On the Non-Existence of Elements of Hopf Invariant One
ANNALSoa MATHEMAT~CS Vol. 72, No. 1, July, 1960 Printed in Japan ON THE NON-EXISTENCE OF ELEMENTS OF HOPF INVARIANT ONE (Received April 20, 1958) (Revised January 25, 1960) 1.1. Results. It is the object of this paper to prove a theorem in homo- topy-theory, which follows as Theorem 1.1.1. In stating it, we use one definition. A continuous product with unit on a space X is a continuous map p : X X X - X with a point e of X such that p(x, e) = p(e, X) = X. An H-space is a space which admits a continuous product with unit. For the remaining notations, which are standard in homotopy-theory, we re- fer the reader to [15], [16]. In particular, Hm(Y,G) is the m" singular cohomology group of the space Y with coefficients in the group G. THEOREM1.1.1. Unless n = 1, 2, 4 or 8, we have the following conclu- sions: ( a ) The sphere S"-' is not an H-space. (b) In the homotopy group x,~-~(S"-'), the Whitehead product [C,-~,C,-~]is non-zero. (c) There is no element of Hopf invariant one [l71 in X,,-,(Sn). (d ) Let K = S" U E"'" be a CW-complex formed by attaching an (m + n)-cell E"'" to the m-sphere S". Then the Steenrod square [31] is zero. It is a classical result that the four conclusions are equivalent [36], [31]. Various results in homotopy-theory have been shown to depend on the truth or falsity of these conclusions.
[Show full text]