressus . 27 9 Distal portion of a peccary humerus from Bat Cave showing the characteristic circular puncture marks made by a wolf carnassial . 30 10 Known Rancholabrean sites which have yielded Platygonus and Canis dirus . 31 11 Ventral view of an anterior peccary mandible fragment from Bat Cave which bares rodent gnaw marks along its medial surface . 32 12 A juvenile peccary forearm comprised of three separate elements from three different individuals pieced together by CMS . 34 13 Wolf-eaten bones of white-tailed deer that were used as the comparative sample . 37 14 Examples of the four stages used to assess the extent of carnivore utilization among the Bat Cave peccary long bones . 39 8 15 Examples of the four stages used to assess the extent of carnivore utilization to the Bat Cave peccary scapulae . 40 16 Examples of the four stages used to assess the extent of carnivore utilization to the Bat Cave peccary pelvises . 41 17 Diagram of the left upper and lower deciduous incisors . 42 18 Diagram of the left upper and lower deciduous canines . 43 19 Diagram of the left upper and lower deciduous cheek tooth row . 45 20 Diagram of the left upper and lower permanent incisors . 46 21 Diagram of the left upper and left lower permanent canines . 47 22 Diagram of the left upper and lower permanent cheek tooth rows . 49 23 The most complete P. compressus skull from the Bat Cave sample . 51 24 Skulls belonging to a juvenile and young adult collared peccary . 51 25 Examples of vertebral elements . 52 26 Examples of each of the six sternal elements . 53 27 Examples of forelimb elements . 55 28 Examples of each of the carpal elements . ..
Recommended publications
  • GFS Fungal Remains from Late Neogene Deposits at the Gray
    GFS Mycosphere 9(5): 1014–1024 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/5/5 Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA Worobiec G1, Worobiec E1 and Liu YC2 1 W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland 2 Department of Biological Sciences and Office of Research & Sponsored Projects, California State University, Fullerton, CA 92831, U.S.A. Worobiec G, Worobiec E, Liu YC 2018 – Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA. Mycosphere 9(5), 1014–1024, Doi 10.5943/mycosphere/9/5/5 Abstract Interesting fungal remains were encountered during palynological investigation of the Neogene deposits at the Gray Fossil Site, Washington County, Tennessee, USA. Both Cephalothecoidomyces neogenicus and Trichothyrites cf. padappakarensis are new for the Neogene of North America, while remains of cephalothecoid fungus Cephalothecoidomyces neogenicus G. Worobiec, Neumann & E. Worobiec, fragments of mantle tissue of mycorrhizal Cenococcum and sporocarp of epiphyllous Trichothyrites cf. padappakarensis (Jain & Gupta) Kalgutkar & Jansonius were reported. Remains of mantle tissue of Cenococcum for the fossil state are reported for the first time. The presence of Cephalothecoidomyces, Trichothyrites, and other fungal remains previously reported from the Gray Fossil Site suggest warm and humid palaeoclimatic conditions in the southeast USA during the late Neogene, which is in accordance with data previously obtained from other palaeontological analyses at the Gray Fossil Site. Key words – Cephalothecoid fungus – Epiphyllous fungus – Miocene/Pliocene – Mycorrhizal fungus – North America – palaeoecology – taxonomy Introduction Fungal organic remains, usually fungal spores and dispersed sporocarps, are frequently found in a routine palynological investigation (Elsik 1996).
    [Show full text]
  • Chacoan Peccary
    Chacoan Peccary Chacoan Peccary Catagonus wagneri conservation strategy Mariana Altrichter1,2, Arnaud Desbiez3, Harald Beck1,4, Alberto Yanosky5, Juan Campos6 1chairs IUCN Peccary Specialist Group, 2Prescott College, 3Royal Zoological Society of Scotland and IUCN SSC CBSG Brazil, 4Towson University, 5Guyra Paraguay, 6Tagua Project field coordinator, Paraguay Summary The Chacoan peccary (Catagonus wagneri), an endemic species of the Gran Chaco ecoregion, is endangered of extinction due mainly to habitat loss and hunting. The only conservation plan for the species was written in 1993. Because the situation continues deteriorating, and the rate of deforestation in the region is currently among the highest in the world, the IUCN SSC Peccary Specialist group saw the need to develop a new conservation strategy. A workshop was held in Paraguay, in March 2016, with representatives of different sectors and range countries. This paper presents a summary of the problems, threats and actions identified by the participants. The other two results of the workshop, a species distribution and population viability modeling, are presented separately in this same newsletter issue. Introduction The Chacoan peccary (Catagonus wagneri) or Taguá, as it is called in Paraguay, is an endemic and endangered species that inhabits the thorn forests of the Gran Chaco of Bolivia, Paraguay, and Argentina. The Gran Chaco is the second largest eco­region in South America after the Amazonia. The species is listed as endangered by the IUCN Red List and in CITES I Appendix (IUCN 2016). In 1993, the entire Chacoan peccary population was estimated to be less than 5000 individuals (Taber, 1991 et al. 1993, 1994) and it has been declining since then (Altrichter & Boaglio, 2004).
    [Show full text]
  • Antelope, Deer, Bighorn Sheep and Mountain Goats: a Guide to the Carpals
    J. Ethnobiol. 10(2):169-181 Winter 1990 ANTELOPE, DEER, BIGHORN SHEEP AND MOUNTAIN GOATS: A GUIDE TO THE CARPALS PAMELA J. FORD Mount San Antonio College 1100 North Grand Avenue Walnut, CA 91739 ABSTRACT.-Remains of antelope, deer, mountain goat, and bighorn sheep appear in archaeological sites in the North American west. Carpal bones of these animals are generally recovered in excellent condition but are rarely identified beyond the classification 1/small-sized artiodactyl." This guide, based on the analysis of over thirty modem specimens, is intended as an aid in the identifi­ cation of these remains for archaeological and biogeographical studies. RESUMEN.-Se han encontrado restos de antilopes, ciervos, cabras de las montanas rocosas, y de carneros cimarrones en sitios arqueol6gicos del oeste de Norte America. Huesos carpianos de estos animales se recuperan, por 10 general, en excelentes condiciones pero raramente son identificados mas alIa de la clasifi­ cacion "artiodactilos pequeno." Esta glia, basada en un anaIisis de mas de treinta especlmenes modemos, tiene el proposito de servir como ayuda en la identifica­ cion de estos restos para estudios arqueologicos y biogeogrMicos. RESUME.-On peut trouver des ossements d'antilopes, de cerfs, de chevres de montagne et de mouflons des Rocheuses, dans des sites archeologiques de la . region ouest de I'Amerique du Nord. Les os carpeins de ces animaux, generale­ ment en excellente condition, sont rarement identifies au dela du classement d' ,I artiodactyles de petite taille." Le but de ce guide base sur 30 specimens recents est d'aider aidentifier ces ossements pour des etudes archeologiques et biogeo­ graphiques.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • (RESULTS of NATION-WIDE SURVEY) -- January 29, 1939 A
    INFORMATION FOR TEE - ’ Chited StatecDepartment of Agridbe . I For Jan. 29 pspers WASHINGTON,D. C. 5,OOC,OOO BIG GM ANI- IN THE U. S. Biological Survey Beports Results of First Nation-Wide Inventory The first nation-wide attempt to determine the number of big-game animals in the United States showed more than 5 million, reports the Bureau of Biological Survey, U. S. Department of Agriculture. The survey - conducted in 1937 by the Bureau with cooperation from the National Park Service, the Boreet Service, State game and conservation commission8 and other well-informed agencies and individuals -- covered deer, elk, antelope, buffalo, moose, mountain goat, bighorn sheep, peccary, bears, caribou, and exotic European wild boars. The inventory did not include animals in captivity. Deer numbered more than 4,500,OOO. Michigan end Pennsylvania led in white- California had 450,000 tailed deer with approximately 800,000 in each State. * mule and black-tailed deer. Elk in the country totalled 165,000; moose, 13,000; antelope, 130,000; bighorn sheep, 17,000; black bear, 81,000; grizzly bear, 1,100; and buffalo, 4,100. There were 43,000 peccaries and 700 European wild boars. Data for 2 or more years, the Division of Wildlife Reeearoh of the Bureau of Biological survey points out , are required before definite conclusions can be drawn on recent trends In big-game numbers. Accounts of animal numbers published some years ego, however, provide the Division with some basis for comparison. Antelope, once thought facing extinction, incroasad about 500 percent from 1924 to 1937. The number of bighorn sheep, on the other haad, dropped from 28 000 (an estimate made by E.
    [Show full text]
  • Variable Impact of Late-Quaternary Megafaunal Extinction in Causing
    Variable impact of late-Quaternary megafaunal SPECIAL FEATURE extinction in causing ecological state shifts in North and South America Anthony D. Barnoskya,b,c,1, Emily L. Lindseya,b, Natalia A. Villavicencioa,b, Enrique Bostelmannd,2, Elizabeth A. Hadlye, James Wanketf, and Charles R. Marshalla,b aDepartment of Integrative Biology, University of California, Berkeley, CA 94720; bMuseum of Paleontology, University of California, Berkeley, CA 94720; cMuseum of Vertebrate Zoology, University of California, Berkeley, CA 94720; dRed Paleontológica U-Chile, Laboratoria de Ontogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile; eDepartment of Biology, Stanford University, Stanford, CA 94305; and fDepartment of Geography, California State University, Sacramento, CA 95819 Edited by John W. Terborgh, Duke University, Durham, NC, and approved August 5, 2015 (received for review March 16, 2015) Loss of megafauna, an aspect of defaunation, can precipitate many megafauna loss, and if so, what does this loss imply for the future ecological changes over short time scales. We examine whether of ecosystems at risk for losing their megafauna today? megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We Approach compare ecological impacts of late-Quaternary megafauna extinction The late-Quaternary impact of losing 70–80% of the megafauna in five American regions: southwestern Patagonia, the Pampas, genera in the Americas (19) would be expected to trigger biotic northeastern United States, northwestern United States, and Berin- transitions that would be recognizable in the fossil record in at gia. We find that major ecological state shifts were consistent with least two respects.
    [Show full text]
  • Quaternary Records of the Dire Wolf, Canis Dirus, in North and South America
    Quaternary records of the dire wolf, Canis dirus, in North and South America ROBERT G. DUNDAS Dundas, R. G. 1999 (September): Quaternary records of the dire wolf, Canis dirus, in North and South Ameri- ca. Boreas, Vol. 28, pp. 375–385. Oslo. ISSN 0300-9483. The dire wolf was an important large, late Pleistocene predator in North and South America, well adapted to preying on megaherbivores. Geographically widespread, Canis dirus is reported from 136 localities in North America from Alberta, Canada, southward and from three localities in South America (Muaco, Venezuela; Ta- lara, Peru; and Tarija, Bolivia). The species lived in a variety of environments, from forested mountains to open grasslands and plains ranging in elevation from sea level to 2255 m (7400 feet). Canis dirus is assigned to the Rancholabrean land mammal age of North America and the Lujanian land mammal age of South Amer- ica and was among the many large carnivores and megaherbivores that became extinct in North and South America near the end of the Pleistocene Epoch. Robert G. Dundas, Department of Geology, California State University, Fresno, California 93740-8031, USA. E-mail: [email protected]; received 20th May 1998, accepted 23rd March 1999 Because of the large number of Canis dirus localities Rancho La Brea, comparing them with Canis lupus and and individuals recovered from the fossil record, the dire wolf specimens from other localities. Although dire wolf is the most commonly occurring large knowledge of the animal’s biology had greatly predator in the Pleistocene of North America. By increased by 1912, little was known about its strati- contrast, the species is rare in South America.
    [Show full text]
  • Pleistocene Mammals from Extinction Cave, Belize
    Canadian Journal of Earth Sciences Pleistocene Mammals From Extinction Cave, Belize Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2018-0178.R3 Manuscript Type: Article Date Submitted by the 04-May-2019 Author: Complete List of Authors: Churcher, C.S.; University of Toronto, Zoology Central America, Pleistocene, Fauna, Vertebrate Palaeontology, Keyword: Limestone cave Is the invited manuscript for consideration in a Special Not applicableDraft (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 43 Canadian Journal of Earth Sciences 1 1 PLEISTOCENE MAMMALS FROM EXTINCTION CAVE, BELIZE 2 by C.S. CHURCHER1 Draft 1Department of Zoology, University of Toronto, Toronto, Ontario Canada M5S 2C6 and 322-240 Dallas Rd., Victoria, British Columbia, Canada V8V 4X9 (corresponding address): e-mail [email protected] https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 43 2 4 5 ABSTRACT. A small mammalian fauna is recorded from Extinction Cave (also called Sibun 6 Cave), east of Belmopan, on the Sibun River, Belize, Central America. The animals recognized 7 are armadillo (†Dasypus bellus), American lion (†Panthera atrox), jaguar (P. onca), puma or 8 mountain lion (Puma concolor), Florida spectacled bear (†Tremarctos floridanus), javelina or 9 collared peccary (Pecari tajacu), llama (Camelidae indet., ?†Palaeolama mirifica), red brocket 10 deer (Mazama americana), bison (Bison sp.) and Mexican half-ass (†Equus conversidens), and 11 sabre-tooth cat († Smilodon fatalis) may also be represented (‘†’ indicates an extinct taxon). 12 Bear and bison are absent from the region today. The bison record is one of the more southernly 13 known. The bear record is almost the mostDraft westerly known and a first for Central America.
    [Show full text]
  • Embryonic and Fetal Development of the Collared Peccary (Pecari Tajacu)
    Animal Reproduction Science 208 (2019) 106123 Contents lists available at ScienceDirect Animal Reproduction Science journal homepage: www.elsevier.com/locate/anireprosci Embryonic and fetal development of the collared peccary (Pecari tajacu) T ⁎ Pedro Mayora,b,c,d, , Gessiane Pereira da Silvad, Rafael dos Santos de Andraded, Frederico Ozanan Barros Monteirod, Hani Rocha El Bizric,e,f,g a Universitat Autònoma de Barcelona (UAB), Departament de Sanitat i d’Anatomia Animals, Facultat de Veterinària, Barcelona, Spain b Museo de Culturas Indígenas Amazónicas, Loreto, Iquitos, Peru c ComFauna, Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica, 332 Malecon Tarapaca, Iquitos, Peru d Federal Rural University of the Amazon (UFRA), Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA), Belém, PA, Brazil e Rede de Pesquisa em Diversidade, Conservação e Uso da Fauna na Amazônia (REDEFAUNA), Manaus, Amazonas, Brazil f Mamirauá Sustainable Development Institute (IDSM), Tefé, AM, Brazil g School of Science and the Environment, Manchester Metropolitan University. Oxford Road, M15 6BH, Manchester, United Kingdom ARTICLE INFO ABSTRACT Keywords: The relative timing of the main fetal development events in species determine the extent of fetal Collared peccary development at birth, which range along a gradient of having altricial and precocial traits. The Peccaries results from this study allow for description of important fetal developments in collared peccary Reproduction (Pecari tajacu) using data from 118 embryo/fetuses
    [Show full text]
  • Gallina & Mandujano
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol. 2 (2):116-127, 2009 Special issue: introduction Research on ecology, conservation and management of wild ungulates in Mexico Sonia Gallina1 and Salvador Mandujano1 1 Departamento de Biodiversidad y Ecología Animal, Instituto de Ecología A. C., km. 2.5 Carret. Ant. Coatepec No. 351, Congregación del Haya, Xalapa 91070, Ver. México. E‐mail: <[email protected]>; <[email protected]> Abstract This special issue of Tropical Conservation Science provides a synopsis of nine of the eleven presentations on ungulates presented at the Symposium on Ecology and Conservation of Ungulates in Mexico during the Mexican Congress of Ecology held in November 2008 in Merida, Yucatan. Of the eleven species of wild ungulates in Mexico (Baird´s tapir Tapirus bairdii, pronghorn antelope Antilocapra americana, American bison Bison bison, bighorn sheep Ovis canadensis, elk Cervus canadensis, red brocket deer Mazama temama, Yucatan brown brocket Mazama pandora, mule deer Odocoileus hemionus, white-tailed deer Odocoileus virginianus, white-lipped peccary Tayassu pecari and collared peccary Pecari tajacu), studies which concern four of these species are presented: Baird’s tapir and the white lipped peccary, which are tropical species in danger of extinction; the bighorn sheep, of high value for hunting in the north-west; and the white-tailed deer, the most studied ungulate in Mexico due to its wide distribution in the country and high hunting and cultural value. In addition, two studies of exotic species, wild boar (Sus scrofa) and red deer (Cervus elaphus), are presented. Issues addressed in these studies are: population estimates, habitat use, evaluation of UMA (Spanish acronym for ‘Wildlife Conservation, Management and Sustainable Utilization Units’) and ANP (Spanish acronym for ‘Natural Protected Areas’) to sustain minimum viable populations, and the effect of alien species in protected areas and UMA, all of which allow an insight into ungulate conservation and management within the country.
    [Show full text]
  • New Records of Colubrids from the Late Hemphillian Gray Fossil Site of Northeastern Tennessee Derek J
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2016 New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee Derek J. Jurestovsky East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Geology Commons, and the Paleontology Commons Recommended Citation Jurestovsky, Derek J., "New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee" (2016). Electronic Theses and Dissertations. Paper 3030. https://dc.etsu.edu/etd/3030 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee A thesis presented to the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences by Derek Jurestovsky May 2016 Dr. Jim I. Mead, Chair Dr. Steven C. Wallace Dr. Blaine W. Schubert Keywords: Colubridae, Gray Fossil Site, Hemphillian, Miocene, Natricinae, Serpentes ABSTRACT New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee by Derek Jurestovsky The Gray Fossil Site is a rich Hemphillian (North American Land Mammal Age) locality located in northeastern Tennessee which has produced tens-of-thousands of fossils of multiple taxa including hundreds of individual snake skeletal remains.
    [Show full text]
  • {TEXTBOOK} Is a Camel a Mammal?
    IS A CAMEL A MAMMAL? PDF, EPUB, EBOOK Tish Rabe,Jim Durk | 48 pages | 04 Jun 2001 | HarperCollins Publishers | 9780007111077 | English | London, United Kingdom Is a Camel a Mammal? PDF Book Ano ang katangian ng salawikain? Retrieved 5 December Camel is an animal and is not an egg laying mammal. So we had what amounted to two pounds or more of rubber for dinner that night. Is camel a marsupial mammal? What rhymes with mammal? Center for Muslim-Jewish Engagement. Collared peccary P. The Oxford Companion to Food 2nd ed. Both the dromedary the seven-humped camel of Arabia and the Bactrian camel the two-humped camel of Central Asia had been domesticated since before BC. Red brocket M. In addition to providing the Roman Army with its best archers, the Easterners largely Arabs but generally known as 'Syrians' served as Rome's most effective dromedarii or camel-mounted troops. Even salty water can be tolerated, and between drinks it forages far from oases to find food unavailable to other livestock. Somalia a Country Study. White-tailed deer O. Namespaces Article Talk. Do camels lay eggs? Greenwood Publishing Group. View 1 comment. The reason why Cyrus opposed his camels to the enemy's horse was because the horse has a natural dread of the camel, and cannot abide either the sight or the smell of that animal. Archived from the original on 4 August Melissa Stewart. Camel Corps experiment. Is the word camel a short vowel word? ABC News. Consequently, these schools hold that Muslims must perform wudhu ablution before the next time they pray after eating camel meat.
    [Show full text]