Bionics Help for the Disabled

Total Page:16

File Type:pdf, Size:1020Kb

Bionics Help for the Disabled For u & Me tools In the quest for perfection, man is trying his best to develop biological systems with engineering precision, and somewhere in the near future we could have a truly bionic (artificial) man. The good thing is that this could help the disabled and the ailing in a great way. BIONICS HELP FOR THE DISABLED he human body is one of the best creations of nature, the application of methods and systems found in nature to the for it is an amazing combination of muscles, sensory study and design of engineering systems and modern organs, neural networks et al. But, over a period of technology. In simple terms, when we think about bionics, it is time and also due to some unforeseen circumstances, generally about prosthetic arms or leg enhancements that are >>Tsome of these natural combinations cease to work to their worn outside the body and, to some extent, even implanted potential, or get damaged altogether. So, is it possible to get sensor devices inside the body, which are specifically enhanced back the glory bestowed on us by Mother Nature? Is it possible to carry out routine tasks. These are essentially life systems to graft a human organ or restore sensory perceptions to the that are powered by motors/actuators and sensory arrays. human body? One major field working towards this is ‘bionics’, These send neural signals from the affected part of the body to an interdisciplinary approach where different technologies are the brain, by which individuals are able to perform some tasks coming together to make this scenario possible. independently. According to popular definition, bionics or biomimetics is In a typical scenario, what would happen if you lost a 42 FEBRUARY 2006 ‘i.t.’ | www.itmagz.com C M Y K tools For u & Me certain part of your body? Unfortunately, we are not bestowed with such unique Muscle power enabled by MEMS regenerating capabilities that the starfish Polymers are definitely making progress, as can be seen from the pioneering efforts of Carlos or the common lizard possess to grow Montemagno, a micro engineer, and his team at the University of California, Los Angeles. The back our arms and legs, restoring them experiment was to use living muscle cells to power Microelectromechanical Systems (MEMS) to their original state. Stem cell research instead of micro motors, which would act as muscle-based nerve stimulators. Montemagno may be the answer, but no one knows for worked painstakingly for three long years and was finally rewarded. sure and, till then, it’s going to be artificial In their lab, the micro engineers used a device—an arch of silicon fifty micrometers wide implants and this is where bionics comes (half the width of a human hair) on which the team grew a cord of heart muscle fibre into the picture. Let’s take a look at all (experimenting using rat cells)—all powered by a glucose culture medium on a Petri dish. To that could possibly be done to restore or achieve the desired conductivity for the structure to grow and move, the team decided to use reconstruct a damaged human body. a gold film that acted as the adherent. Over a period of three days, the entire silicon arch was covered by muscle fibre. Finally, when the restraining beam, which held the musclebot was Developments removed, it started to crawl at speeds of 40 micrometers per second. According to him, the The history of bionics begins from ancient technique when applied to humans would help people with damaged phrenic nerves to mythological times, where soldiers were breathe easily, and the human muscles would be powered by blood glucose from our own reported to have replaced their mutilated body itself. limbs with artificial ones made of iron ore and gone out to battle. But the present day scenario is influenced by a variety of are increasingly being used by 1999 for an arm wrestling match against disciplines, viz. robotics, bioengineering researchers to assist humans to overcome a robotic arm made out of EAP. The and MEMS, with nanotechnology taking deformities. Yoseph Bar-Cohen of challenge was finally accepted in March centre stage because it applies detailed NASA’s Jet Propulsion Laboratory is the 2005 by a sixteen-year high school precision to engineer body organs and first among equals in the research on student, Panna Felsen, USA, who make them function along with EAP. He has conducted several defeated three robotic arms made out of human tissues. experiments, and has found that these EAP. Through this experiment, Yoseph The last few decades have been polymers respond exactly like our Bar-Cohen was able to prove that with wonderful years for technological normal muscles under the influence of further improvement in technology, EAP advances, both for the medical and the electrical stimulation and therefore are could one day actually emulate biological electronics industry in the form of the most likely candidates for use in the muscles and, quite possibly, the verdict miniaturised electronic components, human body as well as robotic areas of might be different the next time around! sophisticated microchips and advanced work. Encouraged by the R&D work he Now, imagine what a world of difference computer systems—all functionally had carried out, and confident about the it would make to people suffering from embedded in the human body. This unique properties of EAP, he had issued muscular dystrophy. Again, there’s one particular human-to-machine interface, an open challenge to the world way back more interesting capability of EAP—it aptly termed as ‘Cyborg entities’ or in can be coupled with MEMS to produce ‘Bionic bodies’, has helped people with smart actuators. physical disabilities (the differently abled) by providing them with Artificial hearts artificial limbs, cochlear implants, So now that we have the muscular artificial muscles and other organs body, we need some heartbeat. Our to perform tasks, enabling them to heart is like the engine of the body, lead a notably better lifestyle. pumping blood to various organs and keeping us alive and if that Artificial muscles stops…! Artificial development on What would the human body be the heart started around the 1950s without muscles? Just a dangling when pacemakers were introduced (big skeleton! Quite a scary thought! mammoths, plugged onto wall So in the case of units, with which you damaged muscle, is could move only as far there a possibility of as the extension cord generating new muscles permitted) that altogether! Well, yes— allowed people with one such scenario is the heart problems some use of EAP or respite. Current Electroactive Polymers. pacemakers are tiny. In These are often referred the technical sense, a pacemaker is a to as artificial muscles and miniaturised electrical generator that www.itmagz.com | ‘i.t.’ FEBRUARY 2006 43 C M Y K For u & Me tools consists of a battery that can last a number tissues deteriorate, and over a period of of years and a computer circuit neatly time a person can become blind. But as encased in plastic. This generates tiny long as the optic nerve is intact, there is electrical pulses to the heart and regulates still hope. As a result, research doctors at the rhythm (pacing and sensing) of the leading institutes around the world are heartbeat, while a doctor controls the working hard to restore vision to software for the pacemaker. Any people suffering from such eye problems and he gets a signal alerting diseases. Some of the innovative him to rectify it immediately (embedded products developed there are now intelligence). But what about a being surgically implanted for the completely artificial heart? treatment of vision impairment. The Abiocor heart, developed by Working on nanoscale Abiomed (www.abiomed.com), has been dimensions, the artificial silicon successfully implanted in many patients retina (ASR) developed by (though the mortality rate has also been Optobionics (www.optobionics.com) high) and has also helped to prolong life of Naperville, Illinois is a very tiny for almost up to six months. The patients microchip with a diameter of just 2 mm who receive artificial hearts are those and thickness of 25 microns. This fits who are on their deathbeds, with inside the eye and has an amazing 5,000 typically not more than 15-20 days of life microscopic solar cells, called expectancy. One of the most complicated microphotodiodes, each with its own damaged, the sound output from the cases involved Robert Tools, a US-based individual stimulating electrode. These auditory nerves does not reach the brain 58-year old telephone company microphotodiodes act as light sensors and a cochlear implant is the only employee and one-time teacher. He had that help convert the light energy solution for the loss. The implant has a suffered two early heart attacks, entering the eye into electrical impulses sizeable number of electrodes that congestive heart failure and was a that stimulate the remaining functional replicate the function of hair cells, thereby diabetes patient. Operated on July 2, 2001, cells of the retina, enabling the person a enabling the hearing frequency and this to receive the Abiocor heart, he survived certain amount of vision. The ASR sound information is passed on to the for a record 151 days. microchip owes its creation to the Chow brain. An interesting development took brothers—Vincent Chow, an electrical place recently at the Australian Centre Sensory perceptions— engineer, and Alan Chow, a paediatric for Medical Bionics and Hearing Science, bionic eyes and ears ophthalmologist. Using their unique part of Melbourne’s Bionic Ear Institute The human eye is made up of millions of medical and engineering experience, they (www.bionicear.org).
Recommended publications
  • Topic 1 September 2015 – Volume 08, Issue 02
    Topic 1 September 2015 – Volume 08, Issue 02 www.medical-neurosciences.de 22 Editorial CNSNewsletter September 2015 3 FOCUS Eating Right, Staying Bright 3 From Molecules to Mouthwatering Feast your eyes on the latest issue of the CNS Newsletter! If you’re reading this fi rst thing in the morning, have you 4 Boost Your Baby’s Brain! had breakfast yet? We can’t believe we’re saying this but 5 Breakfast and Brain Function if you haven’t, put the newsletter down and grab the most important meal of the day before doing anything else 6 The ABCs of Brain Foods (you’ll thank us when you get to page 5). 8 Our Moods, Our Foods What’s the hype about those shiny green “Bio” signs scattered across Berlin you pass by everyday on your 9 The Social Microbiome: A Gutsy Hypothesis morning commute? Read the low-down about organic 10 Aphrodisiacs and the Doctrine of Signatures food and the big debate about genetically modifi ed crops on pages 16 and 17. Are they any good for us? If you’re not 10 Are Oreos the New Cocaine? convinced, maybe you’re a natural skeptic. In that case: 11 Can You Be Addicted to Food? what do you think about the state of science? Is it in big trouble? Is it in need of profound change? Our brand new 12 Can Surgery Treat a Mental Illness? “Critique Corner” features an anonymous contributor dis- cussing the gloomier parts of contemporary science. 13 Ceasing Seizures with Fat? We have an inspiring interview with the man who 14 Dieting and the Brain brought us even more excitement than is usually expected from a FIFA World Cup opening match.
    [Show full text]
  • Deep Learning Approaches for Neural Decoding: from Cnns to Lstms and Spikes to Fmri
    Deep learning approaches for neural decoding: from CNNs to LSTMs and spikes to fMRI Jesse A. Livezey1,2,* and Joshua I. Glaser3,4,5,* [email protected], [email protected] *equal contribution 1Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States 2Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, California, United States 3Department of Statistics, Columbia University, New York, United States 4Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States 5Center for Theoretical Neuroscience, Columbia University, New York, United States May 21, 2020 Abstract Decoding behavior, perception, or cognitive state directly from neural signals has applications in brain-computer interface research as well as implications for systems neuroscience. In the last decade, deep learning has become the state-of-the-art method in many machine learning tasks ranging from speech recognition to image segmentation. The success of deep networks in other domains has led to a new wave of applications in neuroscience. In this article, we review deep learning approaches to neural decoding. We describe the architectures used for extracting useful features from neural recording modalities ranging from spikes to EEG. Furthermore, we explore how deep learning has been leveraged to predict common outputs including movement, speech, and vision, with a focus on how pretrained deep networks can be incorporated as priors for complex decoding targets like acoustic speech or images. Deep learning has been shown to be a useful tool for improving the accuracy and flexibility of neural decoding across a wide range of tasks, and we point out areas for future scientific development.
    [Show full text]
  • Download a Copy of the 264-Page Publication
    2020 Department of Neurological Surgery Annual Report Reporting period July 1, 2019 through June 30, 2020 Table of Contents: Introduction .................................................................3 Faculty and Residents ...................................................5 Faculty ...................................................................6 Residents ...............................................................8 Stuart Rowe Lecturers .........................................10 Peter J. Jannetta Lecturers ................................... 11 Department Overview ............................................... 13 History ............................................................... 14 Goals/Mission .................................................... 16 Organization ...................................................... 16 Accomplishments of Note ................................ 29 Education Programs .................................................. 35 Faculty Biographies ................................................... 47 Resident Biographies ................................................171 Research ....................................................................213 Overview ...........................................................214 Investigator Research Summaries ................... 228 Research Grant Summary ................................ 242 Alumni: Past Residents ........................................... 249 Donations ................................................................ 259 Statistics
    [Show full text]
  • Implantable Microelectrodes on Soft Substrate with Nanostructured Active Surface for Stimulation and Recording of Brain Activities Valentina Castagnola
    Implantable microelectrodes on soft substrate with nanostructured active surface for stimulation and recording of brain activities Valentina Castagnola To cite this version: Valentina Castagnola. Implantable microelectrodes on soft substrate with nanostructured active sur- face for stimulation and recording of brain activities. Micro and nanotechnologies/Microelectronics. Universite Toulouse III Paul Sabatier, 2014. English. tel-01137352 HAL Id: tel-01137352 https://hal.archives-ouvertes.fr/tel-01137352 Submitted on 31 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSETHÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Présentée et soutenue le 18/12/2014 par : Valentina CASTAGNOLA Implantable Microelectrodes on Soft Substrate with Nanostructured Active Surface for Stimulation and Recording of Brain Activities JURY M. Frédéric MORANCHO Professeur d’Université Président de jury M. Blaise YVERT Directeur de recherche Rapporteur Mme Yael HANEIN Professeur d’Université Rapporteur M. Pascal MAILLEY Directeur de recherche Examinateur M. Christian BERGAUD Directeur de recherche Directeur de thèse Mme Emeline DESCAMPS Chargée de Recherche Directeur de thèse École doctorale et spécialité : GEET : Micro et Nanosystèmes Unité de Recherche : Laboratoire d’Analyse et d’Architecture des Systèmes (UPR 8001) Directeur(s) de Thèse : M.
    [Show full text]
  • Human Enhancement Technologies and Our Merger with Machines
    Human Enhancement and Technologies Our Merger with Machines Human • Woodrow Barfield and Blodgett-Ford Sayoko Enhancement Technologies and Our Merger with Machines Edited by Woodrow Barfield and Sayoko Blodgett-Ford Printed Edition of the Special Issue Published in Philosophies www.mdpi.com/journal/philosophies Human Enhancement Technologies and Our Merger with Machines Human Enhancement Technologies and Our Merger with Machines Editors Woodrow Barfield Sayoko Blodgett-Ford MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editors Woodrow Barfield Sayoko Blodgett-Ford Visiting Professor, University of Turin Boston College Law School Affiliate, Whitaker Institute, NUI, Galway USA Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Philosophies (ISSN 2409-9287) (available at: https://www.mdpi.com/journal/philosophies/special issues/human enhancement technologies). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-0904-4 (Hbk) ISBN 978-3-0365-0905-1 (PDF) Cover image courtesy of N. M. Ford. © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Attempts to Achieve Immortality
    Attempts to achieve immortality Attempts to achieve immortality Author: Stepanka Boudova E-mail: [email protected] Student ID: 419572 Masaryk University Brno Course: Future of Informatics 1 Attempts to achieve immortality Table of Contents Attempts to achieve immortality......................................................................................................1 Introduction......................................................................................................................................3 Historical context.............................................................................................................................3 History of Alchemy.....................................................................................................................3 Religion and Immortality............................................................................................................ 5 Symbols of Immortality.............................................................................................................. 6 The future.........................................................................................................................................6 Mind Uploading.......................................................................................................................... 6 Cryonics.................................................................................................................................... 10 2 Attempts to achieve immortality Introduction
    [Show full text]
  • Enhancing Nervous System Recovery Through Neurobiologics, Neural Interface Training, and Neurorehabilitation
    UCLA UCLA Previously Published Works Title Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Permalink https://escholarship.org/uc/item/0rb4m424 Authors Krucoff, Max O Rahimpour, Shervin Slutzky, Marc W et al. Publication Date 2016 DOI 10.3389/fnins.2016.00584 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEW published: 27 December 2016 doi: 10.3389/fnins.2016.00584 Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation Max O. Krucoff 1*, Shervin Rahimpour 1, Marc W. Slutzky 2, 3, V. Reggie Edgerton 4 and Dennis A. Turner 1, 5, 6 1 Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA, 2 Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, 3 Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, 4 Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA, 5 Department of Neurobiology, Duke University Medical Center, Durham, NC, USA, 6 Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, Edited by: neurobiologists have been identifying and manipulating components of the intra- and Ioan Opris, University of Miami, USA extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have Reviewed by: been producing brain-machine and neural interfaces that circumvent lesions to restore Yoshio Sakurai, functionality, and neurorehabilitation experts have been developing new ways to revitalize Doshisha University, Japan Brian R.
    [Show full text]
  • KAFUI DZIRASA, MD Phd
    KAFUI DZIRASA, MD PhD 421 Bryan Research, Box 3209 E-mail: [email protected] 311 Research Drive Durham, North Carolina 27710 Duke University Medical Center Office: (919) 681-7371 EDUCATION: University of Maryland Baltimore County, Baltimore, MD June 1996-May 2001 Bachelor of Science in Chemical Engineering, Magna cum laude Meyerhoff Scholar Duke University Graduate School, Durham NC August 2003-March 2007 Doctor of Philosophy in Neurobiology Thesis: Electrophysiological Correlates of Neurological and Psychiatric Disease Advisor: Miguel Nicolelis Postdoctoral Research August 2007-March 2009 Duke University, Durham, NC Advisor: Miguel Nicolelis Duke University School of Medicine, Durham, NC August 2001-May 2009 Doctor of Medicine Medical Scientist Training Program Duke University Hospital, Durham, NC July 2010-June 2016 Residency, General Psychiatry North Carolina Medical License License #: 2016-02599 License Status: Active EMPLOYMENT HISTORY: K. Ranga Rama Krishnan Endowed Associate Professor with Tenure, Department of Psychiatry and Behavioral Sciences. Duke University Medical Center. Aug 2019-Current K. Ranga Rama Krishnan Endowed Associate Professor, Tenure Track, Department of Psychiatry and Behavioral Sciences. Duke University Medical Center. May 2018-July 2019 Associate Professor, Tenure Track, Department of Psychiatry and Behavioral Sciences. Duke University Medical Center. September 2017-May 2018 Assistant Professor, Tenure Track, Department of Psychiatry and Behavioral Sciences. Duke University Medical Center. December 2013-August 2017 Assistant Research Professor, Department of Neurobiology. Duke University. October 2012-Current. Assistant Professor, Department of Biomedical Engineering. Duke University. March 2012-Current. Visiting Professor of Neuroscience, Edmond and Lily Safra International Institute of Neurosciences of Natal (ELS-IINN). August 2011-2019. General Psychiatry Resident, Department of Psychiatry and Behavioral Sciences.
    [Show full text]
  • Artificial Intelligence and the Singularity
    Artificial Intelligence and the Singularity piero scaruffi www.scaruffi.com October 2014 - Revised 2016 "The person who says it cannot be done should not interrupt the person doing it" (Chinese proverb) Piero Scaruffi • piero scaruffi [email protected] [email protected] Olivetti AI Center, 1987 Piero Scaruffi • Cultural Historian • Cognitive Scientist • Blogger • Poet • www.scaruffi.com www.scaruffi.com 3 This is Part 5 • See http://www.scaruffi.com/singular for the index of this Powerpoint presentation and links to the other parts 1. Classic A.I. - The Age of Expert Systems 2. The A.I. Winter and the Return of Connectionism 3. Theory: Knowledge-based Systems and Neural Networks 4. Robots 5. Bionics 6. Singularity 7. Critique 8. The Future 9. Applications 10. Machine Art 11. The Age of Deep Learning www.scaruffi.com 4 Bionics Jose Delgado 5 A Brief History of Bionics 1952: Jose Delgado publishes the first paper on implanting electrodes into human brains: "Permanent Implantation of Multi-lead Electrodes in the Brain" 1957: The first electrical implant in an ear (André Djourno and Charles Eyriès) 1961: William House invents the "cochlear implant", an electronic implant that sends signals from the ear directly to the auditory nerve (as opposed to hearing aids that simply amplify the sound in the ear) 6 A Brief History of Bionics 1965 : Jose Delgado controls a bull via a remote device, injecting fear at will into the beast's brain 1969: Jose Delgado’s book "Physical Control of the Mind - Toward a Psychocivilized Society" 1969: Jose Delgado implants devices in the brain of a monkey and then sends signals in response to the brain's activity, thus creating the first bidirectional brain-machine-brain interface.
    [Show full text]
  • A Review Paper on Brain Computer Interface
    Special Issue - 2015 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 NCETEMS-2015 Conference Proceedings A Review Paper on Brain Computer Interface Sonam1, Yashpal Singh2 1,2Department of Computer Science &Engineering, Ganga Institute of Technology and Management, Kablana, Jhajjar, Haryana, India Abstract — A brain–computer interface (BCI) is a proficient Berger's first recording device was very rudimentary. result in the research field of human-computer synergy, He inserted silver wires under the scalps of his patients. where direct articulation between brain and an external These were later replaced by silver foils attached to the device occurs resulting in augmenting, assisting and repairing patients' head by rubber bandages. Berger connected these human cognitive. In our overview study past and recent sensors to a Lippmann capillary electrometer, with research works on brain computer interface are sincerely explored as well as their productivity in the field of BCI and disappointing results. More sophisticated measuring critical discussions about the proposed research methods for devices, such as the Siemens double-coil recording future developments are presented in this seminar. Brain– galvanometer, which displayed electric voltages as small as computer interfaces (BCIs) enable users to control devices one ten thousandth of a volt, led to success. with electroencephalographic (EEG) activity from the scalp or with single-neuron activity from within the brain. Berger analyzed the interrelation of alternations in his EEG wave diagrams with brain diseases. EEGs permitted Keywords— Component; formatting; style; styling; insert completely new possibilities for the research of human (key words) brain activities Research on BCIs began in the 1970s at the I.
    [Show full text]
  • Patterned Stimulation of Peripheral Nerves Produces Natural Sensations with Regards to Location but Not Quality
    Patterned Stimulation of Peripheral Nerves Produces Natural Sensations With Regards to Location but Not Quality Downloaded from: https://research.chalmers.se, 2021-09-26 10:51 UTC Citation for the original published paper (version of record): Ortiz Catalan, M., Wessberg, J., Mastinu, E. et al (2019) Patterned Stimulation of Peripheral Nerves Produces Natural Sensations With Regards to Location but Not Quality IEEE Transactions on Medical Robotics and Bionics, 1(3): 199-203 http://dx.doi.org/10.1109/TMRB.2019.2931758 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) IEEE Transactions on Medical Robotics and Bionics, TMRB-06-19-SA-0000 1 Patternedstimulationofperipheralnervesproduces naturalsensationswithregardstolocationbutnotquality Max Ortiz-Catalan, Member, IEEE, Johan Wessberg, Enzo Mastinu, Student Member, IEEE, Autumn Naber, Student Member, IEEE, and Rickard Brånemark distally referred localization, as well as their intuitive nature, Abstract—Sensory feedback is crucial for dexterous makes these somatic sensations functionally valuable in manipulation and sense of ownership. Electrical stimulation of prosthetic systems and natural in this regard. Sensations such as severed afferent fibers due to an amputation elicits referred touch, pressure, and joint position (proprioception) have been sensations in the missing limb. However, these sensations are reported by different groups [1], [2], [11], [3]–[10]. However, commonly reported with a concurrent “electric” or “tingling” character (paresthesia).
    [Show full text]
  • Cyborgs and Enhancement Technology
    philosophies Article Cyborgs and Enhancement Technology Woodrow Barfield 1 and Alexander Williams 2,* 1 Professor Emeritus, University of Washington, Seattle, Washington, DC 98105, USA; [email protected] 2 140 BPW Club Rd., Apt E16, Carrboro, NC 27510, USA * Correspondence: [email protected]; Tel.: +1-919-548-1393 Academic Editor: Jordi Vallverdú Received: 12 October 2016; Accepted: 2 January 2017; Published: 16 January 2017 Abstract: As we move deeper into the twenty-first century there is a major trend to enhance the body with “cyborg technology”. In fact, due to medical necessity, there are currently millions of people worldwide equipped with prosthetic devices to restore lost functions, and there is a growing DIY movement to self-enhance the body to create new senses or to enhance current senses to “beyond normal” levels of performance. From prosthetic limbs, artificial heart pacers and defibrillators, implants creating brain–computer interfaces, cochlear implants, retinal prosthesis, magnets as implants, exoskeletons, and a host of other enhancement technologies, the human body is becoming more mechanical and computational and thus less biological. This trend will continue to accelerate as the body becomes transformed into an information processing technology, which ultimately will challenge one’s sense of identity and what it means to be human. This paper reviews “cyborg enhancement technologies”, with an emphasis placed on technological enhancements to the brain and the creation of new senses—the benefits of which may allow information to be directly implanted into the brain, memories to be edited, wireless brain-to-brain (i.e., thought-to-thought) communication, and a broad range of sensory information to be explored and experienced.
    [Show full text]