Baja British Columbia Hypothesis

Total Page:16

File Type:pdf, Size:1020Kb

Baja British Columbia Hypothesis A Moderate Translation Alternative to the Baja British Columbia Hypothesis Rob e r t F.Butler and George E. Ge h re l s , km. The resulting paleogeography has Luyendyk, 1979; Beck et al., 1986). This De p a r tment of Geosciences, the appealing feature of an Andean-like, history suggests that apparent conflicts Un i ve r s i t y of Ar i zo n a , Tuc s o n , AZ 85721, continuous subduction-related magmatic between paleomagnetism and geology USA ,b u t l e r @ g e o . a r i zo n a . e d u ar c along the Cordilleran margin during can lead to significant insights that Cr etaceous time. neither discipline alone could have de l i v e re d . Kenneth P.Kod a m a , De p a r tment of IN T R O D U C T I O N The Baja B.C. controversy is focused Ea r th and Envi ro n m e n t al Sciences, One may quibble over the details, but on the magnitude of post–mid- Lehigh Univer s i t y, Be t h l e h e m , PA 18015- the general picture on paleomagnetism Cr etaceous northward transport of 3 1 8 8 ,U SA is sufficiently compelling that it is much segments of the North American m o re reasonable to accept it than to Cordillera. Did southeast Alaska, d i s re g a rd it. we s t e r n British Columbia, and the North AB S T R AC T —H.H. Hess, 1962 Cascades experience northward The Baja British Columbia (Baja B.C.) It is clear that much of the North transport during the last 100 m.y., hypothesis derives primarily from American Cordillera is composed of limited to 500–1000 km, as interpret e d observed discordant paleomagnetic terranes of oceanic affinity that were fr om the geologic record of inboard di r ections of Insular and Intermo n t a n e added to and shuffled along the strike-slip faults (Price and Charmi c h a e l , terranes interpreted to indicate continental margin during Mesozoic and 1986)? Or was this region, in mid- po s t – m i d - C r etaceous northward Cenozoic time (Coney et al., 1980). Cr etaceous time, situated adjacent to the transport by up to 4000 km with res p e c t Paleomagnetism contributed to the continental margin in the position now to the continental interior. Recent realization that some terranes occupied by Baja California (Cowan et paleomagnetic results from near Prince experienced large-scale latitudinal al., 1997)? The Baja B.C. hypothesis Rupert, British Columbia, document that motion prior to or following accretion to remains controversial and was the focus discordant directions in plutonic roc k s the continental margin (Hillhouse, of a recent Penrose Conferen c e of this area are primarily due to local 1977). But Cordilleran geologists now (Mahoney et al., 2000). The primary de f o r mation rather than transport from a find themselves struggling with the Baja motivation for the Baja B.C. hypothesis Cr etaceous location along the southwest British Columbia (Baja B.C.) hypothesis, comes from discordant paleomagnetic ma r gin of North America. Expanded which many perceive as a fundamental di r ections interpreted to favor post–mid- paleomagnetic studies of Cret a c e o u s conflict between paleomagnetic data Cr etaceous northward transport up to rocks at Duke Island and MacColl Ridge, and geologic observations. We view the 4000 km (Beck, 1980; Irving et al., 1996; Alaska, have led to much smaller co n t r oversy as growing pains in Ward et al., 1997). However, the estimates of latitudinal motion for attempts to decipher the tectonic magnitudes of northward transport Insular terranes than prev i o u s l y evolution of an orogen where in t e r p r eted from paleomagnetic data in concluded. Recognition of likely supracrustal rocks have largely been Cr etaceous rocks range from ~500 km chemical remagnetization of Cret a c e o u s removed and those remaining are (V andall, 1993) to ~4000 km (Panuska, sequences in the Tyaughton and complexly deformed. The remark by 1985). So the paleomagnetic data do not Methow basins, along with effects of Hess (1962) reminds us of the apparen t pr ovide a unified and simple signal to compaction shallowing on marine conflict between paleomagnetism and in t e r p r et. In addition to northward sediments of the Nanaimo Grou p , conventional geological wisdom transport, part of the paleomagnetic indicate that paleomagnetic data from regarding continental drift (Irving, 1988). discordance must result from geologic these rocks may not req u i r e the In his celebrated article, Hess laid out de f o r mations such as faulting or folding magnitude of northward transport concepts of plate tectonics resolving that of crustal panels. But between transport suggested by the Baja B.C. ap p a r ent conflict. A more rec e n t and structural disturbance, which is the paleogeography. Instead, the example of perceived conflict between signal and which is the noise? paleomagnetic observations are paleomagnetism and geology res o l v e d In this paper, we offer ideas and consistent with a Cret a c e o u s to the benefit of both disciplines is observations that permit understanding paleogeography that limits post–mid- vertical-axis rotations of parts of the of paleomagnetic observations from Cr etaceous northward motion to ~1000 Cordilleran margin (Kamerling and Insular and Intermontane terranes (Fig. 1) 4 JUNE 2001, GSA TOD AY with much less northward transport than EXAMPLES OF TI L TING AN D suggested by the Baja B.C. model. Our FOLDING FROM THE PRINCE ap p r oach is conservative and we are RU P E R T AR E A sometimes pushing the confidence limits The Quottoon plutonic complex was on paleomagnetic observations toward emplaced into eastern parts of the Coast lower displacement estimates. The shear zone (Fig. 3), considered by some resulting Cretaceous paleogeography workers to have accommodated ~2000 avoids many of the geological conflicts km of strike-slip motion between the of the Baja B.C. hypothesis but still Insular terranes and Intermo n t a n e req u i r es ~1000 km post–mid-Cret a c e o u s terranes (Hollister and Andron i c o s , northward motion for large segments of l997). Paleomagnetic data were obtained the North American Cordillera. fr om more than 200 sites distributed fr om the Skeena River to Willard Inlet. CHANGES IN LATITUDE U-Pb crystallization ages range from 72.3 OR CHANGES IN ATT I T U D E ? to 55.5 Ma (Klepeis et al., 1998). K-Ar The majority of discordant ho r nblende dates indicate Eocene paleomagnetic results have been cooling and magnetization after the obtained from intrusive igneous roc k s pr oposed northward motion of Baja for which interpretation is complicated B.C. However, locally, the Quottoon by lack of control on paleohorizontal at plutonic complex yields paleomagnetic the time of magnetization. The general di r ections that are shallow and rot a t e d pa t t e r n of shallow inclinations and clockwise, similar to plutons within Baja clockwise-deflected declinations B.C. to the west. Eocene extension of observed in the Cretaceous plutonic the Coast Mountains tilted crustal panels rocks can be explained either by that are bounded by northwest striking Figure 1. Generalized geological map of northward transport coupled with Coast Mountains and terranes of northern east-side-down normal faults and clockwise vertical-axis rotation or by Cordillera. Prince Rupert area is outlined by northeast-striking transfer faults (Fig. 3; systematic northeast-side-up tilt during box. Adapted from Gehrels and Kapp Butler et al., 2001b). Based on a tilting uplift. A “translation versus tilt” (1998). Geologic terranes: A—Alexander; domino model, ~30% extension can co n t r oversy has ensued (Butler et al., C—Cache Creek; K—Kootenay; MP— pr oduce the 40° maximum tilts. 1989; Ague and Brandon, 1997). A Methow-Pasayten basins; NC—high grade We collected paleomagnetic sites central issue is the plausibility of rocks of North Cascades; Q—Quesnel; S— along a northeast-southwest transect plutonic rocks experiencing tilt of Stikine; SJNC—San Juan–North Cascades ac r oss the northern part of the Ecstall su f ficient magnitude and correc t thrust belt; SM—Slide Mountain; TB— pluton (Butler et al., 2000). geometry to explain the discordant Tyaughton Basin; YT—Yukon-Tanana. Ge o b a r ometry and U-Pb analyses paleomagnetic direc t i o n s . Paleomagnetic studies: DI—Duke Island; MB—Methow Basin; MR—MacColl Ridge; indicate 91 Ma crystallization at a depth A bias towards shallower inclinations 40 39 MS—Mount Stuart; NG—Nanaimo Group; of ~25 km. Ar / Ar dates on results from the steep expected direc t i o n SB—Spences Bridge; SP—Spuzzum pluton; ho r nblende from the western margi n in Cretaceous time when the SPC—Silverquick–Powell Creek. indicate cooling and magnetization at 84 paleomagnetic pole was located in Ma while hornblende from the central no r t h e r n Alaska, at its closest approa c h flattening of observed inclination part yields a cooling age of 76 Ma. to the Cordillera. The steep expected indicates ~2500 km of northward Crawford et al. (1987) interpret the di r ection results in high probability that motion while the discordant declination Prince Rupert shear zone as a west- a deflection will result in a shallower indicates 58° of clockwise vertical-axis di r ected thrust with the Ecstall pluton in rather than steeper direction (Fig.
Recommended publications
  • Subduction Polarity in Ancient Arcs: a Call to Integrate Geology And
    COMMENT & REPLY Subduction Polarity in Ancient Arcs: A Call to Integrate Geology and Geophysics to Decipher the Mesozoic Tectonic History of the Northern Cordillera of North America: REPLY Terry L. Pavlis, Dept. of Geological Sciences, University of Texas, El Paso, Texas 79968, USA; Jeffrey M. Amato, Dept. of Geological Sciences, New Mexico State University, Las Cruces, New Mexico 88003, USA; Jeffrey M. Trop, Dept. of Geology and Environmental Geosciences, Bucknell University, Lewisburg, Pennsylvania 17837, USA; Kenneth D. Ridgway, Dept. of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA; Sarah M. Roeske, Earth and Planetary Sciences Dept., University of California, Davis, California 95616, USA; and George E. Gehrels, Dept. of Geosciences, University of Arizona, Tucson, Arizona, 85721, USA INTRODUCTION drafts of the paper. However, when we problem is not solved, which underscores We welcome the opportunity to discuss the realized that experts in this field were our conclusion that resolving ancient sub- views expressed by Sigloch and Mihalynuk in actively debating the topic, we reduced our duction polarity problems requires a con- their Comment (Sigloch and Mihalynuk, discussion to a short paragraph. In their certed collaborative effort between the geo- 2020; referred to here as SM) on Pavlis et al. Comment, SM reiterate parts of their model logic and geophysical communities. (2019) because it provides an opportunity to but emphasize a consensus in the geophysi- A foundation of Sigloch and Mihalynuk’s elaborate on the criteria for determining sub- cal community that deep mantle tomo- (2013, 2017) interpretations is that plate duction polarity, an important problem in the graphic anomalies are subduction zone rem- reconstructions restore North America to a North American Cordillera and for tectonic nants.
    [Show full text]
  • New Late Carboniferous Heritschioidinae (Rugosa) from the Kuiu Island Area and Brooks Range, Alaska
    Geologica Acta, Vol.12, Nº 1, March 2014, 29-52 DOI: 10.1344/105.000002074 New Late Carboniferous Heritschioidinae (Rugosa) from the Kuiu Island area and Brooks Range, Alaska J. FEDOROWSKI1 C.H. STEVENS2 E. KATVALA3 1Institute of Geology, Adam Mickiewicz University Makow Polnych 16, PL-61-606, Poznan, Poland. E-mail: [email protected] 2Department of Geology, San Jose Unversity San Jose, California 95192, USA. E-mail: [email protected] 3Department of Geology, University of Calgary Calgary, Canada. E-mail: [email protected] ABS TRACT Three new species of the genus Heritschioides, i.e., H. alaskensis sp. nov., H. kuiuensis sp. nov., and H. splendidus sp. nov., and Kekuphyllum sandoense gen. et sp. nov. from the northeastern Kuiu Island area and nearby islets, part of Alexander terrane in southeastern Alaska, and Heritschioides separatus sp. nov. from the Brooks Range, Alaska, are described and illustrated. The three new fasciculate colonial coral species from the Kuiu Island area, collected from the Moscovian Saginaw Bay Formation, are phylogenetically related to those of probable Bashkirian age in the Brooks Range in northern Alaska as shown by the presence of morphologically similar species of Heritschioides. These corals from both areas also are related to one species in the Quesnel terrane in western Canada. Kekuphyllum sandoense from the Saginaw Bay Formation of the Kuiu Island area is the only cerioid-aphroid species within the Subfamily Heritschioidinae described so far. The complete early ontogeny of a protocorallite is for the first time described here on a basis of H. kuiuensis sp. nov. and compared to the hystero-ontogeny in order to show similarities and differences in those processes.
    [Show full text]
  • Wrangellia Flood Basalts in Alaska, Yukon, and British Columbia: Exploring the Growth and Magmatic History of a Late Triassic Oceanic Plateau
    WRANGELLIA FLOOD BASALTS IN ALASKA, YUKON, AND BRITISH COLUMBIA: EXPLORING THE GROWTH AND MAGMATIC HISTORY OF A LATE TRIASSIC OCEANIC PLATEAU By ANDREW R. GREENE A THESIS SUBMITTED iN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Geological Sciences) UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2008 ©Andrew R. Greene, 2008 ABSTRACT The Wrangellia flood basalts are parts of an oceanic plateau that formed in the eastern Panthalassic Ocean (ca. 230-225 Ma). The volcanic stratigraphy presently extends >2300 km in British Columbia, Yukon, and Alaska. The field relationships, age, and geochemistry have been examined to provide constraints on the construction of oceanic plateaus, duration of volcanism, source of magmas, and the conditions of melting and magmatic evolution for the volcanic stratigraphy. Wrangellia basalts on Vancouver Island (Karmutsen Formation) form an emergent sequence consisting of basal sills, submarine flows (>3 km), pillow breccia and hyaloclastite (<1 1cm), and subaerial flows (>1.5 km). Karmutsen stratigraphy overlies Devonian to Permian volcanic arc (—‘380-355 Ma) and sedimentary sequences and is overlain by Late Triassic limestone. The Karmutsen basalts are predominantly homogeneous tholeiitic basalt (6-8 wt% MgO); however, the submarine part of the stratigraphy, on northern Vancouver Island, contains picritic pillow basalts (9-20 wt% MgO). Both lava groups have overlapping initial and ENd, indicating a common, ocean island basalt (OIB)-type Pacific mantle source similar to the source of basalts from the Ontong Java and Caribbean Plateaus. The major-element chemistry of picrites indicates extensive melting (23 -27%) of anomalously hot mantle (‘—1500°C), which is consistent with an origin from a mantle plume head.
    [Show full text]
  • The Geological Framework of the Yukon Territory by C
    Y GSEOLOGICAL URVEY The Geological Framework of the Yukon Territory by C. Hart The Yukon Territory occupies the northern portion of a large geologic (and physiographic) province known as the Cordillera. This province is composed of relatively young mountain belts that range from Alaska to Mexico. Like most of the Cordillera, Yukon is composed of a diverse array of rock types that record more than a billion years of geological history. Most of the rocks have been affected by folding, faulting, metamorphism and uplift during various deformation events over at least the last 190 million years. This deformation has resulted in a complex arrangement of rock units and the mountainous terrain we see today. In Yukon, there are two main geological components which are largely separated by a major, northwest- trending fault (the Tintina): 1) the northeastern region is composed of a thick, older sequence of sedimentary rocks which was deposited upon a stable geological basement; and 2) the southwestern region is composed of a younger, complex mosaic of varying rock types that amalgamated and accreted to the stable sedimentary package. This paper briefly describes the geological framework of Yukon south of 65 degrees N and, with some exceptions, uses the Tectonic Assemblage Map of the Canadian Cordillera (Wheeler and McFeely 1991) and the Terrane Map of the Canadian Cordillera (Wheeler et al. 1991) as a foundation. However, some of the names used on these maps have been superseded by new terminology and they are included in this paper. Recent brief syntheses of Yukon physiography and geology are rare (Tempelman-Kluit, 1979; 1981), although geological compilations of Cordilleran geology are numerous and contain useful information about Yukon geology (Monger et al., 1982; Monger, 1989; Gabrielse and Yorath, 1992).
    [Show full text]
  • Upper-Crustal Cooling of the Wrangellia Composite Terrane in the Northern St. Elias Mountains, Western Canada
    RESEARCH Upper-crustal cooling of the Wrangellia composite terrane in the northern St. Elias Mountains, western Canada Sarah Falkowski1 and Eva Enkelmann2 1UNIVERSITY OF TÜBINGEN, DEPARTMENT OF GEOSCIENCES, 72074 TÜBINGEN, GERMANY 2UNIVERSITY OF CINCINNATI, DEPARTMENT OF GEOLOGY, CINCINNATI, OHIO 45221-0037, USA ABSTRACT This study presents the long-term exhumation history of the Wrangellia composite terrane of the remote and ice-covered northern St. Elias Mountains in southwest Yukon, northwest British Columbia, and adjacent Alaska. Detrital zircon and apatite fission-track age distributions are presented from 21 glacial catchments. The detrital sampling approach allows for a large spatial coverage (~30,000 km2) and access to material eroded beneath the ice. An additional five bedrock samples were dated by zircon fission-track analysis for a comparison with detrital results. Our new thermochronology data record the Late Jurassic–mid-Cretaceous accretion of the Wrangellia composite terrane to the former North American margin and magmatism, which reset the older thermal record. The good preservation of the Jurassic–Cretaceous record suggests that Cenozoic erosion must have been limited overall. Nonetheless, Eocene spreading-ridge subduction and Oligocene–Neogene cooling in response to the ongoing Yakutat flat-slab subduction are evident in the study area despite its inboard position from the active plate boundary. The results further indicate an area of rapid exhumation at the northern end of the Fairweather fault ca. 10–5 Ma; this area is bounded by discrete, unmapped structures. The area of rapid exhumation shifted southwest toward the plate boundary and the center of the St. Elias syntaxis after 5 Ma. Integrating the new data with published detrital thermochronology from the southern St.
    [Show full text]
  • Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera
    GEOLOGICAL SURVEY OF CANADA OPEN FILE 5906 Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera A. Jessop 2008 Natural Resources Ressources naturelles Canada Canada GEOLOGICAL SURVEY OF CANADA OPEN FILE 5906 Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera A. Jessop 2008 ©Her Majesty the Queen in Right of Canada 2008 Available from Geological Survey of Canada 601 Booth Street Ottawa, Ontario K1A 0E8 Jessop, A. 2008: Review of National Geothermal Energy Program; Phase 2 – Geothermal Potential of the Cordillera; Geological Survey of Canada, Open File 5906, 88p. Open files are products that have not gone through the GSC formal publication process. The Meager Cree7 Hot Springs 22 Fe1ruary 1273 CONTENTS REVIEW OF NATIONAL GEOTHERMAL ENERGY PROGRAM PHASE 2 - THE CORDILLERA OF WESTERN CANADA CHAPTER 1 - THE NATURE OF GEOTHERMAL ENERGY INTRODUCTION 1 TYPES OF GEOTHERMAL RESOURCE 2 Vapour-domi ate reservoirs 3 Fluid-domi ated reservoirs 3 Hot dry roc) 3 PHYSICAL QUANTITIES IN THIS REPORT 3 UNITS 4 CHAPTER 2 - THE GEOTHERMAL ENERGY PROGRAMME 6 INTRODUCTION THE GEOTHERMAL ENERGY PROGRAMME 6 Ob.ectives 7 Scie tific base 7 Starti 1 the Geothermal E er1y Pro1ram 8 MA4OR PRO4ECTS 8 Mea1er Mou tai 8 Re1i a 9 ENGINEERING AND ECONOMIC STUDIES 9 GRO6 TH OF OUTSIDE INTEREST 10 THE GEOTHERMAL COMMUNITY 10 Tech ical groups a d symposia 10 ASSESSMENT OF THE RESOURCE 11 i CHAPTER 3 - TECTONIC AND THERMAL STRUCTURE OF THE CORDILLERA 12 TECTONIC HISTORY 12 HEAT FLO6 AND HEAT
    [Show full text]
  • Petroleum Source Rock Potential of Lower to Middle Jurassic Clastics, Intermontane Basins, British Columbia
    PETROLEUM SOURCE ROCK POTENTIAL OF LOWER TO MIDDLE JURASSIC CLASTICS, INTERMONTANE BASINS, BRITISH COLUMBIA Filippo Ferri Resource Development and Geoscience Branch, BC Ministry of Energy and Mines, 6th Flr-1810 Blanshard St., Victoria, BC, Canada, V8W 9N3 Kirk Osadetz Geological Survey of Canada: Calgary, 3303 33 St. NW, Calgary, AB, Canada, T2L 2A7 Carol Evenchick Geological Survey of Canada: Pacific, 101-605 Robson St. Vancouver, BC, Canada, V6B 5J3 KEYWORDS: petroleum source rocks, petroleum, crude Subsurface characterization of potential Cretaceous oil, natural gas, Bowser Basin, Quesnel Trough, Nechako and Tertiary petroleum source rocks within the Nechako Basin, Sustut Basin, Intermontane, Interior Basins, area has been documented by Hunt (1992) and Hunt and Canadian Cordillera, Jurassic Bustin (1997). Osadetz et al. (2003) obtained RockEval pyrolytic and total organic content (TOC) data for well cuttings from all bore holes within the Nechako and INTRODUCTION Bowser basins. Evenchick et al. (2003) reported bleeding crude oil from paleomagnetic coring operations in fine The presence of suitable petroleum source rocks is a grained clastics that may be either migrated petroleum or necessary condition for the presence of an effective total residual crude oil stains in potential petroleum source petroleum system which constrains the petroleum rocks. The purpose of the present study was to sample potential of under-explored basins such as those within potential source bed horizons of Early and Middle the Intermontane region of British Columbia (Curiale, Jurassic age in areas where subsurface data is lacking. In 1994). Hayes (2002), in his report on the crude oil and addition, the following brief summary on the extent of natural gas potential of the Nechako area of British potential source bed horizons of this age within certain Columbia, indicated that a major issue for the basin was parts of the Canadian Cordillera inidicates these units are the lack of recognition of a good petroleum source rock potentially regionally distributed.
    [Show full text]
  • Flood Basalts of the Wrangellia Terrane II
    Downloaded from geosphere.gsapubs.org on April 19, 2011 Geosphere The architecture of oceanic plateaus revealed by the volcanic stratigraphy of the accreted Wrangellia oceanic plateau Andrew R. Greene, James S. Scoates, Dominique Weis, Erik C. Katvala, Steve Israel and Graham T. Nixon Geosphere 2010;6;47-73 doi: 10.1130/GES00212.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geosphere Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2010 Geological Society of America Downloaded from geosphere.gsapubs.org on April 19, 2011 The architecture of oceanic plateaus revealed by the volcanic stratigraphy of the accreted Wrangellia oceanic plateau Andrew R.
    [Show full text]
  • Chulitnacula, a New Paleobiogeographically Distinctive Gastropod Genus from Upper Triassic Strata in Accreted Terranes of Southern Alaska
    Journal of the Czech Geological Society 46/1ñ2(2001) 213 Chulitnacula, a new paleobiogeographically distinctive gastropod genus from Upper Triassic strata in accreted terranes of southern Alaska (3 figs) JIÿÕ FR›DA 1 ñ ROBERT B. BLODGETT 2 1 Czech Geological Survey, Kl·rov 3, 118 21 Praha 1, Czech Republic; e-mail: [email protected] 2 Department of Zoology, Oregon State University, Corvallis, Oregon, 97331 USA; e-mail: [email protected] A new protorculid gastropod genus, Chulitnacula, is based on Protorcula alaskana Smith, 1927, from the Chulitna terrane of south- central Alaska. The type species also occurs in two other accreted terranes of southern Alaska: 1.) in the Farewell terrane (Nixon Fork subterrane) of southwestern Alaska; and 2.) in the Alexander terrane of southeastern Alaska. This taxon is a common to dominant element in shallow-water, near-shore late Norian age strata of all of these terranes. It appears to be biogeographically significant in that while it so abundant in these southern Alaskan accreted terranes, it is completely unknown elsewhere in Upper Triassic para-autochthonous rocks of western North America (i.e. Nevada, Sonora). The occurrence of Chulitnacula alaskana (Smith, 1927) in the Chulitna, Farewell (Nixon Fork subterrane) and Alexander terranes suggests that they were in close reproductive communication in the Late Triassic. The absence of this taxon in either the Wrangellia terrane of southern Alaska and British Columbia, as well as in the related Wallowa terrane of northeast- ern Oregon and adjacent western Idaho is worthy of note. This absence plus many other major differences in their respective Late Triassic gastropod faunas indicate that the Chulitna-Farewell-Alexander terrane association was far removed from the Wrangellia-Wallowa terrane couplet.
    [Show full text]
  • The Architecture of Oceanic Plateaus Revealed by the Volcanic Stratigraphy of the Accreted Wrangellia Oceanic Plateau
    The architecture of oceanic plateaus revealed by the volcanic stratigraphy of the accreted Wrangellia oceanic plateau Andrew R. Greene* James S. Scoates Dominique Weis Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada Erik C. Katvala Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N1N4, Canada Steve Israel Yukon Geological Survey, 2099-2nd Ave, Whitehorse, Yukon Y1A2C6, Canada Graham T. Nixon British Columbia Geological Survey, P.O. Box 9320, Station Provincial Government, Victoria, British Columbia V8W9N3, Canada ABSTRACT gellia fl ood basalts were emplaced during a from low-viscosity, high-temperature tholei- single phase of tholeiitic volcanism ca. 230– itic basalts, sill-dominated feeder systems, The accreted Wrangellia fl ood basalts and 225 Ma, and possibly within as few as 2 Myr, limited repose time between fl ows (absence associated sedimentary rocks that compose onto preexisting submerged arc crust. There of weathering, erosion, sedimentation), sub- the prevolcanic and postvolcanic stratigraphy are distinct differences in volcanic stratig- marine versus subaerial emplacement, and provide an unparalleled view of the architec- raphy and basement composition between relative water depth (e.g., pillow basalt– ture, eruptive environment, and accumula- Northern and Southern Wrangellia. On volcaniclastic transition). tion and subsidence history of an oceanic Vancouver Island, ~6 km of high-Ti basalts, plateau. This Triassic large igneous province with minor amounts of picrites, record an INTRODUCTION extends for ~2300 km in the Pacifi c North- emergent sequence of pillow basalt, pil- west of North America, from central Alaska low breccia and hyaloclastite, and subaerial Approximately 3% of the ocean fl oor is and western Yukon (Nikolai Formation) to fl ows that overlie Devonian– Mississippian covered with oceanic plateaus or fl ood basalts, Vancouver Island (Karmutsen Formation), (ca.
    [Show full text]
  • Mesoproterozoic–Early Cretaceous Provenance and Paleogeographic Evolution of the Northern Rocky Mountains
    Mesoproterozoic–Early Cretaceous provenance and paleogeographic evolution of the Northern Rocky Mountains: Insights from the detrital zircon record of the Bridger Range, Montana, USA Chance B. Ronemus†, Devon A. Orme, Saré Campbell, Sophie R. Black, and John Cook Department of Earth Sciences, Montana State University, P.O. Box 173480, Bozeman, Montana 59717-3480, USA ABSTRACT Jurassic detritus into the foreland basin to rels et al., 1996, 2011; Gehrels and Ross, 1998; dominate by the Early Cretaceous. Park et al., 2010; Laskowski et al., 2013). These The Bridger Range of southwest Montana, ancient sources may consist of first-cycle grains USA, preserves one of the most temporally INTRODUCTION derived from Precambrian basement provinces extensive sedimentary sections in North or more recent magmatism. However, zircons America, with strata ranging from Meso- Sedimentary rocks in the Bridger Range of are more commonly sourced from erosion and proterozoic to Cretaceous in age. This study southwest Montana, USA, record the Mesopro- recycling of previously deposited sedimentary presents new detrital zircon geochronologic terozoic–Mesozoic history of sedimentation in rock (e.g., Schwartz et al., 2019). data from eight samples collected across this this region of North America, with Mesopro- The evolution of sedimentary provenance is mountain range. Multidimensional scaling terozoic to Cretaceous stratigraphy exposed as strongly influenced by tectonic factors (Gehrels, and non-negative matrix factorization sta- a generally eastward dipping homoclinal panel 2014). Tectonic events, such as rifting and moun- tistical analyses are used to quantitatively across the range (Fig. 1). The >8 km of stratig- tain building, trigger drainage reorganization unmix potential sediment sources from these raphy collectively record critical information and uplift new sediment sources.
    [Show full text]
  • Geophysical Interpretation of the Gneiss Terrane of Northern Washington and Southern British Columbia, and Its Implications for Uranium Exploration
    Geophysical Interpretation of the Gneiss Terrane of Northern Washington and Southern British Columbia, and Its Implications for Uranium Exploration GEOLOGICAL SURVEY PROFESSIONAL PAPER Geophysical Interpretation of the Gneiss Terrane of Northern Washington and Southern British Columbia, and Its Implications for Uranium Exploration By JOHN W. CADY and KENNETH F. FOX, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1260 Gravity highs suggest that gneiss domes of the Omineca crystalline belt are the surface expression of a zone of dense infrastructure UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1984 UNITED STATES DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Cady, John W. Geophysical interpretation of the gneiss terrane of northern Washington and southern British Columbia and its implications for uranium exploration. (Geological Survey Professional Paper ; 1260) Bibliography: 29 p. 1. Gneiss Washington (State) 2. Gneiss British Columbia. 3. Uranium ores Washington (State) 4. Uranium ores British Columbia. I. Title. II. Series. QE475.G55C3 553.4'932 81-607564 AACR2 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract ............ Gravity studies continued Introduction .......... Regional crustal models .................. 13 Geologic setting ........ East-west gravity model ............... 15 Cenozoic plate-tectonic setting North-south gravity model .............. 17
    [Show full text]