The Kervaire Invariant in Homotopy Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Commentary on the Kervaire–Milnor Correspondence 1958–1961
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 603–609 http://dx.doi.org/10.1090/bull/1508 Article electronically published on July 1, 2015 COMMENTARY ON THE KERVAIRE–MILNOR CORRESPONDENCE 1958–1961 ANDREW RANICKI AND CLAUDE WEBER Abstract. The extant letters exchanged between Kervaire and Milnor during their collaboration from 1958–1961 concerned their work on the classification of exotic spheres, culminating in their 1963 Annals of Mathematics paper. Michel Kervaire died in 2007; for an account of his life, see the obituary by Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude We- ber in the September 2008 issue of the Notices of the American Mathematical Society. The letters were made public at the 2009 Kervaire Memorial Confer- ence in Geneva. Their publication in this issue of the Bulletin of the American Mathematical Society is preceded by our commentary on these letters, provid- ing some historical background. Letter 1. From Milnor, 22 August 1958 Kervaire and Milnor both attended the International Congress of Mathemati- cians held in Edinburgh, 14–21 August 1958. Milnor gave an invited half-hour talk on Bernoulli numbers, homotopy groups, and a theorem of Rohlin,andKer- vaire gave a talk in the short communications section on Non-parallelizability of the n-sphere for n>7 (see [2]). In this letter written immediately after the Congress, Milnor invites Kervaire to join him in writing up the lecture he gave at the Con- gress. The joint paper appeared in the Proceedings of the ICM as [10]. Milnor’s name is listed first (contrary to the tradition in mathematics) since it was he who was invited to deliver a talk. -
Obstructions to Approximating Maps of N-Manifolds Into R2n by Embeddings
Topology and its Applications 123 (2002) 3–14 Obstructions to approximating maps of n-manifolds into R2n by embeddings P.M. Akhmetiev a,1,D.Repovšb,∗,A.B.Skopenkov c,1 a IZMIRAN, Moscow Region, Troitsk, Russia 142092 b Institute for Mathematics, Physics and Mechanics, University of Ljubljana, P.O. Box 2964, Ljubljana, Slovenia 1001 c Department of Mathematics, Kolmogorov College, 11 Kremenchugskaya, Moscow, Russia 121357 Received 11 November 1998; received in revised form 19 August 1999 Abstract We prove a criterion for approximability by embeddings in R2n of a general position map − f : K → R2n 1 from a closed n-manifold (for n 3). This approximability turns out to be equivalent to the property that f is a projected embedding, i.e., there is an embedding f¯: K → R2n such − that f = π ◦ f¯,whereπ : R2n → R2n 1 is the canonical projection. We prove that for n = 2, the obstruction modulo 2 to the existence of such a map f¯ is a product of Arf-invariants of certain quadratic forms. 2002 Elsevier Science B.V. All rights reserved. AMS classification: Primary 57R40; 57Q35, Secondary 54C25; 55S15; 57M20; 57R42 Keywords: Projected embedding; Approximability by embedding; Resolvable and nonresolvable triple point; Immersion; Arf-invariant 1. Introduction Throughout this paper we shall work in the smooth category. A map f : K → Rm is said to be approximable by embeddings if for each ε>0 there is an embedding φ : K → Rm, which is ε-close to f . This notion appeared in studies of embeddability of compacta in Euclidean spaces—for a recent survey see [15, §9] (see also [2], [8, §4], [14], [16, * Corresponding author. -
Algebraic Hopf Invariants and Rational Models for Mapping Spaces
Algebraic Hopf Invariants and Rational Models for Mapping Spaces Felix Wierstra Abstract The main goal of this paper is to define an invariant mc∞(f) of homotopy classes of maps f : X → YQ, from a finite CW-complex X to a rational space YQ. We prove that this invariant is complete, i.e. mc∞(f)= mc∞(g) if an only if f and g are homotopic. To construct this invariant we also construct a homotopy Lie algebra structure on certain con- volution algebras. More precisely, given an operadic twisting morphism from a cooperad C to an operad P, a C-coalgebra C and a P-algebra A, then there exists a natural homotopy Lie algebra structure on HomK(C,A), the set of linear maps from C to A. We prove some of the basic properties of this convolution homotopy Lie algebra and use it to construct the algebraic Hopf invariants. This convolution homotopy Lie algebra also has the property that it can be used to models mapping spaces. More precisely, suppose that C is a C∞-coalgebra model for a simply-connected finite CW- complex X and A an L∞-algebra model for a simply-connected rational space YQ of finite Q-type, then HomK(C,A), the space of linear maps from C to A, can be equipped with an L∞-structure such that it becomes a rational model for the based mapping space Map∗(X,YQ). Contents 1 Introduction 1 2 Conventions 3 I Preliminaries 3 3 Twisting morphisms, Koszul duality and bar constructions 3 4 The L∞-operad and L∞-algebras 5 5 Model structures on algebras and coalgebras 8 6 The Homotopy Transfer Theorem, P∞-algebras and C∞-coalgebras 9 II Algebraic Hopf invariants -
The Arf and Sato Link Concordance Invariants
transactions of the american mathematical society Volume 322, Number 2, December 1990 THE ARF AND SATO LINK CONCORDANCE INVARIANTS RACHEL STURM BEISS Abstract. The Kervaire-Arf invariant is a Z/2 valued concordance invari- ant of knots and proper links. The ß invariant (or Sato's invariant) is a Z valued concordance invariant of two component links of linking number zero discovered by J. Levine and studied by Sato, Cochran, and Daniel Ruberman. Cochran has found a sequence of invariants {/?,} associated with a two com- ponent link of linking number zero where each ßi is a Z valued concordance invariant and ß0 = ß . In this paper we demonstrate a formula for the Arf invariant of a two component link L = X U Y of linking number zero in terms of the ß invariant of the link: arf(X U Y) = arf(X) + arf(Y) + ß(X U Y) (mod 2). This leads to the result that the Arf invariant of a link of linking number zero is independent of the orientation of the link's components. We then estab- lish a formula for \ß\ in terms of the link's Alexander polynomial A(x, y) = (x- \)(y-\)f(x,y): \ß(L)\ = \f(\, 1)|. Finally we find a relationship between the ß{ invariants and linking numbers of lifts of X and y in a Z/2 cover of the compliment of X u Y . 1. Introduction The Kervaire-Arf invariant [KM, R] is a Z/2 valued concordance invariant of knots and proper links. The ß invariant (or Sato's invariant) is a Z valued concordance invariant of two component links of linking number zero discov- ered by Levine (unpublished) and studied by Sato [S], Cochran [C], and Daniel Ruberman. -
EXOTIC SPHERES and CURVATURE 1. Introduction Exotic
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 4, October 2008, Pages 595–616 S 0273-0979(08)01213-5 Article electronically published on July 1, 2008 EXOTIC SPHERES AND CURVATURE M. JOACHIM AND D. J. WRAITH Abstract. Since their discovery by Milnor in 1956, exotic spheres have pro- vided a fascinating object of study for geometers. In this article we survey what is known about the curvature of exotic spheres. 1. Introduction Exotic spheres are manifolds which are homeomorphic but not diffeomorphic to a standard sphere. In this introduction our aims are twofold: First, to give a brief account of the discovery of exotic spheres and to make some general remarks about the structure of these objects as smooth manifolds. Second, to outline the basics of curvature for Riemannian manifolds which we will need later on. In subsequent sections, we will explore the interaction between topology and geometry for exotic spheres. We will use the term differentiable to mean differentiable of class C∞,and all diffeomorphisms will be assumed to be smooth. As every graduate student knows, a smooth manifold is a topological manifold that is equipped with a smooth (differentiable) structure, that is, a smooth maximal atlas. Recall that an atlas is a collection of charts (homeomorphisms from open neighbourhoods in the manifold onto open subsets of some Euclidean space), the domains of which cover the manifold. Where the chart domains overlap, we impose a smooth compatibility condition for the charts [doC, chapter 0] if we wish our manifold to be smooth. Such an atlas can then be extended to a maximal smooth atlas by including all possible charts which satisfy the compatibility condition with the original maps. -
Browder's Theorem and Manifolds with Corners
Browder’s theorem and manifolds with corners Duality and the Wu classes. The “Spanier-Whitehead dual” of a spectrum X is the function spectrum (in which S denotes the sphere spectrum) DX = F (X, S) (which exists by Brown representability). It comes equipped with an “evaluation” pairing DX ∧ X → S. Write H∗(−) for homology with F2 coefficients. If X is finite, then the induced pairing H−∗(DX) ⊗ H∗(X) → F2 is perfect, so there is an isomorphism Hi(X) → Hom(H−i(DX), F2) which may be rewritten using the universal coefficient theorem as i −i Hom(H (X), F2) → H (DX) A Steenrod operation θ induces a contragredient action on the left, which coincides with the action of χθ on the right. Here χ is the Hopf conjugation on the Steenrod algebra. The map χ is an algebra anti-automorphism and an involution, and is characterized on the total Steenod square by the identity of operators χSq = Sq−1 because of the form of the Milnor diagonal. ∞ If M is a closed smooth m manifold and X = Σ M+, then the Thom spectrum M ν of the stable normal bundle (normalized to have formal dimension −m) furnishes the Spanier-Whitehead dual of X. This is “Milnor-Spanier” or “Atiyah” duality. Poincar´eduality is given by the composite isomorphism m−i −∪U −i ν =∼ H (M) −→ H (M ) ←− Hi(M) where U ∈ H−m(M ν) is the Thom class. 0 The rather boring collapse map M+ → S dualizes to a much more interesting map ι : S0 → M ν, which in cohomology induces the map ι∗ : x ∪ U 7→ hx, [M]i k By Poincar´eduality, for each k there is a unique class vk ∈ H (M) m−k k such that for any x ∈ H (M), hSq x, [M]i = hxvk, [M]i. -
The Arf-Kervaire Invariant Problem in Algebraic Topology: Introduction
THE ARF-KERVAIRE INVARIANT PROBLEM IN ALGEBRAIC TOPOLOGY: INTRODUCTION MICHAEL A. HILL, MICHAEL J. HOPKINS, AND DOUGLAS C. RAVENEL ABSTRACT. This paper gives the history and background of one of the oldest problems in algebraic topology, along with a short summary of our solution to it and a description of some of the tools we use. More details of the proof are provided in our second paper in this volume, The Arf-Kervaire invariant problem in algebraic topology: Sketch of the proof. A rigorous account can be found in our preprint The non-existence of elements of Kervaire invariant one on the arXiv and on the third author’s home page. The latter also has numerous links to related papers and talks we have given on the subject since announcing our result in April, 2009. CONTENTS 1. Background and history 3 1.1. Pontryagin’s early work on homotopy groups of spheres 3 1.2. Our main result 8 1.3. The manifold formulation 8 1.4. The unstable formulation 12 1.5. Questions raised by our theorem 14 2. Our strategy 14 2.1. Ingredients of the proof 14 2.2. The spectrum Ω 15 2.3. How we construct Ω 15 3. Some classical algebraic topology. 15 3.1. Fibrations 15 3.2. Cofibrations 18 3.3. Eilenberg-Mac Lane spaces and cohomology operations 18 3.4. The Steenrod algebra. 19 3.5. Milnor’s formulation 20 3.6. Serre’s method of computing homotopy groups 21 3.7. The Adams spectral sequence 21 4. Spectra and equivariant spectra 23 4.1. -
On the Work of Michel Kervaire in Surgery and Knot Theory
1 ON MICHEL KERVAIRE'S WORK IN SURGERY AND KNOT THEORY Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/eaar/slides/kervaire.pdf Geneva, 11th and 12th February, 2009 2 1927 { 2007 3 Highlights I Major contributions to the topology of manifolds of dimension > 5. I Main theme: connection between stable trivializations of vector bundles and quadratic refinements of symmetric forms. `Division by 2'. I 1956 Curvatura integra of an m-dimensional framed manifold = Kervaire semicharacteristic + Hopf invariant. I 1960 The Kervaire invariant of a (4k + 2)-dimensional framed manifold. I 1960 The 10-dimensional Kervaire manifold without differentiable structure. I 1963 The Kervaire-Milnor classification of exotic spheres in dimensions > 4 : the birth of surgery theory. n n+2 I 1965 The foundation of high dimensional knot theory, for S S ⊂ with n > 2. 4 MATHEMATICAL REVIEWS + 1 Kervaire was the author of 66 papers listed (1954 { 2007) +1 unlisted : Non-parallelizability of the n-sphere for n > 7, Proc. Nat. Acad. Sci. 44, 280{283 (1958) 619 matches for "Kervaire" anywhere, of which 84 in title. 18,600 Google hits for "Kervaire". MR0102809 (21() #1595) Kervaire,, Michel A. An interpretation of G. Whitehead's generalizationg of H. Hopf's invariant. Ann. of Math. (2)()69 1959 345--365. (Reviewer: E. H. Brown) 55.00 MR0102806 (21() #1592) Kervaire,, Michel A. On the Pontryagin classes of certain ${\rm SO}(n)$-bundles over manifolds. Amer. J. Math. 80 1958 632--638. (Reviewer: W. S. Massey) 55.00 MR0094828 (20 #1337) Kervaire, Michel A. Sur les formules d'intégration de l'analyse vectorielle. -
Durham Research Online
Durham Research Online Deposited in DRO: 25 April 2019 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Cha, Jae Choon and Orr, Kent and Powell, Mark (2020) 'Whitney towers and abelian invariants of knots.', Mathematische Zeitschrift., 294 (1-2). pp. 519-553. Further information on publisher's website: https://doi.org/10.1007/s00209-019-02293-x Publisher's copyright statement: c The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Mathematische Zeitschrift https://doi.org/10.1007/s00209-019-02293-x Mathematische Zeitschrift Whitney towers and abelian invariants of knots Jae Choon Cha1,2 · Kent E. -
A Topologist's View of Symmetric and Quadratic
1 A TOPOLOGIST'S VIEW OF SYMMETRIC AND QUADRATIC FORMS Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/eaar Patterson 60++, G¨ottingen,27 July 2009 2 The mathematical ancestors of S.J.Patterson Augustus Edward Hough Love Eidgenössische Technische Hochschule Zürich G. H. (Godfrey Harold) Hardy University of Cambridge Mary Lucy Cartwright University of Oxford (1930) Walter Kurt Hayman Alan Frank Beardon Samuel James Patterson University of Cambridge (1975) 3 The 35 students and 11 grandstudents of S.J.Patterson Schubert, Volcker (Vlotho) Do Stünkel, Matthias (Göttingen) Di Möhring, Leonhard (Hannover) Di,Do Bruns, Hans-Jürgen (Oldenburg?) Di Bauer, Friedrich Wolfgang (Frankfurt) Di,Do Hopf, Christof () Di Cromm, Oliver ( ) Di Klose, Joachim (Bonn) Do Talom, Fossi (Montreal) Do Kellner, Berndt (Göttingen) Di Martial Hille (St. Andrews) Do Matthews, Charles (Cambridge) Do (JWS Casels) Stratmann, Bernd O. (St. Andrews) Di,Do Falk, Kurt (Maynooth ) Di Kern, Thomas () M.Sc. (USA) Mirgel, Christa (Frankfurt?) Di Thirase, Jan (Göttingen) Di,Do Autenrieth, Michael (Hannover) Di, Do Karaschewski, Horst (Hamburg) Do Wellhausen, Gunther (Hannover) Di,Do Giovannopolous, Fotios (Göttingen) Do (ongoing) S.J.Patterson Mandouvalos, Nikolaos (Thessaloniki) Do Thiel, Björn (Göttingen(?)) Di,Do Louvel, Benoit (Lausanne) Di (Rennes), Do Wright, David (Oklahoma State) Do (B. Mazur) Widera, Manuela (Hannover) Di Krämer, Stefan (Göttingen) Di (Burmann) Hill, Richard (UC London) Do Monnerjahn, Thomas ( ) St.Ex. (Kriete) Propach, Ralf ( ) Di Beyerstedt, Bernd -
Suspension of Ganea Fibrations and a Hopf Invariant
Topology and its Applications 105 (2000) 187–200 Suspension of Ganea fibrations and a Hopf invariant Lucile Vandembroucq 1 URA-CNRS 0751, U.F.R. de Mathématiques, Université des Sciences et Techniques de Lille, 59655 Villeneuve d’Ascq Cedex, France Received 24 August 1998; received in revised form 4 March 1999 Abstract We introduce a sequence of numerical homotopy invariants σ i cat;i2 N, which are lower bounds for the Lusternik–Schnirelmann category of a topological space X. We characterize, with dimension restrictions, the behaviour of σ i cat with respect to a cell attachment by means of a Hopf invariant. Furthermore we establish for σ i cat a product formula and deduce a sufficient C condition, in terms of the Hopf invariant, for a space X [ ep 1 to satisfy the Ganea conjecture, i.e., C C cat..X [ ep 1/ × Sm/ D cat.X [ ep 1/ C 1. This extends a recent result of Strom and a concrete example of this extension is given. 2000 Elsevier Science B.V. All rights reserved. Keywords: LS-category; Product formula; Hopf invariant AMS classification: 55P50; 55Q25 The Lusternik–Schnirelmann category of a topological space X, denoted cat X,isthe least integer n such that X can be covered by n C 1 open sets each of which is contractible in X. (If no such n exists, one sets cat X D1.) Category was originally introduced by Lusternik and Schnirelmann [18] to estimate the minimal number of critical points of differentiable functions on manifolds. They showed that a smooth function on a smooth manifold M admits at least cat M C 1 critical points. -
Realising Unstable Modules As the Cohomology of Spaces and Mapping Spaces
Realising unstable modules as the cohomology of spaces and mapping spaces G´eraldGaudens and Lionel Schwartz UMR 7539 CNRS, Universit´eParis 13 LIA CNRS Formath Vietnam Abstract This report discuss the question whether or not a given unstable module is the mod-p cohomology of a space. One first discuss shortly the Hopf invariant 1 problem and the Kervaire invariant 1 problem and give their relations to homotopy theory and geometric topology. Then one describes some more qualitative results, emphasizing the use of the space map(BZ=p; X) and of the structure of the category of unstable modules. 1 Introduction Let p be a prime number, in all the sequel H∗X will denote the the mod p singular cohomology of the topological space X. All spaces X will be supposed p-complete and connected. The singular mod-p cohomology is endowed with various structures: • it is a graded Fp-algebra, commutative in the graded sense, • it is naturally a module over the algebra of stable cohomology operations which is known as the mod p Steenrod algebra and denoted by Ap. The Steenrod algebra is generated by element Sqi of degree i > 0 if p = 2, β and P i of degree 1 and 2i(p − 1) > 0 if p > 2. These elements satisfy the Adem relations. In the mod-2 case the relations write [a=2] X b − t − 1 SqaSqb = Sqa+b−tSqt a − 2t 0 There are two types of relations for p > 2 [a=p] X (p − 1)(b − t) − 1 P aP b = (−1)a+t P a+b−tP t a − pt 0 1 for a; b > 0, and [a=p] [(a−1)=p] X (p − 1)(b − t) X (p − 1)(b − t) − 1 P aβP b = (−1)a+t βP a+b−tP t+ (−1)a+t−1 P a+b−tβP t a − pt a − pt − 1 0 0 for a; b > 0.