Dylan Wilson March 23, 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Kervaire Invariant in Homotopy Theory
The Kervaire invariant in homotopy theory Mark Mahowald and Paul Goerss∗ June 20, 2011 Abstract In this note we discuss how the first author came upon the Kervaire invariant question while analyzing the image of the J-homomorphism in the EHP sequence. One of the central projects of algebraic topology is to calculate the homotopy classes of maps between two finite CW complexes. Even in the case of spheres – the smallest non-trivial CW complexes – this project has a long and rich history. Let Sn denote the n-sphere. If k < n, then all continuous maps Sk → Sn are null-homotopic, and if k = n, the homotopy class of a map Sn → Sn is detected by its degree. Even these basic facts require relatively deep results: if k = n = 1, we need covering space theory, and if n > 1, we need the Hurewicz theorem, which says that the first non-trivial homotopy group of a simply-connected space is isomorphic to the first non-vanishing homology group of positive degree. The classical proof of the Hurewicz theorem as found in, for example, [28] is quite delicate; more conceptual proofs use the Serre spectral sequence. n Let us write πiS for the ith homotopy group of the n-sphere; we may also n write πk+nS to emphasize that the complexity of the problem grows with k. n n ∼ Thus we have πn+kS = 0 if k < 0 and πnS = Z. Given the Hurewicz theorem and knowledge of the homology of Eilenberg-MacLane spaces it is relatively simple to compute that 0, n = 1; n ∼ πn+1S = Z, n = 2; Z/2Z, n ≥ 3. -
Algebraic Hopf Invariants and Rational Models for Mapping Spaces
Algebraic Hopf Invariants and Rational Models for Mapping Spaces Felix Wierstra Abstract The main goal of this paper is to define an invariant mc∞(f) of homotopy classes of maps f : X → YQ, from a finite CW-complex X to a rational space YQ. We prove that this invariant is complete, i.e. mc∞(f)= mc∞(g) if an only if f and g are homotopic. To construct this invariant we also construct a homotopy Lie algebra structure on certain con- volution algebras. More precisely, given an operadic twisting morphism from a cooperad C to an operad P, a C-coalgebra C and a P-algebra A, then there exists a natural homotopy Lie algebra structure on HomK(C,A), the set of linear maps from C to A. We prove some of the basic properties of this convolution homotopy Lie algebra and use it to construct the algebraic Hopf invariants. This convolution homotopy Lie algebra also has the property that it can be used to models mapping spaces. More precisely, suppose that C is a C∞-coalgebra model for a simply-connected finite CW- complex X and A an L∞-algebra model for a simply-connected rational space YQ of finite Q-type, then HomK(C,A), the space of linear maps from C to A, can be equipped with an L∞-structure such that it becomes a rational model for the based mapping space Map∗(X,YQ). Contents 1 Introduction 1 2 Conventions 3 I Preliminaries 3 3 Twisting morphisms, Koszul duality and bar constructions 3 4 The L∞-operad and L∞-algebras 5 5 Model structures on algebras and coalgebras 8 6 The Homotopy Transfer Theorem, P∞-algebras and C∞-coalgebras 9 II Algebraic Hopf invariants -
An Introduction to Spectra
An introduction to spectra Aaron Mazel-Gee In this talk I’ll introduce spectra and show how to reframe a good deal of classical algebraic topology in their language (homology and cohomology, long exact sequences, the integration pairing, cohomology operations, stable homotopy groups). I’ll continue on to say a bit about extraordinary cohomology theories too. Once the right machinery is in place, constructing all sorts of products in (co)homology you may never have even known existed (cup product, cap product, cross product (?!), slant products (??!?)) is as easy as falling off a log! 0 Introduction n Here is a table of some homotopy groups of spheres πn+k(S ): n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n πn(S ) Z Z Z Z Z Z Z Z Z Z n πn+1(S ) 0 Z Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 n πn+2(S ) 0 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 n πn+3(S ) 0 Z2 Z12 Z ⊕ Z12 Z24 Z24 Z24 Z24 Z24 Z24 n πn+4(S ) 0 Z12 Z2 Z2 ⊕ Z2 Z2 0 0 0 0 0 n πn+5(S ) 0 Z2 Z2 Z2 ⊕ Z2 Z2 Z 0 0 0 0 n πn+6(S ) 0 Z2 Z3 Z24 ⊕ Z3 Z2 Z2 Z2 Z2 Z2 Z2 n πn+7(S ) 0 Z3 Z15 Z15 Z30 Z60 Z120 Z ⊕ Z120 Z240 Z240 k There are many patterns here. The most important one for us is that the values πn+k(S ) eventually stabilize. -
L22 Adams Spectral Sequence
Lecture 22: Adams Spectral Sequence for HZ=p 4/10/15-4/17/15 1 A brief recall on Ext We review the definition of Ext from homological algebra. Ext is the derived functor of Hom. Let R be an (ordinary) ring. There is a model structure on the category of chain complexes of modules over R where the weak equivalences are maps of chain complexes which are isomorphisms on homology. Given a short exact sequence 0 ! M1 ! M2 ! M3 ! 0 of R-modules, applying Hom(P; −) produces a left exact sequence 0 ! Hom(P; M1) ! Hom(P; M2) ! Hom(P; M3): A module P is projective if this sequence is always exact. Equivalently, P is projective if and only if if it is a retract of a free module. Let M∗ be a chain complex of R-modules. A projective resolution is a chain complex P∗ of projec- tive modules and a map P∗ ! M∗ which is an isomorphism on homology. This is a cofibrant replacement, i.e. a factorization of 0 ! M∗ as a cofibration fol- lowed by a trivial fibration is 0 ! P∗ ! M∗. There is a functor Hom that takes two chain complexes M and N and produces a chain complex Hom(M∗;N∗) de- Q fined as follows. The degree n module, are the ∗ Hom(M∗;N∗+n). To give the differential, we should fix conventions about degrees. Say that our differentials have degree −1. Then there are two maps Y Y Hom(M∗;N∗+n) ! Hom(M∗;N∗+n−1): ∗ ∗ Q Q The first takes fn to dN fn. -
Generalized Cohomology Theories
Lecture 4: Generalized cohomology theories 1/12/14 We've now defined spectra and the stable homotopy category. They arise naturally when considering cohomology. Proposition 1.1. For X a finite CW-complex, there is a natural isomorphism 1 ∼ r [Σ X; HZ]−r = H (X; Z). The assumption that X is a finite CW-complex is not necessary, but here is a proof in this case. We use the following Lemma. Lemma 1.2. ([A, III Prop 2.8]) Let F be any spectrum. For X a finite CW- 1 n+r complex there is a natural identification [Σ X; F ]r = colimn!1[Σ X; Fn] n+r On the right hand side the colimit is taken over maps [Σ X; Fn] ! n+r+1 n+r [Σ X; Fn+1] which are the composition of the suspension [Σ X; Fn] ! n+r+1 n+r+1 n+r+1 [Σ X; ΣFn] with the map [Σ X; ΣFn] ! [Σ X; Fn+1] induced by the structure map of F ΣFn ! Fn+1. n+r Proof. For a map fn+r :Σ X ! Fn, there is a pmap of degree r of spectra Σ1X ! F defined on the cofinal subspectrum whose mth space is ΣmX for m−n−r m ≥ n+r and ∗ for m < n+r. This pmap is given by Σ fn+r for m ≥ n+r 0 n+r and is the unique map from ∗ for m < n+r. Moreover, if fn+r; fn+r :Σ X ! 1 Fn are homotopic, we may likewise construct a pmap Cyl(Σ X) ! F of degree n+r 1 r. -
On Relations Between Adams Spectral Sequences, with an Application to the Stable Homotopy of a Moore Space
Journal of Pure and Applied Algebra 20 (1981) 287-312 0 North-Holland Publishing Company ON RELATIONS BETWEEN ADAMS SPECTRAL SEQUENCES, WITH AN APPLICATION TO THE STABLE HOMOTOPY OF A MOORE SPACE Haynes R. MILLER* Harvard University, Cambridge, MA 02130, UsA Communicated by J.F. Adams Received 24 May 1978 0. Introduction A ring-spectrum B determines an Adams spectral sequence Ez(X; B) = n,(X) abutting to the stable homotopy of X. It has long been recognized that a map A +B of ring-spectra gives rise to information about the differentials in this spectral sequence. The main purpose of this paper is to prove a systematic theorem in this direction, and give some applications. To fix ideas, let p be a prime number, and take B to be the modp Eilenberg- MacLane spectrum H and A to be the Brown-Peterson spectrum BP at p. For p odd, and X torsion-free (or for example X a Moore-space V= So Up e’), the classical Adams E2-term E2(X;H) may be trigraded; and as such it is E2 of a spectral sequence (which we call the May spectral sequence) converging to the Adams- Novikov Ez-term E2(X; BP). One may say that the classical Adams spectral sequence has been broken in half, with all the “BP-primary” differentials evaluated first. There is in fact a precise relationship between the May spectral sequence and the H-Adams spectral sequence. In a certain sense, the May differentials are the Adams differentials modulo higher BP-filtration. One may say the same for p=2, but in a more attenuated sense. -
Suspension of Ganea Fibrations and a Hopf Invariant
Topology and its Applications 105 (2000) 187–200 Suspension of Ganea fibrations and a Hopf invariant Lucile Vandembroucq 1 URA-CNRS 0751, U.F.R. de Mathématiques, Université des Sciences et Techniques de Lille, 59655 Villeneuve d’Ascq Cedex, France Received 24 August 1998; received in revised form 4 March 1999 Abstract We introduce a sequence of numerical homotopy invariants σ i cat;i2 N, which are lower bounds for the Lusternik–Schnirelmann category of a topological space X. We characterize, with dimension restrictions, the behaviour of σ i cat with respect to a cell attachment by means of a Hopf invariant. Furthermore we establish for σ i cat a product formula and deduce a sufficient C condition, in terms of the Hopf invariant, for a space X [ ep 1 to satisfy the Ganea conjecture, i.e., C C cat..X [ ep 1/ × Sm/ D cat.X [ ep 1/ C 1. This extends a recent result of Strom and a concrete example of this extension is given. 2000 Elsevier Science B.V. All rights reserved. Keywords: LS-category; Product formula; Hopf invariant AMS classification: 55P50; 55Q25 The Lusternik–Schnirelmann category of a topological space X, denoted cat X,isthe least integer n such that X can be covered by n C 1 open sets each of which is contractible in X. (If no such n exists, one sets cat X D1.) Category was originally introduced by Lusternik and Schnirelmann [18] to estimate the minimal number of critical points of differentiable functions on manifolds. They showed that a smooth function on a smooth manifold M admits at least cat M C 1 critical points. -
Realising Unstable Modules As the Cohomology of Spaces and Mapping Spaces
Realising unstable modules as the cohomology of spaces and mapping spaces G´eraldGaudens and Lionel Schwartz UMR 7539 CNRS, Universit´eParis 13 LIA CNRS Formath Vietnam Abstract This report discuss the question whether or not a given unstable module is the mod-p cohomology of a space. One first discuss shortly the Hopf invariant 1 problem and the Kervaire invariant 1 problem and give their relations to homotopy theory and geometric topology. Then one describes some more qualitative results, emphasizing the use of the space map(BZ=p; X) and of the structure of the category of unstable modules. 1 Introduction Let p be a prime number, in all the sequel H∗X will denote the the mod p singular cohomology of the topological space X. All spaces X will be supposed p-complete and connected. The singular mod-p cohomology is endowed with various structures: • it is a graded Fp-algebra, commutative in the graded sense, • it is naturally a module over the algebra of stable cohomology operations which is known as the mod p Steenrod algebra and denoted by Ap. The Steenrod algebra is generated by element Sqi of degree i > 0 if p = 2, β and P i of degree 1 and 2i(p − 1) > 0 if p > 2. These elements satisfy the Adem relations. In the mod-2 case the relations write [a=2] X b − t − 1 SqaSqb = Sqa+b−tSqt a − 2t 0 There are two types of relations for p > 2 [a=p] X (p − 1)(b − t) − 1 P aP b = (−1)a+t P a+b−tP t a − pt 0 1 for a; b > 0, and [a=p] [(a−1)=p] X (p − 1)(b − t) X (p − 1)(b − t) − 1 P aβP b = (−1)a+t βP a+b−tP t+ (−1)a+t−1 P a+b−tβP t a − pt a − pt − 1 0 0 for a; b > 0. -
Introduction to the Stable Category
AN INTRODUCTION TO THE CATEGORY OF SPECTRA N. P. STRICKLAND 1. Introduction Early in the history of homotopy theory, people noticed a number of phenomena suggesting that it would be convenient to work in a context where one could make sense of negative-dimensional spheres. Let X be a finite pointed simplicial complex; some of the relevant phenomena are as follows. n−2 • For most n, the homotopy sets πnX are abelian groups. The proof involves consideration of S and so breaks down for n < 2; this would be corrected if we had negative spheres. • Calculation of homology groups is made much easier by the existence of the suspension isomorphism k Hen+kΣ X = HenX. This does not generally work for homotopy groups. However, a theorem of k Freudenthal says that if X is a finite complex, we at least have a suspension isomorphism πn+kΣ X = k+1 −k πn+k+1Σ X for large k. If could work in a context where S makes sense, we could smash everything with S−k to get a suspension isomorphism in homotopy parallel to the one in homology. • We can embed X in Sk+1 for large k, and let Y be the complement. Alexander duality says that k−n HenY = He X, showing that X can be \turned upside-down", in a suitable sense. The shift by k is unpleasant, because the choice of k is not canonical, and the minimum possible k depends on X. Moreover, it is unsatisfactory that the homotopy type of Y is not determined by that of X (even after taking account of k). -
Cochain Operations and Higher Cohomology Operations Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 42, No 4 (2001), P
CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES STEPHAN KLAUS Cochain operations and higher cohomology operations Cahiers de topologie et géométrie différentielle catégoriques, tome 42, no 4 (2001), p. 261-284 <http://www.numdam.org/item?id=CTGDC_2001__42_4_261_0> © Andrée C. Ehresmann et les auteurs, 2001, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE ET Volume XLII-4 (2001) GEOMETRIE DIFFERENTIELLE CATEGORIQ UES COCHAIN OPERATIONS AND HIGHER COHOMOLOGY OPERATIONS By Stephan KLAUS RESUME. Etendant un programme initi6 par Kristensen, cet article donne une construction alg6brique des operations de cohomologie d’ordre sup6rieur instables par des operations de cochaine simpliciale. Des pyramides d’op6rations cocycle sont consid6r6es, qui peuvent 6tre utilisées pour une seconde construction des operations de cohomologie d’ordre superieur. 1. Introduction In this paper we consider the relation between cohomology opera- tions and simplicial cochain operations. This program was initialized by L. Kristensen in the case of (stable) primary, secondary and tertiary cohomology operations. The method is strong enough that Kristensen obtained sum, prod- uct and evaluation formulas for secondary cohomology operations by skilful combinatorial computations with special cochain operations ([8], [9], [10]). As significant examples of applications we mention the inde- pendent proof for the Hopf invariant one theorem by the computation of Kristensen of Massey products in the Steenrod algebra [11], the ex- amination of the /3-family in stable homotopy by L. -
Spectra and Stable Homotopy Theory
Spectra and stable homotopy theory Lectures delivered by Michael Hopkins Notes by Akhil Mathew Fall 2012, Harvard Contents Lecture 1 9/5 x1 Administrative announcements 5 x2 Introduction 5 x3 The EHP sequence 7 Lecture 2 9/7 x1 Suspension and loops 9 x2 Homotopy fibers 10 x3 Shifting the sequence 11 x4 The James construction 11 x5 Relation with the loopspace on a suspension 13 x6 Moore loops 13 Lecture 3 9/12 x1 Recap of the James construction 15 x2 The homology on ΩΣX 16 x3 To be fixed later 20 Lecture 4 9/14 x1 Recap 21 x2 James-Hopf maps 21 x3 The induced map in homology 22 x4 Coalgebras 23 Lecture 5 9/17 x1 Recap 26 x2 Goals 27 Lecture 6 9/19 x1 The EHPss 31 x2 The spectral sequence for a double complex 32 x3 Back to the EHPss 33 Lecture 7 9/21 x1 A fix 35 x2 The EHP sequence 36 Lecture 8 9/24 1 Lecture 9 9/26 x1 Hilton-Milnor again 44 x2 Hopf invariant one problem 46 x3 The K-theoretic proof (after Atiyah-Adams) 47 Lecture 10 9/28 x1 Splitting principle 50 x2 The Chern character 52 x3 The Adams operations 53 x4 Chern character and the Hopf invariant 53 Lecture 11 8/1 x1 The e-invariant 54 x2 Ext's in the category of groups with Adams operations 56 Lecture 12 10/3 x1 Hopf invariant one 58 Lecture 13 10/5 x1 Suspension 63 x2 The J-homomorphism 65 Lecture 14 10/10 x1 Vector fields problem 66 x2 Constructing vector fields 70 Lecture 15 10/12 x1 Clifford algebras 71 x2 Z=2-graded algebras 73 x3 Working out Clifford algebras 74 Lecture 16 10/15 x1 Radon-Hurwitz numbers 77 x2 Algebraic topology of the vector field problem 79 x3 The homology of -
LECTURE 2: WALDHAUSEN's S-CONSTRUCTION 1. Introduction
LECTURE 2: WALDHAUSEN'S S-CONSTRUCTION AMIT HOGADI 1. Introduction In the previous lecture, we saw Quillen's Q-construction which associated a topological space to an exact category. In this lecture we will see Waldhausen's construction which associates a spectrum to a Waldhausen category. All exact categories are Waldhausen categories, but there are other important examples (see2). Spectra are more easy to deal with than topological spaces. In the case, when a topological space is an infinite loop space (e.g. Quillen's K-theory space), one does not loose information while passing from topological spaces to spectra. 2. Waldhausen's S construction 1. Definition (Waldhausen category). A Waldhausen category is a small cate- gory C with a distinguished zero object 0, equipped with two subcategories of morphisms co(C) (cofibrations, to be denoted by ) and !(C) (weak equiva- lences) such that the following axioms are satisfied: (1) Isomorphisms are cofibrations as well as weak equivalences. (2) The map from 0 to any object is a cofibration. (3) Pushouts by cofibration exist and are cofibrations. (4) (Gluing) Given a commutative diagram C / A / / B ∼ ∼ ∼ C0 / A0 / / B0 where vertical arrows are weak equivalences and the two right horizontal maps are cofibrations, the induced map on pushouts [ [ C B ! C0 B0 A A0 is a weak equivalence. By a cofibration sequence in C we will mean a sequence A B C such that A B is a cofibration and C is the cokernel (which always exists since pushout by cofibrations exist). 1 2 AMIT HOGADI 2. Example. Every exact category is a Waldhausen category where cofibrations are inflations and weak equivalences are isomorphisms.