Algebraic Topology Dieck Titelei 1.8.2008 13:23 Uhr Seite 4

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Topology Dieck Titelei 1.8.2008 13:23 Uhr Seite 4 Dieck_titelei 1.8.2008 13:23 Uhr Seite 1 Dieck_titelei 1.8.2008 13:23 Uhr Seite 2 EMS Textbooks in Mathematics EMS Textbooks in Mathematics is a book series aimed at students or professional mathematici- ans seeking an introduction into a particular field. The individual volumes are intended to provide not only relevant techniques, results and their applications, but afford insight into the motivations and ideas behind the theory. Suitably designed exercises help to master the subject and prepare the reader for the study of more advanced and specialized literature. Jørn Justesen and Tom Høholdt, A Course In Error-Correcting Codes Markus Stroppel, Locally Compact Groups Peter Kunkel and Volker Mehrmann, Differential-Algebraic Equations Dorothee D. Haroske and Hans Triebel, Distributions, Sobolev Spaces, Elliptic Equations Thomas Timmermann, An Invitation to Quantum Groups and Duality Marek Jarnicki and Peter Pflug, First Steps in Several Complex Variables: Reinhardt Domains Oleg Bogopolski, Introduction to Group Theory Dieck_titelei 1.8.2008 13:23 Uhr Seite 3 Tammo tom Dieck Algebraic Topology Dieck_titelei 1.8.2008 13:23 Uhr Seite 4 Author: Tammo tom Dieck Mathematisches Institut Georg-August-Universität Göttingen Bunsenstrasse 3–5 37073 Göttingen Germany E-mail: [email protected] 2000 Mathematics Subject Classification: 55-01, 57-01 Key words: Covering spaces, fibrations, cofibrations, homotopy groups, cell complexes, fibre bundles, vector bundles, classifying spaces, singular and axiomatic homology and cohomology, smooth manifolds, duality, characteristic classes, bordism. The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. ISBN 978-3-03719-048-7 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2008 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum FLI C4 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the author’s TEX files: I. Zimmermann, Freiburg Printed on acid-free paper produced from chlorine-free pulp. TCF °° Printed in Germany 9 8 7 6 5 4 3 2 1 Preface Algebraic topology is the interplay between “continuous” and “discrete” mathe- matics. Continuous mathematics is formulated in its general form in the language of topological spaces and continuous maps. Discrete mathematics is used to express the concepts of algebra and combinatorics. In mathematical language: we use the real numbers to conceptualize continuous forms and we model these forms with the use of the integers. For example, our intuitive idea of time supposes a continuous process without gaps, an unceasing succession of moments. But in practice we use discrete models, machines or natural processes which we define to be periodic. Likewise we conceive of a space as a continuum but we model that space as a set of discrete forms. Thus the essence of time and space is of a topological nature but algebraic topology allows their realizations to be of an algebraic nature. Classical algebraic topology consists in the construction and use of functors from some category of topological spaces into an algebraic category, say of groups. But one can also postulate that global qualitative geometry is itself of an algebraic nature. Consequently there are two important view points from which one can study algebraic topology: homology and homotopy. Homology, invented by Henri Poincaré, is without doubt one of the most inge- nious and influential inventions in mathematics. The basic idea of homology is that we start with a geometric object (a space) which is given by combinatorial data (a simplicial complex). Then the linear algebra and boundary relations determined by these data are used to produce homology groups. In this book, the chapters on singular homology, homology, homological algebra and cellular homology constitute an introduction to homology theory (construction, axiomatic analysis, classical applications). The chapters require a parallel reading – this indicates the complexity of the material which does not have a simple intuitive explanation. If one knows or accepts some results about manifolds, one should read the construction of bordism homology. It appears in the final chapter but offers a simple explanation of the idea of homology. The second aspect of algebraic topology, homotopy theory, begins again with the construction of functors from topology to algebra. But this approach is important from another view point. Homotopy theory shows that the category of topological spaces has itself a kind of (hidden) algebraic structure. This becomes immediately clear in the introductory chapters on the fundamental group and covering space theory. The study of algebraic topology is often begun with these topics. The notions of fibration and cofibration, which are at first sight of a technical nature, are used to indicate that an arbitrary continuous map has something like a kernel and a cokernel – the beginning of the internal algebraic structure of topology. (The chapter on homotopy groups, which is essential to this book, should also be studied vi Preface for its applications beyond our present study.) In the ensuing chapter on duality the analogy to algebra becomes clearer: For a suitable class of spaces there exists a duality theory which resembles formally the duality between a vector space and its dual space. The first main theorem of algebraic topology is the Brouwer–Hopf degree the- orem. We prove this theorem by elementary methods from homotopy theory. It is a fairly direct consequence of the Blakers–Massey excision theorem for which we present the elementary proof of Dieter Puppe. Later we indicate proofs of the de- gree theorem based on homology and then on differential topology. It is absolutely essential to understand this theorem from these three view points. The theorem says that the set of self-maps of a positive dimensional sphere under the homotopy relation has the structure of a (homotopically defined) ring – and this ring is the ring of integers. The second part of the book develops further theoretical concepts (like coho- mology) and presents more advanced applications to manifolds, bundles, homotopy theory, characteristic classes and bordism theory. The reader is strongly urged to read the introduction to each of the chapters in order to obtain more coherent infor- mation about the contents of the book. Words in boldface italic are defined at the place where they appear even if there is no indication of a formal definition. In addition, there is a list of standard or global symbols. The problem sections contain exercises, examples, counter-examples and further results, and also sometimes ask the reader to extend concepts in further detail. It is not assumed that all of the problems will be completely worked out, but it is strongly recommended that they all be read. Also, the reader will find some familiarity with the full bibliography, not just the references cited in the text, to be crucial for further studies. More background material about spaces and manifolds may, at least for a while, be obtained from the author’s home page. I would like to thank Irene Zimmermann and Manfred Karbe for their help and effort in preparing the manuscript for publication. Göttingen, September 2008 Tammo tom Dieck Contents Preface v 1 Topological Spaces 1 1.1 Basic Notions ............................ 1 1.2 Subspaces. Quotient Spaces .................... 5 1.3 Products and Sums ......................... 8 1.4 Compact Spaces .......................... 11 1.5 Proper Maps ............................ 14 1.6 Paracompact Spaces ........................ 15 1.7 Topological Groups ........................ 15 1.8 Transformation Groups ....................... 17 1.9 Projective Spaces. Grassmann Manifolds ............. 21 2 The Fundamental Group 24 2.1 The Notion of Homotopy ..................... 25 2.2 Further Homotopy Notions ..................... 30 2.3 Standard Spaces .......................... 34 2.4 Mapping Spaces and Homotopy .................. 37 2.5 The Fundamental Groupoid .................... 41 2.6 The Theorem of Seifert and van Kampen ............. 45 2.7 The Fundamental Group of the Circle ............... 47 2.8 Examples .............................. 52 2.9 Homotopy Groupoids ....................... 58 3 Covering Spaces 62 3.1 Locally Trivial Maps. Covering Spaces .............. 62 3.2 Fibre Transport. Exact Sequence ................. 66 3.3 Classification of Coverings ..................... 70 3.4 Connected Groupoids ....................... 72 3.5 Existence of Liftings ........................ 76 3.6 The Universal Covering ...................... 78 4 Elementary Homotopy Theory 81 4.1 The Mapping Cylinder ....................... 81 4.2 The Double Mapping Cylinder ................... 84 4.3 Suspension. Homotopy Groups .................. 86 4.4 Loop Space ............................. 89 viii Contents 4.5 Groups and Cogroups ....................... 90 4.6 The Cofibre Sequence ....................... 92 4.7 The Fibre Sequence ........................ 97 5Cofibrations
Recommended publications
  • Homological Algebra
    Homological Algebra Donu Arapura April 1, 2020 Contents 1 Some module theory3 1.1 Modules................................3 1.6 Projective modules..........................5 1.12 Projective modules versus free modules..............7 1.15 Injective modules...........................8 1.21 Tensor products............................9 2 Homology 13 2.1 Simplicial complexes......................... 13 2.8 Complexes............................... 15 2.15 Homotopy............................... 18 2.23 Mapping cones............................ 19 3 Ext groups 21 3.1 Extensions............................... 21 3.11 Projective resolutions........................ 24 3.16 Higher Ext groups.......................... 26 3.22 Characterization of projectives and injectives........... 28 4 Cohomology of groups 32 4.1 Group cohomology.......................... 32 4.6 Bar resolution............................. 33 4.11 Low degree cohomology....................... 34 4.16 Applications to finite groups..................... 36 4.20 Topological interpretation...................... 38 5 Derived Functors and Tor 39 5.1 Abelian categories.......................... 39 5.13 Derived functors........................... 41 5.23 Tor functors.............................. 44 5.28 Homology of a group......................... 45 1 6 Further techniques 47 6.1 Double complexes........................... 47 6.7 Koszul complexes........................... 49 7 Applications to commutative algebra 52 7.1 Global dimensions.......................... 52 7.9 Global dimension of
    [Show full text]
  • Basic Properties of Filter Convergence Spaces
    Basic Properties of Filter Convergence Spaces Barbel¨ M. R. Stadlery, Peter F. Stadlery;z;∗ yInstitut fur¨ Theoretische Chemie, Universit¨at Wien, W¨ahringerstraße 17, A-1090 Wien, Austria zThe Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA ∗Address for corresponce Abstract. This technical report summarized facts from the basic theory of filter convergence spaces and gives detailed proofs for them. Many of the results collected here are well known for various types of spaces. We have made no attempt to find the original proofs. 1. Introduction Mathematical notions such as convergence, continuity, and separation are, at textbook level, usually associated with topological spaces. It is possible, however, to introduce them in a much more abstract way, based on axioms for convergence instead of neighborhood. This approach was explored in seminal work by Choquet [4], Hausdorff [12], Katˇetov [14], Kent [16], and others. Here we give a brief introduction to this line of reasoning. While the material is well known to specialists it does not seem to be easily accessible to non-topologists. In some cases we include proofs of elementary facts for two reasons: (i) The most basic facts are quoted without proofs in research papers, and (ii) the proofs may serve as examples to see the rather abstract formalism at work. 2. Sets and Filters Let X be a set, P(X) its power set, and H ⊆ P(X). The we define H∗ = fA ⊆ Xj(X n A) 2= Hg (1) H# = fA ⊆ Xj8Q 2 H : A \ Q =6 ;g The set systems H∗ and H# are called the conjugate and the grill of H, respectively.
    [Show full text]
  • A Surface of Maximal Canonical Degree 11
    A SURFACE OF MAXIMAL CANONICAL DEGREE SAI-KEE YEUNG Abstract. It is known since the 70's from a paper of Beauville that the degree of the rational canonical map of a smooth projective algebraic surface of general type is at most 36. Though it has been conjectured that a surface with optimal canonical degree 36 exists, the highest canonical degree known earlier for a min- imal surface of general type was 16 by Persson. The purpose of this paper is to give an affirmative answer to the conjecture by providing an explicit surface. 1. Introduction 1.1. Let M be a minimal surface of general type. Assume that the space of canonical 0 0 sections H (M; KM ) of M is non-trivial. Let N = dimCH (M; KM ) = pg, where pg is the geometric genus. The canonical map is defined to be in general a rational N−1 map ΦKM : M 99K P . For a surface, this is the most natural rational mapping to study if it is non-trivial. Assume that ΦKM is generically finite with degree d. It is well-known from the work of Beauville [B], that d := deg ΦKM 6 36: We call such degree the canonical degree of the surface, and regard it 0 if the canonical mapping does not exist or is not generically finite. The following open problem is an immediate consequence of the work of [B] and is implicitly hinted there. Problem What is the optimal canonical degree of a minimal surface of general type? Is there a minimal surface of general type with canonical degree 36? Though the problem is natural and well-known, the answer remains elusive since the 70's.
    [Show full text]
  • Sheaves and Homotopy Theory
    SHEAVES AND HOMOTOPY THEORY DANIEL DUGGER The purpose of this note is to describe the homotopy-theoretic version of sheaf theory developed in the work of Thomason [14] and Jardine [7, 8, 9]; a few enhancements are provided here and there, but the bulk of the material should be credited to them. Their work is the foundation from which Morel and Voevodsky build their homotopy theory for schemes [12], and it is our hope that this exposition will be useful to those striving to understand that material. Our motivating examples will center on these applications to algebraic geometry. Some history: The machinery in question was invented by Thomason as the main tool in his proof of the Lichtenbaum-Quillen conjecture for Bott-periodic algebraic K-theory. He termed his constructions `hypercohomology spectra', and a detailed examination of their basic properties can be found in the first section of [14]. Jardine later showed how these ideas can be elegantly rephrased in terms of model categories (cf. [8], [9]). In this setting the hypercohomology construction is just a certain fibrant replacement functor. His papers convincingly demonstrate how many questions concerning algebraic K-theory or ´etale homotopy theory can be most naturally understood using the model category language. In this paper we set ourselves the specific task of developing some kind of homotopy theory for schemes. The hope is to demonstrate how Thomason's and Jardine's machinery can be built, step-by-step, so that it is precisely what is needed to solve the problems we encounter. The papers mentioned above all assume a familiarity with Grothendieck topologies and sheaf theory, and proceed to develop the homotopy-theoretic situation as a generalization of the classical case.
    [Show full text]
  • Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
    MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X).
    [Show full text]
  • The Fundamental Group and Seifert-Van Kampen's
    THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN'S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topo- logical space since it provides us with information about the basic shape of the space. In this paper, we will introduce the notion of free products and free groups in order to understand Seifert-van Kampen's Theorem, which will prove to be a useful tool in computing fundamental groups. Contents 1. Introduction 1 2. Background Definitions and Facts 2 3. Free Groups and Free Products 4 4. Seifert-van Kampen Theorem 6 Acknowledgments 12 References 12 1. Introduction One of the fundamental questions in topology is whether two topological spaces are homeomorphic or not. To show that two topological spaces are homeomorphic, one must construct a continuous function from one space to the other having a continuous inverse. To show that two topological spaces are not homeomorphic, one must show there does not exist a continuous function with a continuous inverse. Both of these tasks can be quite difficult as the recently proved Poincar´econjecture suggests. The conjecture is about the existence of a homeomorphism between two spaces, and it took over 100 years to prove. Since the task of showing whether or not two spaces are homeomorphic can be difficult, mathematicians have developed other ways to solve this problem. One way to solve this problem is to find a topological property that holds for one space but not the other, e.g. the first space is metrizable but the second is not. Since many spaces are similar in many ways but not homeomorphic, mathematicians use a weaker notion of equivalence between spaces { that of homotopy equivalence.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Vanessa Robins Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200, Australia. email: [email protected] September 11, 2013 Abstract This manuscript will be published as Chapter 5 in Wiley's textbook Mathe- matical Tools for Physicists, 2nd edition, edited by Michael Grinfeld from the University of Strathclyde. The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology. arXiv:1304.7846v2 [math-ph] 10 Sep 2013 1 Contents 1 Introduction 3 2 Homotopy Theory 4 2.1 Homotopy of paths . 4 2.2 The fundamental group . 5 2.3 Homotopy of spaces . 7 2.4 Examples . 7 2.5 Covering spaces . 9 2.6 Extensions and applications . 9 3 Homology 11 3.1 Simplicial complexes . 12 3.2 Simplicial homology groups . 12 3.3 Basic properties of homology groups . 14 3.4 Homological algebra . 16 3.5 Other homology theories . 18 4 Cohomology 18 4.1 De Rham cohomology . 20 5 Morse theory 21 5.1 Basic results . 21 5.2 Extensions and applications . 23 5.3 Forman's discrete Morse theory . 24 6 Computational topology 25 6.1 The fundamental group of a simplicial complex . 26 6.2 Smith normal form for homology . 27 6.3 Persistent homology . 28 6.4 Cell complexes from data . 29 2 1 Introduction Topology is the study of those aspects of shape and structure that do not de- pend on precise knowledge of an object's geometry.
    [Show full text]
  • On Stratifiable Spaces
    Pacific Journal of Mathematics ON STRATIFIABLE SPACES CARLOS JORGE DO REGO BORGES Vol. 17, No. 1 January 1966 PACIFIC JOURNAL OF MATHEMATICS Vol. 17, No. 1, 1966 ON STRATIFIABLE SPACES CARLOS J. R. BORGES In the enclosed paper, it is shown that (a) the closed continuous image of a stratifiable space is stratifiable (b) the well-known extension theorem of Dugundji remains valid for stratifiable spaces (see Theorem 4.1, Pacific J. Math., 1 (1951), 353-367) (c) stratifiable spaces can be completely characterized in terms of continuous real-valued functions (d) the adjunction space of two stratifiable spaces is stratifiable (e) a topological space is stratifiable if and only if it is dominated by a collection of stratifiable subsets (f) a stratifiable space is metrizable if and only if it can be mapped to a metrizable space by a perfect map. In [4], J. G. Ceder studied various classes of topological spaces, called MΓspaces (ί = 1, 2, 3), obtaining excellent results, but leaving questions of major importance without satisfactory solutions. Here we propose to solve, in full generality, two of the most important questions to which he gave partial solutions (see Theorems 3.2 and 7.6 in [4]), as well as obtain new results.1 We will thus establish that Ceder's ikf3-spaces are important enough to deserve a better name and we propose to call them, henceforth, STRATIFIABLE spaces. Since we will exclusively work with stratifiable spaces, we now ex- hibit their definition. DEFINITION 1.1. A topological space X is a stratifiable space if X is T1 and, to each open UaX, one can assign a sequence {i7Λ}»=i of open subsets of X such that (a) U cU, (b) Un~=1Un=U, ( c ) Un c Vn whenever UczV.
    [Show full text]
  • ON the CONSTRUCTION of NEW TOPOLOGICAL SPACES from EXISTING ONES Consider a Function F
    ON THE CONSTRUCTION OF NEW TOPOLOGICAL SPACES FROM EXISTING ONES EMILY RIEHL Abstract. In this note, we introduce a guiding principle to define topologies for a wide variety of spaces built from existing topological spaces. The topolo- gies so-constructed will have a universal property taking one of two forms. If the topology is the coarsest so that a certain condition holds, we will give an elementary characterization of all continuous functions taking values in this new space. Alternatively, if the topology is the finest so that a certain condi- tion holds, we will characterize all continuous functions whose domain is the new space. Consider a function f : X ! Y between a pair of sets. If Y is a topological space, we could define a topology on X by asking that it is the coarsest topology so that f is continuous. (The finest topology making f continuous is the discrete topology.) Explicitly, a subbasis of open sets of X is given by the preimages of open sets of Y . With this definition, a function W ! X, where W is some other space, is continuous if and only if the composite function W ! Y is continuous. On the other hand, if X is assumed to be a topological space, we could define a topology on Y by asking that it is the finest topology so that f is continuous. (The coarsest topology making f continuous is the indiscrete topology.) Explicitly, a subset of Y is open if and only if its preimage in X is open. With this definition, a function Y ! Z, where Z is some other space, is continuous if and only if the composite function X ! Z is continuous.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • Zuoqin Wang Time: March 25, 2021 the QUOTIENT TOPOLOGY 1. The
    Topology (H) Lecture 6 Lecturer: Zuoqin Wang Time: March 25, 2021 THE QUOTIENT TOPOLOGY 1. The quotient topology { The quotient topology. Last time we introduced several abstract methods to construct topologies on ab- stract spaces (which is widely used in point-set topology and analysis). Today we will introduce another way to construct topological spaces: the quotient topology. In fact the quotient topology is not a brand new method to construct topology. It is merely a simple special case of the co-induced topology that we introduced last time. However, since it is very concrete and \visible", it is widely used in geometry and algebraic topology. Here is the definition: Definition 1.1 (The quotient topology). (1) Let (X; TX ) be a topological space, Y be a set, and p : X ! Y be a surjective map. The co-induced topology on Y induced by the map p is called the quotient topology on Y . In other words, −1 a set V ⊂ Y is open if and only if p (V ) is open in (X; TX ). (2) A continuous surjective map p :(X; TX ) ! (Y; TY ) is called a quotient map, and Y is called the quotient space of X if TY coincides with the quotient topology on Y induced by p. (3) Given a quotient map p, we call p−1(y) the fiber of p over the point y 2 Y . Note: by definition, the composition of two quotient maps is again a quotient map. Here is a typical way to construct quotient maps/quotient topology: Start with a topological space (X; TX ), and define an equivalent relation ∼ on X.
    [Show full text]
  • Combinatorial Topology
    Chapter 6 Basics of Combinatorial Topology 6.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union of simple building blocks glued together in a “clean fashion”. The building blocks should be simple geometric objects, for example, points, lines segments, triangles, tehrahedra and more generally simplices, or even convex polytopes. We will begin by using simplices as building blocks. The material presented in this chapter consists of the most basic notions of combinatorial topology, going back roughly to the 1900-1930 period and it is covered in nearly every algebraic topology book (certainly the “classics”). A classic text (slightly old fashion especially for the notation and terminology) is Alexandrov [1], Volume 1 and another more “modern” source is Munkres [30]. An excellent treatment from the point of view of computational geometry can be found is Boissonnat and Yvinec [8], especially Chapters 7 and 10. Another fascinating book covering a lot of the basics but devoted mostly to three-dimensional topology and geometry is Thurston [41]. Recall that a simplex is just the convex hull of a finite number of affinely independent points. We also need to define faces, the boundary, and the interior of a simplex. Definition 6.1 Let be any normed affine space, say = Em with its usual Euclidean norm. Given any n+1E affinely independentpoints a ,...,aE in , the n-simplex (or simplex) 0 n E σ defined by a0,...,an is the convex hull of the points a0,...,an,thatis,thesetofallconvex combinations λ a + + λ a ,whereλ + + λ =1andλ 0foralli,0 i n.
    [Show full text]