Near-Syncope After Exercise

Total Page:16

File Type:pdf, Size:1020Kb

Near-Syncope After Exercise GRAND ROUNDS CLINICIAN’S CORNER AT THE JOHNS HOPKINS BAYVIEW MEDICAL CENTER Near-Syncope After Exercise Roy C. Ziegelstein, MD Syncope and near-syncope are great diagnostic challenges in medicine. On CASE PRESENTATION the one hand, the symptom may result from a benign condition and pose A 72-year-old man complained of near- little or no threat to health other than that related to falling. On the other syncope after exercise that had been oc- hand, syncope or near-syncope can be the manifestation of a serious un- curring for several months. Every morn- derlying condition that poses an imminent threat to life. Patients with a car- ing, he walked at 3.5 mph for about half diac cause of syncope are at far greater risk of dying in the first year after an an hour on his treadmill in the well- ventilated basement of his home. After episode of syncope or near-syncope than individuals with a noncardiac cause. exercising, he would step off the tread- A cardiac cause of syncope should be considered in every patient with syn- mill, check his pulse, and become light- cope or near-syncope, but it is particularly common in older patients or in headed immediately afterward. This feel- patients with known structural heart disease, arrhythmia, or certain electro- ing lasted a few minutes and he would cardiographic abnormalities. Although many diagnostic tests may be help- then go upstairs to eat breakfast and take ful in the evaluation of syncope and near-syncope, the history, physical ex- his medications. amination, and electrocardiogram pinpoint the cause in many circumstances. The patient was referred to me shortly after a very severe episode that almost re- Syncope after exercise may be due to left ventricular outflow tract obstruc- sulted in loss of consciousness. During tion from aortic stenosis or hypertrophic obstructive cardiomyopathy but can that episode, he stepped off the tread- also suggest the diagnosis of postexercise hypotension in which an abnor- mill and tried to feel his pulse as usual. mality in autonomic regulation of vascular tone or heart rate results in va- He then felt that he was losing his pe- sodilation or bradycardia after moderate-intensity aerobic activity. The pa- ripheral vision and thought he would fall. tient discussed in this case highlights the importance of the clinical history He stopped feeling his pulse and eased in the evaluation of this condition, since the diagnosis was revealed as the himself down to the floor without los- patient’s story was described and eventually acted out. ing awareness of his surroundings. Af- ter a few minutes, he felt better and JAMA. 2004;292:1221-1226 www.jama.com walked around the room to “cool down.” amination results were entirely unre- ties during the recording and exercised During the initial evaluation, the pa- markable. Notably, his blood pressure normally on his treadmill in the morn- tient said that he was otherwise well. He and pulse were normal and there was no ing. He reported that he thought every- denied headache, difficulty with speech, significant change in either when he as- thing was the same that day as always, weakness, chest discomfort, shortness of sumed the upright posture. Electrocar- although he did deviate from his rou- breath, palpitations, or lightheaded- diogram results were also normal. tine slightly and did not take his pulse ness either during exercise or at other The patient was sent home with a 24- after exercise because he knew his heart times except immediately after exer- hour ambulatory electrocardiogram rate was already being monitored elec- cise. His medical history was remark- (Holter monitor), and plans were made tronically. He also noted that he did not able only for hypertension. Four years for an exercise treadmill test in the very experience lightheadedness after exer- earlier, a stress test and echocardio- near future. The patient was asked to per- cise on that occasion. gram, performed as part of a routine car- form all his usual activities while wear- diovascular evaluation, were both nor- ing the Holter monitor. Specifically, he Author Affiliation: Department of Medicine, Divi- mal. He was regularly taking vitamin E sion of Cardiology, Johns Hopkins Bayview Medical was asked to exercise on the treadmill in and a combination of hydrochlorothia- Center, Johns Hopkins University School of Medi- his basement as usual. The Holter moni- cine, Baltimore, Md. zide and triamterene. His physical ex- Corresponding Author: Roy C. Ziegelstein, MD, De- tor recording was completely normal and partment of Medicine, Division of Cardiology, Johns demonstrated the expected increase in Hopkins Bayview Medical Center, 4940 Eastern Ave, CME available online at heart rate with exertion. The patient said Baltimore, MD 21224-2780 ([email protected]). www.jama.com Grand Rounds Section Editor: David S. Cooper, MD, that he engaged in all his usual activi- Contributing Editor, JAMA. ©2004 American Medical Association. All rights reserved. (Reprinted) JAMA, September 8, 2004—Vol 292, No. 10 1221 NEAR-SYNCOPE AFTER EXERCISE sciousness. Given the importance of the tality of patients with a cardiac cause of Box 1. Causes of Syncope clinical history in the evaluation of syn- syncope is 2 to 5 times that of patients 2,3 Cardiac or Cardiopulmonary cope and near-syncope and sensing that with noncardiac syncope. In particu- Causes a clue was revealed by the absence of lar, it is important to consider poten- Arrhythmias symptoms during Holter monitoring, I tially lethal or imminently lethal condi- Aortic stenosis asked the patient to describe his epi- tions like ventricular tachycardia, rapid Hypertrophic obstructive sodes in detail again and the diagnosis supraventricular tachycardia, torsades de cardiomyopathy became apparent. pointes in the setting of congenital or ac- Aortic dissection quired long QT syndrome, myocardial Myocardial ischemia DISCUSSION ischemia, or critical aortic stenosis. A car- Pericardial tamponade Syncope is one of the greatest diagnos- diac cause of syncope is particularly com- Pulmonary embolism tic challenges in medicine. While the mon in older patients or in patients with Pulmonary hypertension cause is often benign with no imminent structural heart disease, a history of ar- Noncardiac Causes threat to the patient other than that due rhythmia, or who have certain electro- Neurally mediated reflex syndromes to physical injury as a result of falling, it cardiographic abnormalities (BOX 2).4,5 Vasovagal faint is sometimes a sign of a potentially le- Given this, older patients like the 72- Micturition or defecation syncope thal condition such as critical aortic ste- year-old man or patients with a history Postprandial hypotension nosis, hypertrophic obstructive cardio- of heart disease should be considered to Orthostatic hypotension myopathy, or ventricular tachycardia. have a cardiac cause of syncope until Cerebrovascular steal Syncope is a sudden loss of conscious- proven otherwise. Although the his- Conditions Frequently ness, usually accompanied by falling due tory, physical examination, electrocar- Misdiagnosed as Syncope to loss of postural tone, with subse- diogram, and normal stress test and echo- Hypoglycemia quent spontaneous recovery. It is typi- cardiogram from 4 years earlier made a Epilepsy cally due to a transient global decrease cardiac cause less likely in this patient Cataplexy in blood flow to the brain for more than despite his age, the patient was sent home Vertebrobasilar transient ischemic 8 to 10 seconds. The inadequate blood with a 24-hour ambulatory electrocar- attacks flow to the brain is most often caused by diographic recording device and plans systemic hypotension resulting from in- were made for an exercise treadmill test adequate vasoconstriction, hypovole- in the near future, given the relation- mia, decreased venous return, an abrupt ship of his symptoms to exercise. Exer- Box 2. Electrocardiographic change in heart rate, or an acute de- cise stress testing is a particularly valu- Features Suggesting a Cardiac crease in cardiac contractility. “Near- able part of the evaluation of patients Cause of Syncope syncope” or “presyncope” are terms used with exertional syncope or near- Atrial fibrillation or flutter when the patient feels as if loss of con- syncope. The normal response to tread- Multifocal atrial tachycardia sciousness is about to occur but does not. mill exercise is a progressive increase in Paced rhythm The major causes of syncope are systolic blood pressure and no change or Frequent premature ventricular listed in BOX 1 and may be separated a decrease in diastolic blood pressure; a contractions into conditions that are primary car- drop of the systolic blood pressure dur- Ventricular arrhythmia diac or cardiopulmonary and those that ing exercise below the standing pre- Bundle branch block 1 Left ventricular hypertrophy are noncardiac. Some conditions are exercise value typically defines exercise- 6 Pathologic Q waves indicative of frequently misdiagnosed as syncope induced hypotension. Exercise- prior myocardial infarction (Box 1) since they also produce a tem- induced hypotension during treadmill Mobitz II or higher atrioventricular porary disturbance of consciousness testing often reflects left ventricular dys- block that may result in loss of postural tone. function or myocardial ischemia. When Wolff-Parkinson-White syndrome Although an individual with one of associated with either of these 2 factors, these conditions may resemble a pa- it indicates a significantly increased risk tient
Recommended publications
  • Stroke Mimics and Chameleons: Quandaries in the Field
    Stroke Mimics and Chameleons: Quandaries in the Field Madeleine Geraghty, MD Rockwood Multicare What’s the difference Stroke mimic: Looks like a stroke, is something else Stroke chameleon: Looks like something else, is really a stroke! Scope of the Mimic Recent eval by Briard, et al: ◦ 960 patients transported by EMS during an 18 month period ◦ 42% mimics 55% other neurologic diagnoses 20% seizures, 19% migraines, 11% peripheral neuropathies 45% non-neurologic diagnoses Cardiac 16%, psychiatric 12%, infectious 9% ◦ Neurologic mimics were younger (~64 years) than non-neurologic mimics (~70 years) Entering a new era Large vessel occlusions Now a 24 hour time window for mechanical thrombectomy ◦ Most centers will likely activate the > 6 hour patients from within the ED, still working out those details Volume of stroke mimics/chameleons in the new time window? Effects on resource management? ◦ At the hospital level? ◦ At the regional level with distance transports? Need Emergency Responder Impressions now more than ever in order to learn for the future!! General Principles Positive symptoms Indicate an excess of central nervous system neuron electrical discharges Visual: flashing lights, zig zag shapes, lines, shapes, objects sensory: paresthesia, pain motor: jerking limb movements Migraine, Seizure are characterized with having “positive” symptoms Negative symptoms Indicate a loss or reduction of central nervous system neuron function – loss of vision, hearing, sensation, limb power. TIA/Stroke present with “negative” symptoms.
    [Show full text]
  • Syncope Fainting, Or Syncope, Is the Sudden Loss of Consciousness and Ability to Stand
    Northwestern Memorial Hospital Patient Education CONDITIONS AND DISEASES Syncope Fainting, or syncope, is the sudden loss of consciousness and ability to stand. It is also called “passing out.” This common If you have any problem is the cause of many falls and injuries. One third of people faint at least once during their life. Syncope may occur questions, ask without warning or can be signaled by: ■ Feelings of weakness your physician ■ Feeling hot or sweating ■ Dizziness or nurse. ■ Visual changes ■ Nausea ■ Palpitations Causes of syncope Fainting is due to a sudden decrease in blood flow and oxygen to the brain. There are many causes of syncope, but most fall into 1 of 3 major types. Abnormal nerve reflex Nerves that control heart rate, blood pressure and other body functions may respond in an abnormal way and cause syncope. This can be triggered by: ■ Standing ■ Pain ■ Unpleasant sight or smell ■ Stress, anxiety or emotional distress ■ Coughing, sneezing or swallowing ■ Urinating or having a bowel movement Fainting due to an abnormal nerve reflex is more likely to occur under certain conditions, such as dehydration, viral infection, after prolonged bed rest or a lack of sleep or regular food intake. Types of syncope that involve an abnormal nerve reflex include: ■ Vasovagal (neurocardiac) syncope is the most common type and can occur at any age. It often occurs when blood pools in the leg veins. This triggers a reflex where the heart rate, blood pressure or both may suddenly fall. It generally is not a dangerous condition and can be prevented by avoiding situations that can trigger syncope.
    [Show full text]
  • Latest Diagnostic and Treatment Strategies for the Congenital Long QT Syndromes
    Latest Diagnostic and Treatment Strategies for the Congenital Long QT Syndromes Michael J. Ackerman, MD, PhD Windland Smith Rice Cardiovascular Genomics Research Professor Professor of Medicine, Pediatrics, and Pharmacology Director, Long QT Syndrome Clinic and the Mayo Clinic Windland Smith Rice Sudden Death Genomics Laboratory President, Sudden Arrhythmia Death Syndromes (SADS) Foundation Learning Objectives to Disclose: • To RECOGNIZE the “faces” (phenotypes) of the congenital long QT syndromes (LQTS) • To CRITIQUE the various diagnostic modalities used in the evaluation of LQTS and UNDERSTAND their limitations • To ASSESS the currently available treatment options for the various LQT syndromes and EVALUATE their efficacy WINDLAND Smith Rice Sudden Death Genomics Laboratory Conflicts of Interest to Disclose: • Consultant – Boston Scientific, Gilead Sciences, Medtronic, St. Jude Medical, and Transgenomic/FAMILION • Royalties – Transgenomic/FAMILION Congenital Long QT Syndrome Normal QT interval QT QT Prolonged QT 1. Syncope 2. Seizures 3. Sudden death Torsades de pointes Congenital Long QT Syndrome Normal QT interval QT QT ♥ 1957 – first clinical description – JLNS ♥ 1960s – RomanoProlonged-Ward QT syndrome ♥ 1983 – “Schwartz/Moss score”1. Syncope ♥ 1991 – first LQTS chromosome locus 2. Seizures ♥ March 10, 1995 – birth of cardiac 3. Sudden channelopathies death Torsades de pointes Congenital Long QT Syndrome Normal QT interval QT QT Prolonged QT 1. Syncope 2. Seizures 3. Sudden death Torsades de pointes Congenital Long QT Syndrome Normal
    [Show full text]
  • The Carotid Bruit on September 25, 2021 by Guest
    AUGUST 2002 221 Pract Neurol: first published as 10.1046/j.1474-7766.2002.00078.x on 1 August 2002. Downloaded from INTRODUCTION When faced with a patient who may have had a NEUROLOGICAL SIGN stroke or transient ischaemic attack (TIA), one needs to ask oneself some simple questions: was the event vascular?; where was the brain lesion, and hence its vascular territory?; what was the cause? A careful history and focused physical examination are essential steps in getting the right answers. Although one can learn a great deal about the state of a patient’s arteries from expensive vascular imaging techniques, this does not make simple auscultation of the neck for carotid bruits redundant. In this brief review, we will therefore defi ne the place of the bruit in the diagnosis and management of patients with suspected TIA or stroke. WHY ARE CAROTID BRUITS IMPORTANT? A bruit over the carotid region is important because it may indicate the presence of athero- sclerotic plaque in the carotid arteries. Throm- boembolism from atherosclerotic plaque at the carotid artery bifurcation is a major cause of TIA and ischaemic stroke. Plaques occur preferentially at the carotid bifurcation, usually fi rst on the posterior wall of the internal carotid artery origin. The growth of these plaques and their subsequent disintegration, surface ulcera- tion, and capacity to throw off emboli into the Figure 1 Where to listen for a brain and eye determines the pattern of subse- bifurcation/internal carotid quent symptoms. The presence of an arterial http://pn.bmj.com/ artery origin bruit – high up bruit arising from stenosis at the origin of the under the angle of the jaw.
    [Show full text]
  • Problems in Family Practice Heart Murmurs in Infants and Children
    Problems in Family Practice Heart Murmurs in Infants and Children Thomas A. Riemenschneider, MD Sacramento, California A system is presented for evaluation of heart murmurs in in­ fants and children. The system places emphasis on identifica­ tion of functional murmurs, which the physician encounters so frequently in daily practice. A three-part approach is presented which includes: (1) evaluation of cardiovascular status, (2) as­ sessment of the heart murmur, and (3) decision regarding the need for further evaluation. This approach relieves the physi­ cian of the necessity to remember the multiple details of the many congenital cardiac lesions, and requires only the knowl­ edge of a few easily remembered details about functional murmurs. The system enables the physician to confidently distinguish organic and functional murmurs and to decide which children need further evaluation and referral to the pediatric cardiologist. The physician who cares for infants, children, with “normal” murmurs for reassurance to the and adolescents will frequently encounter heart parents.2 Using his/her knowledge of the myriad murmurs during the course of a careful physical details of the many congenital cardiac malforma­ examination. It has been estimated that a heart tions, the pediatric cardiologist seeks evidence murmur may be heard at some time in almost that the murmur is due to an organic lesion. The every child.1 Murmurs may be classified as “func­ family physician cannot expect to retain all of tional” (physiologic, normal, benign, or innocent), these details, and therefore often feels in­ or “organic” (associated with an anatomic car­ adequately prepared to assess the child with a diovascular abnormality).
    [Show full text]
  • TREATMENT of VASOVAGAL SYNCOPE Where to Go for Help Syncope: HRS Definition
    June 8, 2018, London UK TREATMENT OF VASOVAGAL SYNCOPE Where to go for help Syncope: HRS Definition ▪ Syncope is defined as: —a transient loss of consciousness, —associated with an inability to maintain postural tone, —rapid and spontaneous recovery, —and the absence of clinical features specific for another form of transient loss of consciousness such as epileptic seizure. 3 Syncope Cardiac Vasovagal Orthostatic Carotid sinus 4 Vasovagal Syncope: HRS Definition ▪ Vasovagal syncope is defined as a syncope syndrome that usually: 1. occurs with upright posture held for more than 30 seconds or with exposure to emotional stress, pain, or medical settings; 2. features diaphoresis, warmth, nausea, and pallor; 3. is associated with hypotension and relative bradycardia, when known; and 4. is followed by fatigue. 5 Physiology of Symptoms and Signs Decreased cardiac output Hypotension • Weakness • Lightheadness Retinal hypoperfusion • Blurred vision, grey vision, coning down Physiology of Symptoms and Signs Decreased cardiac output Reflex cutaneous vasoconstriction • Maintains core blood volume • Pallor, looks grey or very white Physiology of Symptoms and Signs Vasovagal reflex Worsened hypotension • More weakness • More lightheadness Vagal • Nausea and vomiting • Diarrhea • Abdominal discomfort Physiology of Symptoms and Signs Increase arterial conductance Rapid transit of core blood to skin • Hot flash • Warmth and discomfort • Lasts seconds • Pink skin SYNCOPE 9 Physiology of Symptoms and Signs Collapse • Preload restored • Reflexes end • Skin
    [Show full text]
  • Update on the Diagnosis and Management of Familial Long QT Syndrome
    Heart, Lung and Circulation (2016) 25, 769–776 POSITION STATEMENT 1443-9506/04/$36.00 http://dx.doi.org/10.1016/j.hlc.2016.01.020 Update on the Diagnosis and Management of Familial Long QT Syndrome Kathryn E Waddell-Smith, FRACP a,b, Jonathan R Skinner, FRACP, FCSANZ, FHRS, MD a,b*, members of the CSANZ Genetics Council Writing Group aGreen Lane Paediatric and Congenital Cardiac Services, Starship Children’s Hospital, Auckland New Zealand bDepartment[5_TD$IF] of Paediatrics,[6_TD$IF] Child[7_TD$IF] and[8_TD$IF] Youth[9_TD$IF] Health,[10_TD$IF] University of Auckland, Auckland, New Zealand Received 17 December 2015; accepted 20 January 2016; online published-ahead-of-print 5 March 2016 This update was reviewed by the CSANZ Continuing Education and Recertification Committee and ratified by the CSANZ board in August 2015. Since the CSANZ 2011 guidelines, adjunctive clinical tests have proven useful in the diagnosis of LQTS and are discussed in this update. Understanding of the diagnostic and risk stratifying role of LQTS genetics is also discussed. At least 14 LQTS genes are now thought to be responsible for the disease. High-risk individuals may have multiple mutations, large gene rearrangements, C-loop mutations in KCNQ1, transmembrane mutations in KCNH2, or have certain gene modifiers present, particularly NOS1AP polymorphisms. In regards to treatment, nadolol is preferred, particularly for long QT type 2, and short acting metoprolol should not be used. Thoracoscopic left cardiac sympathectomy is valuable in those who cannot adhere to beta blocker therapy, particularly in long QT type 1. Indications for ICD therapies have been refined; and a primary indication for ICD in post-pubertal females with long QT type 2 and a very long QT interval is emerging.
    [Show full text]
  • Cardiovascular Risk After Hospitalisation for Unexplained
    Heart Online First, published on August 3, 2017 as 10.1136/heartjnl-2017-311857 Cardiac risk factors and prevention ORIGINAL RESEARCH ARTICLE Heart: first published as 10.1136/heartjnl-2017-311857 on 3 August 2017. Downloaded from Cardiovascular risk after hospitalisation for unexplained syncope and orthostatic hypotension Ekrem Yasa,1,2 Fabrizio Ricci,3,4 Martin Magnusson,1,2 Richard Sutton,5 Sabina Gallina,3 Raffaele De Caterina,3 Olle Melander,1 Artur Fedorowski1,2 1Department of Clinical ABSTRACT The diagnosis of syncope (R55.9, Interna- Sciences, Lund University, Objective To investigate the relationship of hospital tional Classification of Diseases (ICD)-10) is Clinical Research Center, Skåne often referred to as a synonym for reflex syncope, University Hospital, Malmö, admissions due to unexplained syncope and orthostatic Sweden hypotension (OH) with subsequent cardiovascular events the most common cause of T-LOC, accounting 2Department of Cardiology, and mortality. for about 50%–60% of cases. Conversely, OH Skåne University Hospital, Methods We analysed a population-based prospective is believed to coexist with 10%–15% of T-LOC Malmö, Sweden episodes,3 which are then defined as syncope due to 3Institute of Cardiology, cohort of 30 528 middle-aged individuals (age 58±8 University 'G. d’Annunzio', years; males, 40%). Adjusted Cox regression models OH or autonomic failure. It is universally accepted Chieti, Italy were applied to assess the impact of unexplained that recurrent reflex syncope and OH are different 4 Department of Neuroscience syncope/OH hospitalisations on cardiovascular events clinical manifestations of cardiovascular (CV) auto- and Imaging and ITAB – and mortality, excluding subjects with prevalent nomic dysfunction.
    [Show full text]
  • Outpatient Approach to Palpitations RANDELL K
    Outpatient Approach to Palpitations RANDELL K. WEXLER, MD, MPH; ADAM PLEISTER, MD; and SUBHA RAMAN, MD, MSEE The Ohio State University, Columbus, Ohio Palpitations are a common problem seen in family medicine; most are of cardiac origin, although an underlying psychiatric disorder, such as anxiety, is also common. Even if a psychiatric comorbidity does exist, it should not be assumed that palpitations are of a noncardiac etiology. Discerning cardiac from noncardiac causes is important given the potential risk of sudden death in those with an underlying cardiac etiology. History and physical examination followed by targeted diagnostic testing are necessary to distinguish a cardiac cause from other causes of palpitations. Standard 12-lead electrocardiography is an essential initial diagnostic test. Cardiac imaging is recommended if his- tory, physical examination, or electrocardiography suggests structural heart disease. An intermittent event (loop) monitor is preferred for documenting cardiac arrhythmias, particularly when they occur infrequently. Ventricular and atrial premature contractions are common cardiac causes of palpitations; prognostic significance is dictated by the extent of underlying structural heart disease. Atrial fibrillation is the most common arrhythmia resulting in hos- pitalization; such patients are at increased risk of stroke. Patients with supraventricular tachycardia, long QT syn- drome, ventricular tachycardia, or palpitations associated with syncope should be referred to a cardiologist. (Am Fam Physician. 2011;84(1):63-69. Copyright © 2011 American Academy of Family Physicians.) atients often present to family phy- CARDIAC STRUCTURAL CAUSES sicians with palpitations. However, Mitral valve prolapse is the most common this may mean different things structural heart disease leading to palpita- to different people.
    [Show full text]
  • Dysrhythmias
    CARDIOVASCULAR DISORDERS DYSRHYTHMIAS I. BASIC PRINCIPLES OF CARDIAC CONDUCTION DISTURBANCES A. Standard ECG and rhythm strips 1. Recordings are obtained at a paper speed of 25 mm/sec. 2. The vertical axis measures distance; the smallest divisions are 1 mm ×1 mm. 3. The horizontal axis measures time; each small division is 0.04 sec/mm. B. Normal morphology Courtesy of Dr. Michael McCrea 1. P wave = atrial depolarization a. Upright in leads I, II, III, aVL, and aVF; inverted in lead aVR b. Measures <0.10 seconds wide and <3 mm high c. Normal PR interval is 0.12–0.20 seconds. 2. QRS complex = ventricular depolarization a. Measures 0.06-0.10 seconds wide b. Q wave (1) <0.04 seconds wide and <3 mm deep (2) Abnormal if it is >3 mm deep or >1/3 of the QRS complex. c. R wave ≤7.5 mm high 3. QT interval varies with rate and sex but is usually 0.33–0.42 seconds; at normal heart rates, it is normally <1/2 the preceding RR interval. 4. T wave = ventricular repolarization a. Upright in leads I, II, V3–V6; inverted in aVR b. Slightly rounded and asymmetric in configuration c. Measures ≤5 mm high in limb leads and ≤10 mm high in the chest leads 5. U wave = a ventricular afterpotential a. Any deflection after the T wave (usually low voltage) b. Same polarity as the T wave c. Most easily detected in lead V3 d. Can be a normal component of the ECG e. Prominent U waves may indicate one of the following: (1) Hypokalemia (<3 mEq/L) (2) Hypercalcemia (3) Therapy with digitalis, phenothiazines, quinidine, epinephrine, inotropic agents, or amiodarone (4) Thyrotoxicosis f.
    [Show full text]
  • Premature Ventricular Contractions Ralph Augostini, MD FACC FHRS
    Premature Ventricular Contractions Ralph Augostini, MD FACC FHRS Orlando, Florida – October 7-9, 2011 Premature Ventricular Contractions: ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death J Am Coll Cardiol, 2006; 48:247-346. Background PVCs are ectopic impulses originating from an area distal to the His Purkinje system Most common ventricular arrhythmia Significance of PVCs is interpreted in the context of the underlying cardiac condition Ventricular ectopy leading to ventricular tachycardia (VT), which, in turn, can degenerate into ventricular fibrillation, is one of the common mechanisms for sudden cardiac death The treatment paradigm in the 1970s and 1980s was to eliminate PVCs in patients after myocardial infarction (MI). CAST and other studies demonstrated that eliminating PVCs with available anti-arrhythmic drugs increases the risk of death to patients without providing any measurable benefit Pathophysiology Three common mechanisms exist for PVCs, (1) automaticity, (2) reentry, and (3) triggered activity: Automaticity: The development of a new site of depolarization in non-nodal ventricular tissue. Reentry circuit: Reentry typically occurs when slow- conducting tissue (eg, post-infarction myocardium) is present adjacent to normal tissue. Triggered activity: Afterdepolarization can occur either during (early) or after (late) completion of repolarization. Early afterdepolarizations commonly are responsible for bradycardia associated PVCs, but also with ischemia and electrolyte disturbance. Triggered Fogoros: Electrophysiologic Testing. 3rd ed. Blackwell Scientific 1999; 158. Epidemiology Frequency The Framingham heart study (with 1-h ambulatory ECG) 1 or more PVCs per hour was 33% in men without coronary artery disease (CAD) and 32% in women without CAD Among patients with CAD, the prevalence rate of 1 or more PVCs was 58% in men and 49% in women.
    [Show full text]
  • Syncope: Evaluation and Differential Diagnosis LLOYD A
    Syncope: Evaluation and Differential Diagnosis LLOYD A. RUNSER, MD, MPH; ROBERT L. GAUER, MD; and ALEX HOUSER, DO Womack Army Medical Center, Fort Bragg, North Carolina Syncope is an abrupt and transient loss of consciousness caused by cerebral hypoperfusion. It accounts for 1% to 1.5% of emergency department visits, resulting in high hospital admission rates and significant medical costs. Syncope is classified as neurally mediated, cardiac, and orthostatic hypotension. Neurally mediated syncope is the most common type and has a benign course, whereas cardiac syncope is associated with increased morbidity and mortality. Patients with presyncope have similar prognoses to those with syncope and should undergo a similar evaluation. A standard- ized approach to syncope evaluation reduces hospital admissions and medical costs, and increases diagnostic accu- racy. The initial assessment for all patients presenting with syncope includes a detailed history, physical examination, and electrocardiography. The initial evaluation may diagnose up to 50% of patients and allows immediate short-term risk stratification. Laboratory testing and neuroimaging have a low diagnostic yield and should be ordered only if clin- ically indicated. Several comparable clinical decision rules can be used to assess the short-term risk of death and the need for hospital admission. Low-risk patients with a single episode of syncope can often be reassured with no further investigation. High-risk patients with cardiovascular or structural heart disease, history concerning for arrhythmia, abnormal electrocardiographic findings, or severe comorbidities should be admitted to the hospital for further evalu- ation. In cases of unexplained syncope, provocative testing and prolonged electrocardiographic monitoring strategies can be diagnostic.
    [Show full text]