Ecological Impacts of an Invasive Predator Explained and Predicted by Comparative Functional Responses

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Impacts of an Invasive Predator Explained and Predicted by Comparative Functional Responses Ecological impacts of an invasive predator explained and predicted by comparative functional responses Jaimie T. A. Dick, Kevin Gallagher, Suncica Avlijas, Hazel C. Clarke, Susan E. Lewis, Sally Leung, Dan Minchin, Joe Caffrey, et al. Biological Invasions ISSN 1387-3547 Volume 15 Number 4 Biol Invasions (2013) 15:837-846 DOI 10.1007/s10530-012-0332-8 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media B.V.. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Biol Invasions (2013) 15:837–846 DOI 10.1007/s10530-012-0332-8 ORIGINAL PAPER Ecological impacts of an invasive predator explained and predicted by comparative functional responses Jaimie T. A. Dick • Kevin Gallagher • Suncica Avlijas • Hazel C. Clarke • Susan E. Lewis • Sally Leung • Dan Minchin • Joe Caffrey • Mhairi E. Alexander • Cathy Maguire • Chris Harrod • Neil Reid • Neal R. Haddaway • Keith D. Farnsworth • Marcin Penk • Anthony Ricciardi Received: 11 May 2012 / Accepted: 27 August 2012 / Published online: 7 September 2012 Ó Springer Science+Business Media B.V. 2012 Abstract Forecasting the ecological impacts of a recent and ecologically damaging invader in Europe invasive species is a major challenge that has seen and N. America, in comparison to the local native little progress, yet the development of robust predic- analogues Mysis salemaai and Mysis diluviana in tive approaches is essential as new invasion threats Ireland and Canada, respectively. This was conducted continue to emerge. A common feature of ecologically in a novel set of experiments involving multiple prey damaging invaders is their ability to rapidly exploit species in each geographic location and a prey species and deplete resources. We thus hypothesized that the that occurs in both regions. The predatory functional ‘functional response’ (the relationship between responses of the invader were generally higher than resource density and consumption rate) of such those of the comparator native species and this invasive species might be of consistently greater difference was consistent across invaded regions. magnitude than those of taxonomically and/or trophi- Moreover, those prey species characterized by the cally similar native species. Here, we derived func- strongest and potentially de-stabilizing Type II func- tional responses of the predatory Ponto-Caspian tional responses in our laboratory experiments were freshwater ‘bloody red’ shrimp, Hemimysis anomala, the same prey species found to be most impacted by H. anomala in the field. The impact potential of J. T. A. Dick (&) Á K. Gallagher Á H. C. Clarke Á J. Caffrey S. Leung Á M. E. Alexander Á C. Maguire Á Inland Fisheries Ireland, Swords Business Campus, C. Harrod Á N. Reid Á K. D. Farnsworth Swords, Co. Dublin, Ireland School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland BT9 7BL, UK C. Harrod e-mail: [email protected] Instituto de Investigaciones Oceanolo´gicas, Universidad de Antofagasta, Avenida Angamos 601, S. Avlijas Á A. Ricciardi Antofagasta, Chile Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, QC H3A 0C4, Canada N. R. Haddaway Institute of Integrative and Comparative Biology, S. E. Lewis Faculty of Biological Sciences, University of Leeds, Carroll University, 100 North East Avenue, Leeds LS2 9JT, UK Waukesha, WI 53186, USA M. Penk D. Minchin School of Natural Sciences, Trinity College Dublin, The Coastal Research and Planning Institute, Dublin, Ireland University of Klaipeda, Klaipeda, Lithuania 123 Author's personal copy 838 J. T. A. Dick et al. H. anomala was further indicated when it exhibited Ricciardi et al. 2012). However, given that the rapid similar or higher attack rates, consistently lower prey exploitation of resources is a trait commonly associ- handling times and higher maximum feeding rates ated with high-impact invaders (Strayer et al. 1999; compared to those of the two Mysis species, formerly Byers et al. 2002; Johnson et al. 2008; Morrison and known as ‘Mysis relicta’, which itself has an extensive Hay 2011), valuable insights into their ecological history of foodweb disruption in lakes to which it has impact could conceivably be derived from inter- been introduced. Comparative functional responses specific comparisons of their ‘functional response’— thus merit further exploration as a methodology for i.e., the relationship between resource density and predicting severe community-level impacts of current consumer uptake rate. Recently, it was suggested that and future invasive species and could be entered into introduced predators that are damaging to native risk assessment protocols. communities might display higher functional responses than comparator native species (Bollache Keywords Biological invasion Á Ecological impact Á et al. 2008). We propose that comparative functional Functional response Á Prediction Á Risk assessment responses of invaders and natives offer a methodology to forecast the impacts of present and future invaders. Further, strong impacts may be predictable when new invaders exhibit functional responses that are consis- Introduction tently equivalent to, or higher than, those of known harmful invaders across different biogeographical Invasive species continue to jeopardize biodiversity and regions. Should this be the case, comparative func- disrupt ecosystems (Lockwood et al. 2007;Davis2009; tional responses may also be a useful metric to include Ricciardi et al. 2012). The most cost-effective approach in risk assessment protocols (see Andersen et al. 2004). to managing invasion threats is prevention (Leung et al. To further explore this concept and its application, 2002), but effective allocation of limited resources we conducted a novel inter-regional experiment to towards this goal requires reliable forecasts of invasive- examine the functional responses of an invasive ness and impact (Byers et al. 2002). Although there has predator of emerging global significance, the Ponto- been some progress in linking species characteristics to Caspian mysid ‘bloody red’ shrimp, Hemimysis ano- invasiveness (Kolar and Lodge 2001; van Kleunen et al. mala G.O Sars, which is spreading across continental 2010;Kelleretal.2011), few advances have been made Europe (Ketelaars et al. 1999; Ricciardi et al. 2012) in developing methods for predicting the ecological and has recently invaded the UK (Holdich et al. 2006), impacts of invaders (Byers et al. 2002;NRC2002; Ireland (Minchin and Holmes 2008) and the North Ricciardi 2003;Lockwoodetal.2007;Davis2009;but American Great Lakes (Ricciardi et al. 2012). In order see Nentwig et al. 2009). Some physiological and life to assess the potential ecological impact of this history correlates of ecological impact have been species, we compared its functional responses with identified for terrestrial plants (McIntyre et al. 2005; those of other mysids, Mysis salemaai Audzijonyte & Pysek et al. 2009), but attempts to use species traits to Va¨ino¨la¨, 2005 (native to Ireland) and M. diluviana predict the outcomes of invasions in general have had Audzijonyte & Va¨ino¨la¨, 2005 (native to boreal North modest success to date (Cronk and Fuller 1995; America). The latter are sister species in the Mysis Lockwood et al. 2007;Davis2009; van Kleunen et al. relicta complex, which itself has an extensive invasion 2010). history and has caused biodiversity loss and foodweb Further, variation in morphological, genetic and disruptions in many lakes to which it has been behavioural characteristics across their invasive ranges introduced (Nesler and Bergersen 1991). We predicted have frustrated attempts to identify species traits that that these crustacean predators would display Holling consistently predict invader impacts on recipient Type II functional responses, as such responses are communities (Hayes and Barry 2008; Tecco et al. most likely to be de-stabilizing with respect to prey 2010). Presently, the only general predictive method populations (Murdoch and Oaten 1975) and thus available is to reference an invader’s history of impact, would concur with observed patterns of prey species an approach limited to invaders whose effects are displacement in invaded systems (see Ketelaars et al. already well documented (NRC 2002; Ricciardi 2003; 1999; Ricciardi et al. 2012). 123 Author's personal copy Invader functional responses 839 Materials and methods asymptote at prey density 30, densities were increased to 40, 80 and 140 with this prey species (Fig. 1a) and In Ireland, we collected H. anomala (8–14 mm body for all subsequent experiments, which were conducted length) from Loughs Derg and Ree and the native M. for 12 h overnight in darkness (when mysids forage salemaai (16–21 mm) from Loughs Derg and Neagh. most actively). These methods were repeated with In Canada, we collected H. anomala and Mysis H. anomala and M. diluviana in Canada. diluviana (of similar respective size ranges as above) Mean prey eaten at 12 h was examined for each from the St. Lawrence River and Lakes Memphrem- prey species in two-Factor ANOVAs with respect to agog and Oneida, respectively. All mysids
Recommended publications
  • Hemimysis Anomala Is Established in the Shannon River Basin District in Ireland
    Aquatic Invasions (2010) Volume 5, Supplement 1: S71-S78 doi: 10.3391/ai.2010.5.S1.016 Open Access © 2010 The Author(s). Journal compilation © 2010 REABIC Aquatic Invasions Records Hemimysis anomala is established in the Shannon River Basin District in Ireland Dan Minchin1,2* and Rick Boelens1 1Lough Derg Science Group, Castlelough. Portroe, Nenagh, Co Tipperary, Ireland 2Marine Organism Investigations, 3 Marina Village, Ballina, Killaloe, Co Clare, Ireland E-mail: [email protected] (DM), [email protected] (RB) *Corresponding author Received: 5 March 2010 / Accepted: 22 May 2010 / Published online: 29 July 2010 Abstract The Ponto-Caspian mysid shrimp Hemimysis anomala was found in Ireland for the first time in April 2008. During 2009 it was found throughout most of the Shannon River Navigation (~250km) occurring in swarms at estimated densities of ~6 per litre in shallows and in lower densities at depths of ~20m where its distribution overlaps with the native Mysis salemaai. Broods were found from March to September. It occurs mainly in lakes but small numbers were found at one river site. In summer, shallow- water specimens were found only during the night but in winter could be captured in daytime. It is not known by what means the species arrived in Ireland, or when. Key words: Hemimysis, mysid, Ireland, Shannon, lake, swarm Introduction H. anomala in 1992 on the coast of Finland is thought to have been with ships’ ballast water In April 2008, the Ponto-Caspian mysid (Salemaa and Hietalahti 1993), as is also the case Hemimysis anomala G.O. Sars, 1907 was disco- in the Great Lakes of North America (Audzi- vered for the first time in Ireland in a harbour on jonyte et al.
    [Show full text]
  • Download Marcin Penk's CV
    CURRICULUM VITAE MARCIN PENK B.Sc., Dip. Stat., M.Sc., Ph.D. EDUCATION 2010-2014: Trinity College Dublin, School of Natural Sciences Ph.D. in Aquatic Ecology Thesis: “Facing multiple challenges at range margins: influence of climate change, nutrient enrichment and an introduced competitor on the glacial relict, Mysis salemaai”. 2010-2011 Trinity College Dublin, School of Computer Science and Statistics Postgraduate Diploma in Statistics 2004-2006 Trinity College Dublin, School of Natural Sciences MSc (Environmental Sciences), Trinity College Dublin, Ireland Thesis: “Investigations into the food sources of the cockle, Cerastoderma edule in Dublin Bay: multiple stable isotopes approach” 2000-2004 West Pomeranian University of Technology, Szczecin, Poland BSc in Agricultural Economics Thesis: ”Marine biodiversity and fisheries” CAREER HISTORY Consultant ecologist, BEC Consultants Ltd 02/2018-present Assessing saltmarsh vegetation in support of Irish compliance with EU Habitats Directive for NPWS. Postdoctoral Fellow, Trinity College Dublin, Botany Department 03/2016-02/2018 Investigating impacts of anthropogenic pressures on saltmarsh vegetation within the EPA-funded SAMFHIRES project (Saltmarsh Function and Human Impacts in Relation to Ecological Status). In summer 2016, I recorded 260 vegetation quadrats representing the full range of saltmarsh communities and distributed among 16 saltmarshes on the east and south coast of Ireland. At each plot, I recorded plant species coverage, collected and analysed samples of plant biomass and soil
    [Show full text]
  • The Aquatic Glacial Relict Fauna of Norway – an Update of Distribution and Conservation Status
    Fauna norvegica 2016 Vol. 36: 51-65. The aquatic glacial relict fauna of Norway – an update of distribution and conservation status Ingvar Spikkeland1, Björn Kinsten2, Gösta Kjellberg3, Jens Petter Nilssen4 and Risto Väinölä5 Spikkeland I, Kinsten B, Kjellberg G, Nilssen JP, Väinölä R. 2016. The aquatic glacial relict fauna of Norway – an update of distribution and conservation status. Fauna norvegica 36: 51-65. The aquatic “glacial relict” fauna in Norway comprises a group of predominantly cold-water animals, mainly crustaceans, which immigrated during or immediately after the deglaciation when some of the territory was still inundated by water. Their distribution is mainly confined to lakes in the SE corner of the country, east of the Glomma River in the counties of Akershus, Østfold and Hedmark. We review the history and current status of the knowledge on this assemblage and of two further similarly distributed copepod species, adding new observations from the last decades, and notes on taxonomical changes and conservation status. By now records of original populations of these taxa have been made in 42 Norwegian lakes. Seven different species are known from Lake Store Le/Foxen on the Swedish border, whereas six species inhabit lakes Femsjøen, Øymarksjøen and Rødenessjøen, and five are found in Aspern, Aremarksjøen and in the largest Norwegian lake, Mjøsa. From half of the localities only one of the species is known. The most common species are Mysis relicta (s.str.), Pallaseopsis quadrispinosa and Limnocalanus macrurus. Some populations may have become extirpated recently due to eutrophi- cation, acidification or increased fish predation. Apart from the main SE Norwegian distribution, some lakes of Jæren, SW Norway, also harbour relict crustaceans, which is puzzling.
    [Show full text]
  • Replace This with the Actual Title Using All Caps
    MYSIS DILUVIANA IN THE GREAT LAKES: HISTORIC DRIVERS OF ABUNDANCE AND PRODUCTION, AND CURRENT STATUS IN LAKE ONTARIO A Thesis Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Master of Science by Toby Joseph Holda August 2017 © 2017 Toby Joseph Holda ABSTRACT Mysis diluviana are small, shrimp-like crustaceans native to the Laurentian Great Lakes, where they are important as planktivores and as prey for fish. Therefore, our understanding of offshore Great Lakes food webs requires an understanding of M. diluviana population dynamics in these systems. In this thesis, I review the factors observed to influence the abundance, life history, and production of M. diluviana in the Great Lakes, and report recent status (2013) in Lake Ontario, including the first production estimate since 1995. In Lake Ontario in 2013, M. diluviana abundance, biomass, and production were less than 50% of values in the 1990s, but age-0 growth rate and age-1 fecundity were higher. These results suggest food limitation was not the cause of the observed declines in abundance in the late 1990s. BIOGRAPHICAL SKETCH Toby Holda was born in Chicago, Illinois where took a special interest in fish, fishing, aquatic organisms, and science before graduating high school in 2009. He then attended the College of DuPage until 2011, when he transferred to the University of Illinois at Urbana-Champaign. There, he was an active member of the university American Fisheries Society (AFS) subunit, and participated in undergrad research in the Cáceres and Wahl labs. He completed the degree for Bachelor of Science in Natural Resources and Environmental Sciences in the spring of 2013.
    [Show full text]
  • Crustacea: Mysida)
    Biogeographia – The Journal of Integrative Biogeography 34 (2019): 1–15 Amazonia versus Pontocaspis: a key to understanding the mineral composition of mysid statoliths (Crustacea: Mysida) KARL J. WITTMANN1,*, ANTONIO P. ARIANI2 1 Abteilung für Umwelthygiene, Medizinische Universität Wien, Kinderspitalgasse 15, A-1090 Vienna, (Austria), email: [email protected] 2 Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia, Complesso Monte S. Angelo, 80126 Napoli, (Italia), email: [email protected] * corresponding author Keywords: crystalline components, fluorite, freshwater, geographic distribution, marine, Paratethys, taxonomic distribution, Tethys, vaterite. SUMMARY We have determined the mineral composition of statoliths in 169 species or subspecies (256 populations) of the family Mysidae on a worldwide scale. Including previously published data, the crystallographic characteristics are now known for 296 extant species or subspecies: fluorite (CaF2) in 79%, vaterite (a metastable form of crystalline CaCO3) in 16%, and non-crystalline (organic) components in 5%, the latter exclusively and throughout in the subfamilies Boreomysinae and Rhopalophthalminae. Within the subfamily Mysinae vaterite or fluorite were found in three tribes, whereas other three tribes have fluorite only. The exclusive presence of fluorite was confirmed for the remaining seven subfamilies. Hotspots of vaterite were found in Amazonia and the Pontocaspis, in each case with reduced frequencies in main and tributary basins of the Atlantic and N-Indian Ocean. Vaterite is completely absent in the remaining aquatic regions of the world. In accordance with previous findings, fluorite occurred mainly in seawater, vaterite mostly in brackish to freshwater. Only vaterite was found in electrolyte-poor Black Water of Amazonia, which clearly cannot support the high fluorine demand for renewal of otherwise large fluorite statoliths upon each moult.
    [Show full text]
  • Recent Publications – Faculty of Engineering, Mathematics and Science
    Recent Publications – Faculty of Engineering, Mathematics and Science BY MEMBERS OF THE STAFF AND BY RESEARCH STUDENTS WORKING UNDER THEIR SUPERVISION The publications information has been derived from the College’s Research Support System. Every effort has been made to ensure that the information is accurate and complete. Please notify the Research Support Systems Administrator (email: [email protected]) of any errors or omissions which will be corrected in next year’s Calendar. School of Biochemistry and Immunology BIOCHEMISTRY Budanov, Andrei, ‘Distinct role of Sesn2 in response to UVB-induced DNA damage and UVA- induced oxidative stress in melanocytes’, Photochemistry and Photobiology, 93, 1 (2017), 375- 381 [B. Zhao, P. Shah, L. Qiang, T.C. He, A. Budanov, Y.Y. He] ‘Sestrin2 is significantly increased in malignant pleural effusions due to lung cancer and is potentially secreted by pleural mesothelial cells’, Clinical Biochemistry, 49, 9 (2016), 726-728 [I. Tsilioni, A.S. Filippidis, T. Kerenidi, A. Budanov, S.G. Zarogiannis, K.I. Gourgoulianis] ‘Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart’, FASEB Journal, 29, 2 (2015), 408-417 [A. Morrison, L. Chen, J. Wang, M. Zhang, H. Yang, Y. Ma, A. Budanov, J.H. Lee, M. Karin, J. Li] ‘Sestrins regulate mTORC1 via RRAGs: the riddle of GATOR’, Molecular and Cellular Oncology, 2, 3 (2015), 3 ‘Sensing the environment through sestrins: implications for cellular metabolism’, International review of cell and molecular biology, eds Kwan W. Jeon and Lorenzo Galluzzi, Elsevier (2016), 1-24 [A. Parmigiani, A. Budanov] ‘Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death’, Scientific Reports, 6, 22538 (2016), 14 [B.
    [Show full text]
  • Studies on Baltic Sea Mysids
    Studies on Baltic Sea mysids Martin Ogonowski Department of Systems Ecology Stockholm University Doctoral thesis in Marine Ecology Martin Ogonowski, [email protected] Department of Systems Ecology Stockholm University SE-106 91 Stockholm, Sweden ©Martin Ogonowski, Stockholm 2012 ISBN 978-91-7447-510-4 Printed in Sweden by US-AB, Stockholm 2012 Distributor: Department of Systems Ecology, Stockholm University Cover and chapter dividers: ©Ruggero Maramotti Abstract Mysid shrimps (Mysidacea, Crustacea) are efficient zooplanktivores in both marine and freshwater systems as well as lipid rich prey for many species of fish. Although some efforts have been made to study the role of mysids in the Baltic Sea, very few studies have been carried out in recent time and there are still knowledge gaps regarding various aspects of mysid ecology. This thesis aims to explore some of these gaps by covering a mixture of topics. Using multifrequency hydroacoustics we explored the possibility to separate mysids from fish echoes and successfully established a promising and effective method for obtaining mysid abundance/biomass estimates (paper I). An investigation of the current mysid community in a coastal area of the northern Baltic proper (paper II) demonstrated that the formerly dominant, pelagic mysid Mysis mixta had decreased substantially (~50%) in favor for phytoplanktivorous, juvenile Neomysis integer and Mysis relicta sp. By examining different aspects of mysid behavior, we studied the vertical size distribution of mysids in the field and found that size increased with depth/declining light, irrespective of temperature; indicating that their vertical size distribution primarily is a response to predation (paper II). In paper III, a combination of ecological and genetic markers was used to investigate intraspecific differences in migratory tendency.
    [Show full text]
  • Benthic‐Pelagic Coupling and Trophic Relationships in Northern Baltic Sea Food Webs
    This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details. Author(s): Kiljunen, Mikko; Peltonen, Heikki; Lehtiniemi, Maiju; Uusitalo, Laura; Sinisalo, Tuula; Norkko, Joanna; Kunnasranta, Mervi; Torniainen, Jyrki; Rissanen, Antti J.; Karjalainen, Juha ‐ Title: Benthic pelagic coupling and trophic relationships in northern Baltic Sea food webs Year: 2020 Version: Published version Copyright: © 2020 the Author(s) Rights: CC BY 4.0 Rights url: https://creativecommons.org/licenses/by/4.0/ Please cite the original version: Kiljunen, M., Peltonen, H., Lehtiniemi, M., Uusitalo, L., Sinisalo, T., Norkko, J., Kunnasranta, M., Torniainen, J., Rissanen, A. J., & Karjalainen, J. (2020). Benthic‐pelagic coupling and trophic relationships in northern Baltic Sea food webs. Limnology and Oceanography, 65(8), 1706-1722. https://doi.org/10.1002/lno.11413 Limnol. Oceanogr. 9999, 2020, 1–17 © 2020 The Authors. Limnology and Oceanography published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography. doi: 10.1002/lno.11413 Benthic-pelagic coupling and trophic relationships in northern Baltic Sea food webs Mikko Kiljunen ,1,2* Heikki Peltonen,1 Maiju Lehtiniemi,1 Laura Uusitalo,3 Tuula Sinisalo,2 Joanna Norkko,4 Mervi Kunnasranta,5,6 Jyrki Torniainen,2,7 Antti J. Rissanen,2 Juha Karjalainen2 1Marine Research Centre, Finnish Environment Institute, Helsinki, Finland 2Department of Environmental and Biological Science, University of Jyväskylä,
    [Show full text]
  • Advancing Impact Prediction and Hypothesis Testing in Invasion Ecology Using a Comparative Functional Response Approach
    Biol Invasions (2014) 16:735–753 DOI 10.1007/s10530-013-0550-8 PERSPECTIVES AND PARADIGMS Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach Jaimie T. A. Dick • Mhairi E. Alexander • Jonathan M. Jeschke • Anthony Ricciardi • Hugh J. MacIsaac • Tamara B. Robinson • Sabrina Kumschick • Olaf L. F. Weyl • Alison M. Dunn • Melanie J. Hatcher • Rachel A. Paterson • Keith D. Farnsworth • David M. Richardson Received: 1 August 2013 / Accepted: 16 September 2013 / Published online: 26 September 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Invasion ecology urgently requires predic- functional responses. We show that functional response tive methodologies that can forecast the ecological analyses, by describing the resource use of species over impacts of existing, emerging and potential invasive a range of resource availabilities, avoids many pitfalls species. We argue that many ecologically damaging of ‘snapshot’ assessments of resource use. Our frame- invaders are characterised by their more efficient use of work demonstrates how comparisons of invader and resources. Consequently, comparison of the classical native functional responses, within and between Type II ‘functional response’ (relationship between resource and III functional responses, allow testing of the likely use and availability) between invasive and trophically population-level outcomes of invasions for affected analogous native species may allow prediction of species. Furthermore, we describe how recent studies invader ecological impact. We review the utility of support the predictive capacity of this method; for species trait comparisons and the history and context of example, the invasive ‘bloody red shrimp’ Hemimysis the use of functional responses in invasion ecology, anomala shows higher Type II functional responses then present our framework for the use of comparative than native mysids and this corroborates, and could J.
    [Show full text]
  • Book of Abstracts
    5 th International Zooplankton Production Symposium, 2011 Zooplankton Production Symposium, International Photo of a giant jellyfish, Chrysaora sp., taken in the Pacific Ocean off California, USA Image provided by Image Quest Marine Prepared and published by Population Connections, PICES Secretariat P.O. Box 6000 9860 West Saanich Road Community Dynamics, and Sidney, British Columbia V8L 4B2 Climate Variability Canada Phone: 1-250-363-6366 5th International Zooplankton Production Symposium Fax: 1-250-363-6827 E-mail: [email protected] Website: www.pices.int Program and Abstracts March 14-18, 2011 Pucón, Chile 5th International Zooplankton Production Symposium Population Connections, Community Dynamics, and Climate Variability March 14 – 18, 2011 Pucón, Chile Table of Contents Welcome � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � v Organizers and Sponsors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �vi Symposium Timetable � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �viii List of Sessions and Workshops � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �ix Notes for Guidance � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � x Schedules � � � � � � � � � � � � �
    [Show full text]
  • Download?Doi=10.1.1.617.7399&Rep=Rep1&Type=Pdf Mcginnity, P., O’Dwyer, B., Poole, R., Rogen, G
    ENVIRONMENTAL PROTECTION AGENCY Monitoring, Analysing and Reporting The Environmental Protection Agency (EPA) is responsible for on the Environment protecting and improving the environment as a valuable asset for • Monitoring air quality and implementing the EU Clean Air the people of Ireland. We are committed to protecting people for Europe (CAFÉ) Directive. and the environment from the harmful effects of radiation and pollution. • Independent reporting to inform decision making by national and local government (e.g. periodic reporting on the State of The work of the EPA can be Ireland’s Environment and Indicator Reports). divided into three main areas: Regulating Ireland’s Greenhouse Gas Emissions Regulation: We implement effective regulation and • Preparing Ireland’s greenhouse gas inventories and projections. environmental compliance systems to deliver good • Implementing the Emissions Trading Directive, for over 100 environmental outcomes and target those who don’t comply. of the largest producers of carbon dioxide in Ireland. Knowledge: We provide high quality, targeted and timely environmental data, information and Environmental Research and Development assessment to inform decision making at all levels. • Funding environmental research to identify pressures, inform policy and provide solutions in the areas of climate, Advocacy: We work with others to advocate for a water and sustainability. clean, productive and well protected environment and for sustainable environmental behaviour. Strategic Environmental Assessment • Assessing the impact of proposed plans and programmes on Our Responsibilities the Irish environment (e.g. major development plans). Licensing Radiological Protection We regulate the following activities so that they do not • Monitoring radiation levels, assessing exposure of people in endanger human health or harm the environment: Ireland to ionising radiation.
    [Show full text]
  • Impacts of Invasive Species on Food Webs: a Review of Empirical Data
    CHAPTER ONE Impacts of Invasive Species on Food Webs: A Review of Empirical Data P. David*,1,E.Thebault †, O. Anneville{, P.-F. Duyck§, E. Chapuis¶,k, N. Loeuille† *Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS-Universite´ de Montpellier-UMIII-EPHE, Montpellier, France †Institute of Ecology and Environmental Sciences UMR 7618, Sorbonne Universites-UPMC-CNRS-IRD- INRA-Universite Paris Diderot-UPEC, Paris, France { UMR 42 CARRTEL, INRA-Universite Savoie Mont Blanc, Thonon-les-Bains, France § CIRAD, UMR PVBMT, 97410 Saint Pierre, La Reunion, France ¶ UMR 3P PVBMT, CIRAD-UniversitedelaReunion, Saint Pierre, France k UMR IPME, IRD-Universite de Montpellier-CIRAD, Montpellier, France 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction 2 2. Definitions and Limits 3 2.1 Invasive Species: An “Anthropocentric Concept” 3 2.2 Measuring Impacts on Food Webs: Objects of Study and Methodology 4 3. Local Effects: Effect of Invaders at One or Two Steps of Distance 6 3.1 Top-Down Effects 7 3.2 Lateral Effects of Invaders: Exploitative Competition 12 3.3 Bottom-Up Effects of Invaders 16 3.4 Apparent Competition Between Invaders and Residents 19 3.5 Facilitation, Mutualisms, and Engineering: Nontrophic Indirect Interactions 21 4. Global Effects: Invasions at Food Web Scale 22 4.1 Food Web Structure as a Biotic Filter 22 4.2 Position of Invasive Species in Food Webs 26 4.3 Impacts of Invasions on Food Web Structure 29 5. How Does a Network Perspective Influence the Management of Invasive Species? 35 5.1 Preventing Invasions From a Network Perspective 36 5.2 Using Ecological Networks to Limit Impacts or Exclude Invaders 39 5.3 Implications of Invader Removal From a Network Perspective 42 6.
    [Show full text]