Feathers Fly in Beijing

Total Page:16

File Type:pdf, Size:1020Kb

Feathers Fly in Beijing news meeting report Feathers fly in Beijing The question of whether birds evolved from dinosaurs arouses strong opinions. Rex Dalton reports on a scientific meeting that at times bore more resemblance to a political sparring match. hen ornithologists and palaeon- tologists rolled into Beijing earlier Wthis month for the fifth quadren- nial meeting of the Society of Avian Paleon- tology and Evolution, it seemed like a per- fect opportunity to try and resolve the long- running debate over whether birds evolved from dinosaurs. Northeast China has produced a wealth of bird and dinosaur fossils in recent years, Bone China: this skull and these have been used to explore the links of a feathered dinosaur, between the two groups. At the meeting, Caudipteryx zoui, is one Chinese scientists showed off some newly of the exciting new discovered specimens, which might help to fossils emerging from answer important evolutionary questions. northeast China. But by the close of the meeting, hosted by Beijing’s Institute of Vertebrate Paleontology evolutionary origin as the hair-like integu- Hutchinson, who studies at Berkeley with and Paleoanthropology (IVPP), the divi- mentary filaments seen on many dinosaur Kevin Padian, a leading proponent of the idea sions between those who believe birds fossils, he was accused by Storrs Olson, head that birds evolved from dinosaurs, presented evolved from dinosaurs and those who dis- of ornithology at the National Museum of data on hind-limb evolution. Hutchinson agree appeared greater than ever. Several Natural History in Washington DC, of engag- compares bones of fossils and existing species attendees were disappointed that progressive ing in “ideological mumbo jumbo”. for scarring to determine where muscles scientific debate was stifled by entrenched Olson is a leader in the camp that believes attach. He uses this information to generate a opinions, raised voices and strident words. “I that birds evolved separately from dinosaurs. computer model of the biomechanics of hind think a lot more interesting issues could have He rejects the phylogenetic analysis used by limbs. As an example, he presented prelimi- come up, instead of going over the same old Prum and others to build evolutionary links nary data on how much hind-limb muscle tired stories, like the origin of flight,” says between birds and dinosaurs on the basis of mass would be needed to support a Tyran- John Hutchinson, a doctoral student at the shared characteristics. Throughout the meet- nosaurus rex. Hutchinson hopes that the University of California at Berkeley. “It is like ing, Olson and like-minded scientists wore modelling process will be useful for exploring the field hasn’t moved on.” badges saying “Birds are Not Dinosaurs”. the links between birds and dinosaurs. “The time is now to stop debating and pro- But this ‘BAND’ group was not alone in Kevin Middleton, a doctoral student in ceed with learning about the biology of the adopting tactics that had more in common evolutionary biology at Brown University in origin of birds,” agrees Richard Prum, an evo- with political point-scoring than scientific Providence, Rhode Island, described his lutionary biologist at the University of Kansas discourse. When Alan Feduccia, a palaeobiol- studies of the feet of birds and dinosaurs. He in Lawrence. But when Prum argued at the ogist at the University of North Carolina at has focused on the evolution of the first digit, meeting that birds’ feathers have the same Chapel Hill, gave a talk on why the theory of or hallux, the orientation of which is used to bird evolution from dinosaurs should be help classify species as birds or dinosaurs. The rejected, his argument was likened by some bone is reversed in perching birds, but Mid- opponents to those of creationists. Chris dleton has produced evidence that it is not McGowan, curator of palaeobiology at the only reversed, but also rotated along its axis. REX DALTON Royal Ontario Museum in Toronto, said cut- “I’m fairly confident the hallux is much more tingly that he had not enjoyed such a perfor- complex than we thought,” says Middleton. mance since he last heard a talk by Duane “These are examples of the next genera- Gish, senior vice-president of the Institute for tion of research that will provide tremen- Creation Research in Santee, near San Diego. dous progress,” says Prum. And the speci- But between such acrimonious exchanges, mens being uncovered in northeast China new lines of research did emerge. Mary are likely to be key to this progress. During Schweitzer of Montana State University in the meeting, one IVPP scientist, Fucheng Bozeman described how she has looked for Zhang, presented tantalizing slides of about evidence of feathers on a Mongolian dinosaur half a dozen undescribed species. fossil, Shuvuuia deserti, using fluorescently But if the Beijing meeting is anything to go labelled antibodies for the protein keratin. by, any resolution of the debate over the origin Schweitzer detected b-keratin, the basic com- of birds may take years to emerge. When the ponent of most feathers, but significantly she proponents get together in the same room, found no evidence of a-keratin, which does they seem to generate more heat than light. I Olson: BAND leader rejects the bird–dino link. not occur in feathers. Rex Dalton is Nature’s West Coast US Correspondent. 992 NATURE | VOL 405 | 29JUNE 2000 | www.nature.com © 2000 Macmillan Magazines Ltd.
Recommended publications
  • A Comprehensive Multilocus Phylogeny of the Neotropical Cotingas
    Molecular Phylogenetics and Evolution 81 (2014) 120–136 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A comprehensive multilocus phylogeny of the Neotropical cotingas (Cotingidae, Aves) with a comparative evolutionary analysis of breeding system and plumage dimorphism and a revised phylogenetic classification ⇑ Jacob S. Berv 1, Richard O. Prum Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208105, New Haven, CT 06520, USA article info abstract Article history: The Neotropical cotingas (Cotingidae: Aves) are a group of passerine birds that are characterized by Received 18 April 2014 extreme diversity in morphology, ecology, breeding system, and behavior. Here, we present a compre- Revised 24 July 2014 hensive phylogeny of the Neotropical cotingas based on six nuclear and mitochondrial loci (7500 bp) Accepted 6 September 2014 for a sample of 61 cotinga species in all 25 genera, and 22 species of suboscine outgroups. Our taxon sam- Available online 16 September 2014 ple more than doubles the number of cotinga species studied in previous analyses, and allows us to test the monophyly of the cotingas as well as their intrageneric relationships with high resolution. We ana- Keywords: lyze our genetic data using a Bayesian species tree method, and concatenated Bayesian and maximum Phylogenetics likelihood methods, and present a highly supported phylogenetic hypothesis. We confirm the monophyly Bayesian inference Species-tree of the cotingas, and present the first phylogenetic evidence for the relationships of Phibalura flavirostris as Sexual selection the sister group to Ampelion and Doliornis, and the paraphyly of Lipaugus with respect to Tijuca.
    [Show full text]
  • Another Darwinian Aesthetics
    This is a repository copy of Another Darwinian Aesthetics. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/103826/ Version: Accepted Version Article: Wilson, Catherine orcid.org/0000-0002-0760-4072 (2016) Another Darwinian Aesthetics. Journal of aesthetics and art criticism. pp. 237-252. ISSN 0021-8529 https://doi.org/10.1111/jaac.12283 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Another Darwinian Aesthetics (Last ms version). Published Version: WILSON, CATHERINE. "Another Darwinian Aesthetics." The Journal of Aesthetics and Art Criticism 74.3 (2016): 237-252. Despite the bright sun, dew was still dripping from the chrysanthemums in the garden. On the bamboo fences, and criss-cross hedges, I saw tatters of spiderwebs; and where the threads were broken the raindrops hung on them like strings of white pearls. I was greatly moved and delighted. …Later I described to people how beautiful it all was.
    [Show full text]
  • Current Perspectives on Sexual Selection History, Philosophy and Theory of the Life Sciences Volume 9
    Current Perspectives on Sexual Selection History, Philosophy and Theory of the Life Sciences Volume 9 Editors: Charles T. Wolfe, Ghent University, Belgium Philippe Huneman, IHPST (CNRS/Université Paris I Panthéon-Sorbonne), France Thomas A.C. Reydon, Leibniz Universität Hannover, Germany Editorial Board: Editors Charles T. Wolfe, Ghent University, Belgium Philippe Huneman, IHPST (CNRS/Université Paris I Panthéon-Sorbonne), France Thomas A.C. Reydon, Leibniz Universität Hannover, Germany Editorial Board Marshall Abrams (University of Alabama at Birmingham) Andre Ariew (Missouri) Minus van Baalen (UPMC, Paris) Domenico Bertoloni Meli (Indiana) Richard Burian (Virginia Tech) Pietro Corsi (EHESS, Paris) François Duchesneau (Université de Montréal) John Dupré (Exeter) Paul Farber (Oregon State) Lisa Gannett (Saint Mary’s University, Halifax) Andy Gardner (Oxford) Paul Griffi ths (Sydney) Jean Gayon (IHPST, Paris) Guido Giglioni (Warburg Institute, London) Thomas Heams (INRA, AgroParisTech, Paris) James Lennox (Pittsburgh) Annick Lesne (CNRS, UPMC, Paris) Tim Lewens (Cambridge) Edouard Machery (Pittsburgh) Alexandre Métraux (Archives Poincaré, Nancy) Hans Metz (Leiden) Roberta Millstein (Davis) Staffan Müller-Wille (Exeter) Dominic Murphy (Sydney) François Munoz (Université Montpellier 2) Stuart Newman (New York Medical College) Frederik Nijhout (Duke) Samir Okasha (Bristol) Susan Oyama (CUNY) Kevin Padian (Berkeley) David Queller (Washington University, St Louis) Stéphane Schmitt (SPHERE, CNRS, Paris) Phillip Sloan (Notre Dame) Jacqueline Sullivan
    [Show full text]
  • Reading: Masters of Light: the Science Behind Nature's Brightest
    Masters of Light: The Science Behind Nature’s Brightest Colors JULIA ROTHCHILD DECEMBER 30, 2014 0 In the sands of the Yukon Territory in Canada, a scientist found a beetle embedded with nano-scale diamonds. The insect was a small, brown member of the weevil family. It was plated with hollow scales, inside each of which expanses of nano-crystals had grown. Every diamond was placed exactly the same distance apart, yielding a formidably regular array that extended up and down and side to side, filling the insides of the beetle’s scales with a rigid, repeating matrix. The insect unearthed in the Yukon sand had been preserved for over half a million years as a fossil. Yale researchers inspected the preserved material using high energy X-rays at Argonne National Laboratory in Chicago in order to study the configuration of crystals. Although the structures they discovered are especially beautiful and intriguing, diamond-filled scales are not unique: many creatures alive today grow identical or similar nano-size arrays. Animals grow these sorts of structures because they are optical powerhouses. By manipulating light, the crystals allow animals to produce brilliant colors that are otherwise unattainable. Making Blue Consider the color blue. There are no blue bears in the world. There are no blue crocodiles either. There are also no blue kangaroos, blue bumblebees, blue cats, or blue dogs. There aren’t very many blue animals in the world, period, because blue is a difficult color to make. Most of the other colors of the rainbow arise straightforwardly in nature from chemicals, called pigments, that animals collect in their skin, feathers, and hair.
    [Show full text]
  • Alan Feduccia's Riddle of the Feathered Dragons: What Reptiles
    Leigh Evolution: Education and Outreach 2014, 7:9 http://www.evolution-outreach.com/content/7/1/9 BOOK REVIEW Open Access Alan Feduccia’s Riddle of the Feathered Dragons: what reptiles gave rise to birds? Egbert Giles Leigh Jr Riddle of the Feathered Dragons: Hidden Birds of China, properly. This is a great pity, for his story is wonderful: by Alan Feduccia. New Haven, CT: Yale University Press, his birds would have made a far better focus for this 2012. Pp. x + 358. H/b $55.00 book than the dispute. This book’s author is at home in the paleontology, So, what is this dispute that spoiled the book? The anatomy, physiology, and behavior of birds. Who could scientific argument is easily summarized. It started be more qualified to write on their origin and evolution? when a paleontologist from Yale University, John Ostrom, This book is unusually, indeed wonderfully, well and unearthed a 75-kg bipedal theropod dinosaur, Deinonychus, clearly illustrated: its producers cannot be praised too buried 110 million years ago in Montana. Deinonychus highly. It is well worth the while of anyone interested in stood a meter tall, and its tail was 1.5 m long. It was active: bird evolution to read it. Although it offers no answers Ostrom thought that both it and Archaeopteryx,which to ‘where birds came from’, it has God’s plenty of fascin- lived 40 million years earlier, were warm-blooded. Deinony- ating, revealing detail, knit together in powerful criticism chus bore many skeletal resemblances to Archaeopteryx, of prevailing views of bird evolution.
    [Show full text]
  • Interspecific Social Dominance Mimicry in Birds
    bs_bs_banner Zoological Journal of the Linnean Society, 2014. With 6 figures Interspecific social dominance mimicry in birds RICHARD OWEN PRUM1,2* 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8150, USA 2Peabody Natural History Museum, Yale University, New Haven, CT 06520-8150, USA Received 3 May 2014; revised 17 June 2014; accepted for publication 21 July 2014 Interspecific social dominance mimicry (ISDM) is a proposed form of social parasitism in which a subordinate species evolves to mimic and deceive a dominant ecological competitor in order to avoid attack by the dominant, model species. The evolutionary plausibility of ISDM has been established previously by the Hairy-Downy game (Prum & Samuelson). Psychophysical models of avian visual acuity support the plausibility of visual ISDM at distances ∼>2–3 m for non-raptorial birds, and ∼>20 m for raptors. Fifty phylogenetically independent examples of avian ISDM involving 60 model and 93 mimic species, subspecies, and morphs from 30 families are proposed and reviewed. Patterns of size differences, phylogeny, and coevolutionary radiation generally support the predic- tions of ISDM. Mimics average 56–58% of the body mass of the proposed model species. Mimics may achieve a large potential deceptive social advantage with <20% reduction in linear body size, which is well within the range of plausible, visual size confusion. Several, multispecies mimicry complexes are proposed (e.g. kiskadee- type flycatchers) which may coevolve through hierarchical variation in the deceptive benefits, similar to Müllerian mimicry. ISDM in birds should be tested further with phylogenetic, ecological, and experimental investigations of convergent similarity in appearance, ecological competition, and aggressive social interactions between sympatric species.
    [Show full text]
  • Phylogeny and Avian Evolution Phylogeny and Evolution of the Aves
    Phylogeny and Avian Evolution Phylogeny and Evolution of the Aves I. Background Scientists have speculated about evolution of birds ever since Darwin. Difficult to find relatives using only modern animals After publi cati on of “O rigi i in of S peci es” (~1860) some used birds as a counter-argument since th ere were no k nown t ransiti onal f orms at the time! • turtles have modified necks and toothless beaks • bats fly and are warm blooded With fossil discovery other potential relationships! • Birds as distinct order of reptiles Many non-reptilian characteristics (e.g. endothermy, feathers) but really reptilian in structure! If birds only known from fossil record then simply be a distinct order of reptiles. II. Reptile Evolutionary History A. “Stem reptiles” - Cotylosauria Must begin in the late Paleozoic ClCotylosauri a – “il”“stem reptiles” Radiation of reptiles from Cotylosauria can be organized on the basis of temporal fenestrae (openings in back of skull for muscle attachment). Subsequent reptilian lineages developed more powerful jaws. B. Anapsid Cotylosauria and Chelonia have anapsid pattern C. Syypnapsid – single fenestra Includes order Therapsida which gave rise to mammalia D. Diapsida – both supppratemporal and infratemporal fenestrae PttPattern foun did in exti titnct arch osaurs, survi iiving archosaurs and also in primitive lepidosaur – ShSpheno don. All remaining living reptiles and the lineage leading to Aves are classified as Diapsida Handout Mammalia Extinct Groups Cynodontia Therapsida Pelycosaurs Lepidosauromorpha Ichthyosauria Protorothyrididae Synapsida Anapsida Archosauromorpha Euryapsida Mesosaurs Amphibia Sauria Diapsida Eureptilia Sauropsida Amniota Tetrapoda III. Relationshippp to Reptiles Most groups present during Mesozoic considere d ancestors to bird s.
    [Show full text]
  • Evolution of the Morphological Innovations of Feathers RICHARD O
    JOURNAL OF EXPERIMENTAL ZOOLOGY (MOL DEV EVOL) 304B:570–579 (2005) Evolution of the Morphological Innovations of Feathers RICHARD O. PRUMÃ Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06520 ABSTRACT Feathers are complex assemblages of multiple morphological innovations. Recent research on the development and evolution of feathers has produced new insights into the origin and diversification of the morphological innovations in feathers. In this article, I review and discuss the contribution of three different factors to the evolution of morphological innovations in feathers: feather tubularity, hierarchical morphological modularity, and the co-option molecular signaling modules. The developing feather germ is a tube of epidermis with a central dermal pulp. The tubular organization of the feather germ and follicle produces multiple axes over which morphological differentiation can be organized. Feather complexity is organized into a hierarchy of morphological modules. These morphological modules evolved through the innovative differentiation along multiple different morphological axes created by the tubular feather germ. Concurrently, many of the morphological innovations of feathers evolved through the evolutionary co-option of plesiomorphic molecular signaling modules. Gene co-option also reveals a role for contingency in the evolution of hierarchical morphological innovations. J. Exp. Zool. (Mol. Dev. Evol.) 304B:570– 579, 2005. r 2005 Wiley-Liss, Inc. Feathers are an outstanding example of a is exploited for a wide variety of functions in the hierarchically complex morphological innovation lives of birds, and their theropod ancestors (Prum (Prum, ’99; Prum and Dyck, 2003). As the other and Brush, 2002), including flight, insulation, articles in this symposium emphasize, the origin of visual communication, crypsis, and even sound morphological innovations, or evolutionary novel- production and water transport (Stettenheim, ties, provides special challenges to the field of ’76).
    [Show full text]
  • Coevolutionary Aesthetics in Human and Biotic Artworlds
    Biol Philos (2013) 28:811–832 DOI 10.1007/s10539-013-9389-8 Coevolutionary aesthetics in human and biotic artworlds Richard O. Prum Received: 13 February 2013 / Accepted: 14 June 2013 / Published online: 6 July 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract This work proposes a coevolutionary theory of aesthetics that encom- passes both biotic and human arts. Anthropocentric perspectives in aesthetics pre- vent the recognition of the ontological complexity of the aesthetics of nature, and the aesthetic agency of many non-human organisms. The process of evaluative coevolution is shared by all biotic advertisements. I propose that art consists of a form of communication that coevolves with its own evaluation. Art and art history are population phenomena. I expand Arthur Danto’s Artworld concept to any aes- thetic population of producers and evaluators. Current concepts of art cannot exclusively circumscribe the human arts from many forms of non-human biotic art. Without assuming an arbitrarily anthropocentric perspective, any concept of art will need to engage with biodiversity, and either recognize many instances of biotic advertisements as art, or exclude some instances of human art. Coevolutionary aesthetic theory provides a heuristic account of aesthetic change in both human and biotic artworlds, including the coevolutionary origin of aesthetic properties and aesthetic value within artworlds. Restructuring aesthetics, art criticism, and art history without human beings at the organizing centers of these disciplines stimulate new progress in our understanding of art, and the unique human contributions to aesthetics and aesthetic diversity. Keywords Aesthetic evolution Á Mate choice Á Art Á Aesthetics of nature Á Ornament Á Aposematism R.
    [Show full text]
  • Curriculum Vitae - ALAN FEDUCCIA (2020)
    Brevum Curriculum Vitae - ALAN FEDUCCIA (2020) Position: S. K. Heninger Distinguished Professor Emeritus, Department of Biology, University of North Carolina, Chapel Hill, North Carolina. Education: Ph.D. Zoology University of Michigan, l969 (NSF Predoctoral Fellow) M.A. Zoology University of Michigan, l966 B.S. Zoology Louisiana State University, l965 (pdf of 2008 museum article attached). Languages: French, Spanish, Italian (conversational). S. K. Heninger Distinguished Professor, University of North Carolina, 1994-2007 (emeritus). Chairman, Department of Biology, University of North Carolina, July 1997-2002. Chairman, Division of Natural Sciences, UNC, 1996-1997; resigned to become Chair. Associate Chair, Department of Biology, July, l982 -1992. Research Associate, Department of Vertebrate Zoology, Smithsonian Institution, 1978-1987. William R. Kenan, Jr. Visiting Professor, Smithsonian Institution, 1978. Assistant, Associate, Full Professor, Biology UNC, 1971-74, 1974-79, 1979-2007. Assistant Professor of Biology, Southern Methodist University, 1970-71. Lecturer in Biology, University of Michigan, 1969. Fellow, American Ornithologists’ Union, 1976. Fellow, American Association for the Advancement of Science, 1994. Who’s Who in America, 2004. Albert Nelson Marquis Lifetime Achievement Award, 2018. Naming Recognition: -Presbyorniformipes feduccii, 1995, Presbyornis-like webbed trackway (Eocene) named for Alan Feduccia who identified the trackmaker. -Confuciusornis feducciai, 2009, new species of 120-million-year-old, earliest beaked bird (below), named by Chinese scientists, for Alan Feduccia: “for his contributions to his study of the origin and evolution of birds.” 1 -Feducciavis loftini, 2011, Miocene tern, named by Smithsonian scientist, for Alan Feduccia, citing “his many contributions to the study of fossil birds and his dedication to truth in the search for bird origins.” -Microraptor (four-winged Chinese fossil) named “Alan” for children’s book Comet’s Jurassic Adventure (2017).
    [Show full text]
  • Moulting Tail Feathers in a Juvenile Oviraptorisaur
    BRIEF COMMUNICATIONS ARISING Moultingtail feathers in ajuvenile oviraptorisaur ARISING FROM Xing Xu, Xiaoting Zheng & Hailu You Nature 464, 1338–1341 (2010) Xu et al.1 describe the extraordinarily preserved feathers from two subadults of the oviraptorisaur Similicaudipteryx from the Yixian Formation of Liaoning, China. The preserved tail feathers of the juvenile specimen (STM4.1) show a morphology not previously observed in any fossil feathers. The tail feathers of an older, immature specimen (STM22-6) show a typical closed pennaceous structure with a prominent, planar vane. I propose that the feathers of the tail of the juvenile specimen are not a specialized feather generation, but fossilized ‘pin feathers’ or developing feather germs. Xu et al.1 interpret the juvenile Similicaudipteryx tail feathers as examples of ‘‘proximately ribbon-like pennaceous feathers’’ (PRPFs) that have evolved convergently in avialian confuciusornithids and enanthiornithines, and in the non-avian maniraptoran Epidexipteryx. They describe the differences between juvenile and immature Similicaudipteryx feathers as a notable example of post-nestling onto- genetic change in feather morphology, and claim that ‘‘this phenom- enon is not known to occur in other birds.’’ Although modern birds do not show radical changes in flight-feather morphology after the nestling stage (probably owing to the functional Figure 1 | Developing primary wing feathers of a nestling Great Horned constraints of flight), there are many examples of radical post-nestling Owl. The distal tip of the planar vane of the pennaceous feathers are emerging from the tubular feather sheath. The sheath surrounds the entire base of the changes in the morphology of other feathers.
    [Show full text]
  • The Landekirkpatrick Mechanism Is
    PERSPECTIVE doi:10.1111/j.1558-5646.2010.01054.x THE LANDE–KIRKPATRICK MECHANISM IS THE NULL MODEL OF EVOLUTION BY INTERSEXUAL SELECTION: IMPLICATIONS FOR MEANING, HONESTY, AND DESIGN IN INTERSEXUAL SIGNALS Richard O. Prum1,2 1Department of Ecology and Evolutionary Biology, and Peabody Natural History Museum, Yale University, New Haven, Connecticut 06520-8150 2E-mail: [email protected] Received December 31, 2009 Accepted May 26, 2010 The Fisher-inspired, arbitrary intersexual selection models of Lande (1981) and Kirkpatrick (1982), including both stable and unstable equilibrium conditions, provide the appropriate null model for the evolution of traits and preferences by intersexual selection. Like the Hardy–Weinberg equilibrium, the Lande–Kirkpatrick (LK) mechanism arises as an intrinsic consequence of genetic variation in trait and preference in the absence of other evolutionary forces. The LK mechanism is equivalent to other intersexual selection mechanisms in the absence of additional selection on preference and with additional trait-viability and preference-viability correlations equal to zero. The LK null model predicts the evolution of arbitrary display traits that are neither honest nor dishonest, indicate nothing other than mating availability, and lack any meaning or design other than their potential to correspond to mating preferences. The current standard for demonstrating an arbitrary trait is impossible to meet because it requires proof of the null hypothesis. The LK null model makes distinct predictions about the evolvability of traits and preferences. Examples of recent intersexual selection research document the confirmationist pitfalls of lacking a null model. Incorporation of the LK null into intersexual selection will contribute to serious examination of the extent to which natural selection on preferences shapes signals.
    [Show full text]