Lumbar and Sacral Plexuses

Total Page:16

File Type:pdf, Size:1020Kb

Lumbar and Sacral Plexuses Lumbar and Sacral Plexuses Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Structure of Spinal Nerves: Somatic Pathways dorsal dorsal root ramus spinal nerve somatic sensory nerve CNS inter- neuron ventral somatic ramus motor nerve ventral root Mixed Spinal Nerve Structure of Spinal Nerves: Dorsal & Ventral Rami dorsal ramus spinal nerve somatic sensory nerve somatic Territory of Dorsal Rami ventral (everything else, but head, ramus motor innervated by ventral rami) nerve Stern Essentials of Gross Anatomy Nerves of the The lumbar plexus lower limb L1-L4 Is formed by the ventral rami of the upper four lumbar nerves in the substance of psoas major muscle It also receives a contribution from T12 (subcostal) nerve 2 main nerves Femoral nerve Obturator nerve L1 L2 4 small nerves L3 L4 Ilio-hypogastric nerve Ilio-inguinal nerve Genitofemoral nerve Lateral cutaneous nerve of the thigh Ilio-hypogastric nerve L1 L2 Ilio-inguinal nerve L3 Genitofemoral Lateral cutaneous L4 nerve of the thigh nerve L5 Femoral nerve Obturator nerve Ilio-hypogastric nerve Each nerve of the lumber plexus emerges (exits) from the substance of Ilio-inguinal nerve the psoas major muscle as follows: L1 L2 Lateral cutaneous nerve of the thigh L3 Genitofemoral L4 nerve L5 Femoral nerve Obturator nerve Ilio-hypogastric nerve L1 Ilio-inguinal nerve The ilio-hypogastric and ilio-inguinal L1 nerves arise as a single trunk from the L2 ventral ramus of L1 L3 Either before or soon after emerging from the lateral border of the psoas L4 major muscle, this single trunk divides into: L5 The ilio-hypogastric nerve And The ilio-inguinal nerve Ilio-hypogastric nerve Ilio-inguinal nerve Genitofemoral L1 Nerve L2 L3 L4 L5 Genital branch of Femoral branch genitofemoral of genitofemoral nerve nerve Genitofemoral Nerve The genital branch The femoral branch: Ilio-inguinal nerve Distributed to the skin of the upper and intermediate part of Distributed to the skin the thigh of the upper and (femoral branch runs with medial part of the femoral artery) thigh Lateral cutaneous nerve of the thigh Distributed to the skin of the lateral aspect of the thigh Lateral Medial L1 L2 Obturator nerve Anterior divisions of L3 L2 L3 L4 Supplies medial L4 compartment of thigh L5 Femoral nerve Femoral nerve Posterior divisions of Obturator nerve L2 L3 L4 Supplies anterior compartment of thigh Anterior Anterior compartment Femoral nerve Extensor Femur Medial Lateral Medial compartment Obturator nerve Adductor Posterior compartment Sciatic nerve Flexor Posterior Lumbosacral trunk L4 L5 L1 The lumbosacral trunk is a L2 thick nerve formed by the union of lower part of ventral ramus of L4 with the ventral ramus of L5 L3 L4 L5 What is the key to memorize the lumbar plexus? Ilio-hypogastric nerve L1 L1 gives L2 1-Ilio-hypogastric nerve Ilio-inguinal nerve 2-Ilio-inguinal nerve L3 3-The first root of the genito-femoral Lateral cutaneous L4 L2 gives (four branches) nerve of the thigh 1-The second root of the genito-femoral 2-The first root of the lateral cutaneous L5 nerve of the thigh 3-The first root of the femoral nerve Femoral nerve 4-The first root of the obturator nerve Obturator nerve L3 gives 1-The second root of the lateral cutaneous nerve of the thigh 2-The second root of the femoral nerve 3-The second root of the obturator nerve L4 gives 1-The third root of the femoral nerve Lumbo-sacral trunk 2-The third root of the obturator nerve 3-The upper root of the lumbo-sacral trunk The Sacral plexus L1 L4-S4 L2 Located on the posterior wall of pelvis on the anterior surface of L3 piriformis muscle Formed by the lumbosacral trunk L4 and ventral rami of S1 -S4 Branches supply: lower limb, pelvic floor and wall, and perineum L5 Most branches leave the pelvis through greater sciatic foramina S1 S2 S3 S4 S5 Branches of the Sacral plexus Gluteal region Superior gluteal nerve (L4, L5, S1) Inferior gluteal nerve (L5, S1, S2) Posterior cutaneous nerve of the thigh (S1,S2 ,S3 S4) Sciatic nerve (L4,L5, S1, S2, S3) (All roots except S4) Tibial nerve (L4,L5, S1, S2, S3) (The same as sciatic) Common peroneal nerve (L4, L5, S1, S2) (The same root value as the tibial except S3) Nerve to obturator internus & superior gemellus Nerve to quadratus femoris & inferior gemellus Perforating cutaneous nerve Nerve to piriformis Sciatic nerve L4 L5 S1 S2 S3 L4 L5 S1 S2 S3 Tibial nerve L4 anterior divisions of L4 L5 S1 S2 S3 L5 S1 S2 S3 Common fibular nerve posterior divisions of L4 L4 L5 S1 S2 L5 S1 S2 S3 Superior gluteal nerve posterior divisions of L4 L4 L5 S1 L5 S1 S2 S3 Inferior gluteal nerve posterior divisions of L4 L5 S1 S2 L5 S1 S2 S3 Posterior cutaneous nerve of the thigh (S1,S2 ,S3) L4 L5 S1 S2 S3 Major nerves of the lumbar and sacral plexuses are: Anterior divisions Posterior divisions Obturator nerve Femoral nerve anterior divisions of posterior divisions of L2 L3 L4 L2 L3 L4 Tibial nerve Common fibular nerve anterior divisions of posterior divisions of L4 L5 S1 S2 S3 L4 L5 S1 S2 Superior gluteal nerve posterior divisions of L4 L5 S1 Inferior gluteal nerve posterior divisions of L5 S1 S2 .
Recommended publications
  • Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions
    Hindawi International Journal of Rheumatology Volume 2020, Article ID 2919625, 13 pages https://doi.org/10.1155/2020/2919625 Review Article Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions Worku Abie Liyew Biomedical Science Department, School of Medicine, Debre Markos University, Debre Markos, Ethiopia Correspondence should be addressed to Worku Abie Liyew; [email protected] Received 25 April 2020; Revised 26 June 2020; Accepted 13 July 2020; Published 29 August 2020 Academic Editor: Bruce M. Rothschild Copyright © 2020 Worku Abie Liyew. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Lumbar disc degeneration is defined as the wear and tear of lumbar intervertebral disc, and it is mainly occurring at L3-L4 and L4-S1 vertebrae. Lumbar disc degeneration may lead to disc bulging, osteophytes, loss of disc space, and compression and irritation of the adjacent nerve root. Clinical presentations associated with lumbar disc degeneration and lumbosacral nerve lesion are discogenic pain, radical pain, muscular weakness, and cutaneous. Discogenic pain is usually felt in the lumbar region, or sometimes, it may feel in the buttocks, down to the upper thighs, and it is typically presented with sudden forced flexion and/or rotational moment. Radical pain, muscular weakness, and sensory defects associated with lumbosacral nerve lesions are distributed on
    [Show full text]
  • 4-Brachial Plexus and Lumbosacral Plexus (Edited).Pdf
    Color Code Brachial Plexus and Lumbosacral Important Doctors Notes Plexus Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of this lecture, the students should be able to : Describe the formation of brachial plexus (site, roots) List the main branches of brachial plexus Describe the formation of lumbosacral plexus (site, roots) List the main branches of lumbosacral plexus Describe the important Applied Anatomy related to the brachial & lumbosacral plexuses. Brachial Plexus Formation Playlist o It is formed in the posterior triangle of the neck. o It is the union of the anterior rami (or ventral) of the 5th ,6th ,7th ,8th cervical and the 1st thoracic spinal nerves. o The plexus is divided into 5 stages: • Roots • Trunks • Divisions • Cords • Terminal branches Really Tired? Drink Coffee! Brachial Plexus A P A P P A Brachial Plexus Trunks Divisions Cords o Upper (superior) trunk o o Union of the roots of Each trunk divides into Posterior cord: C5 & C6 anterior and posterior From the 3 posterior division divisions of the 3 trunks o o Middle trunk Lateral cord: From the anterior Continuation of the divisions of the upper root of C7 Branches and middle trunks o All three cords will give o Medial cord: o Lower (inferior) trunk branches in the axilla, It is the continuation of Union of the roots of the anterior division of C8 & T1 those will supply their respective regions. the lower trunk The Brachial Plexus Long Thoracic (C5,6,7) Anterior divisions Nerve to Subclavius(C5,6) Posterior divisions Dorsal Scapular(C5) Suprascapular(C5,6) upper C5 trunk Lateral Cord C6 middle (2LM) trunk C7 lower C8 trunk T1 Posterior Cord (ULTRA) Medial Cord (4MU) In the PowerPoint presentation this slide is animated.
    [Show full text]
  • Netter's Anatomy Flash Cards – Section 7 – List 4Th Edition
    Netter's Anatomy Flash Cards – Section 7 – List 4th Edition https://www.memrise.com/course/1577594/ Section 7 Lower Limb (72 cards) Plate 7-1 Hip (Coxal) Bone: Lateral View 1.1 Posterior superior iliac spine 1.2 Posterior inferior iliac spine 1.3 Greater sciatic notch 1.4 Body of ilium 1.5 Body of ischium 1.6 Ischial tuberosity 1.7 Pubic tubercle 1.8 Acetabulum 1.9 Iliac crest Plate 7-2 Hip (Coxal) Bone: Medial View 2.1 Wing (ala) of ilium (iliac fossa) 2.2 Pecten pubis (pectineal line) 2.3 Ramus of ischium 2.4 Lesser sciatic notch 2.5 Ischial spine 2.6 Articular surface (for sacrum) 2.7 Iliac tuberosity Plate 7-3 Hip Joint: Lateral View 3.1 Lunate (articular) surface of acetabulum 3.2 Articular cartilage 3.3 Head of femur 3.4 Ligament of head of femur (cut) 3.5 Obturator membrane 3.6 Acetabular labrum (fibrocartilaginous) Plate 7-4 Hip Joint: Anterior and Posterior Views 4.1 Iliofemoral ligament (Y ligament of Bigelow) 4.2 Pubofemoral ligament 4.3 Iliofemoral ligament 4.4 Ischiofemoral ligament Plate 7-5 Femur 5.1 Greater trochanter 5.2 Shaft (body) 5.3 Lateral epicondyle 5.4 Lateral condyle 5.5 Medial condyle 5.6 Medial epicondyle 5.7 Adductor tubercle 5.8 Linea aspera (Medial lip; Lateral lip) 5.9 Lesser trochanter 5.10 Intertrochanteric crest 5.11 Neck 5.12 Head Plate 7-6 Tibia and Fibula 6.1 Lateral condyle 6.2 Apex, Head, and Neck of fibula 6.3 Fibula 6.4 Lateral malleolus 6.5 Medial malleolus 6.6 Tibia 6.7 Tibial tuberosity 6.8 Medial condyle 6.9 Superior articular surfaces (medial and lateral facets) 6.10 Malleolar fossa of lateral
    [Show full text]
  • 33. Spinal Nerves. Cervical Plexus
    GUIDELINES Students’ independent work during preparation to practical lesson Academic discipline HUMAN ANATOMY Topic SPINAL NERVES. CERVICAL PLEXUS. 1. Relevance of the topic: The knowledge of structures of the peripheral nervous system, particularly cervical plexus and its branches is the base of clinical thinking in terms of differential diagnosis for the doctor of any specialty, but above all a neurologist, vertebroneurologist, traumatologist, dermatologist, general practitioner. 2. Specific objectives of practical lesson - Analyse the composition of fibres of anterior and posterior roots of spinal nerves. - Explain the formation of spinal nerve. - Suggest the definition of spinal nerve. - Classify spinal nerve branches. - Explain functional anatomy of thoracic spinal nerve branches. - Define term "plexus of somatic nerves" including the formation of cervical plexus. - Draw a scheme of spinal nerve: o а - in cervical region of spinal cord (except for the CVIII); o b - in thoracic region of spinal cord; o c - on the level of SII – SIV. - Analyse the connection of somatic nerve (thoracic spinal nerve) with ganglia of sympathetic trunk. - Create the conception of grey and white connecting branches in the functional aspect. 3. Basic level of preparation (interdisciplinary integration) of the student includes knowledge of medical biology and histology of the development of nervous system in phylogenesis and ontogenesis. Name of previous disciplines Obtained skills 1. Medical Biology and Histology Know ontogenesis and phylogenesis of nervous system. The structure of the neuron. 2. Sections of Human Anatomy: - osteology The student should have skills to describe the structure of - myology the spine in general, to be able to demonstrate structural features of the cervical vertebrae, their connections with each other and with the bones of the skull.
    [Show full text]
  • The Supra-Iliac Anterior Quadratus Lumborum Block
    Can J Anesth/J Can Anesth https://doi.org/10.1007/s12630-019-01312-z REPORTS OF ORIGINAL INVESTIGATIONS The supra-iliac anterior quadratus lumborum block: a cadaveric study and case series Le bloc du muscle carre´ des lombes ante´rieur par approche supra-iliaque : une e´tude cadave´rique et une se´rie de cas Hesham Elsharkawy, MD, MBA, MSc . Kariem El-Boghdadly, MBBS, BSc, FRCA, EDRA, MSc . Theresa J. Barnes, MD, MPH . Richard Drake, PhD . Kamal Maheshwari, MD, MPH . Loran Mounir Soliman, MD . Jean-Louis Horn, MD . Ki Jinn Chin, MD, FRCPC Received: 9 July 2018 / Revised: 10 December 2018 / Accepted: 10 December 2018 Ó Canadian Anesthesiologists’ Society 2019 Abstract Methods Ultrasound-guided bilateral supra-iliac anterior Purpose The local anesthetic injectate spread with fascial QL blocks were performed with 30 mL of India ink dye in plane blocks and corresponding clinical outcomes may six fresh adult cadavers. Cadavers were subsequently vary depending on the site of injection. We developed and dissected to determine distribution of the dye. In five evaluated a supra-iliac approach to the anterior quadratus patients undergoing hip surgery, a unilateral supra-iliac lumborum (QL) block and hypothesized that this single anterior QL block with 25 mL ropivacaine 0.5% followed injection might successfully block the lumbar and sacral by a continuous catheter infusion was performed. Patients plexus in cadavers and provide analgesia for patients were clinically assessed daily for block efficacy. undergoing hip surgery. Results The cadaveric injections showed consistent dye involvement of the majority of the branches of the lumbar plexus, including the femoral nerve, lateral femoral cutaneous nerve, ilioinguinal nerve, and iliohypogastric Permission to use images was obtained from the Cleveland Clinic nerve.
    [Show full text]
  • Study of Anatomical Pattern of Lumbar Plexus in Human (Cadaveric Study)
    54 Az. J. Pharm Sci. Vol. 54, September, 2016. STUDY OF ANATOMICAL PATTERN OF LUMBAR PLEXUS IN HUMAN (CADAVERIC STUDY) BY Prof. Gamal S Desouki, prof. Maged S Alansary,dr Ahmed K Elbana and Mohammad H Mandor FROM Professor Anatomy and Embryology Faculty of Medicine - Al-Azhar University professor of anesthesia Faculty of Medicine - Al-Azhar University Anatomy and Embryology Faculty of Medicine - Al-Azhar University Department of Anatomy and Embryology Faculty of Medicine of Al-Azhar University, Cairo Abstract The lumbar plexus is situated within the substance of the posterior part of psoas major muscle. It is formed by the ventral rami of the frist three nerves and greater part of the fourth lumbar nerve with or without a contribution from the ventral ramus of last thoracic nerve. The pattern of formation of lumbar plexus is altered if the plexus is prefixed (if the third lumbar is the lowest nerve which enters the lumbar plexus) or postfixed (if there is contribution from the 5th lumbar nerve). The branches of the lumbar plexus may be injured during lumbar plexus block and certain surgical procedures, particularly in the lower abdominal region (appendectomy, inguinal hernia repair, iliac crest bone graft harvesting and gynecologic procedures through transverse incisions). Thus, a better knowledge of the regional anatomy and its variations is essential for preventing the lesions of the branches of the lumbar plexus. Key Words: Anatomical variations, Lumbar plexus. Introduction The lumbar plexus formed by the ventral rami of the upper three nerves and most of the fourth lumbar nerve with or without a contribution from the ventral ramous of last thoracic nerve.
    [Show full text]
  • The Neuroanatomy of Female Pelvic Pain
    Chapter 2 The Neuroanatomy of Female Pelvic Pain Frank H. Willard and Mark D. Schuenke Introduction The female pelvis is innervated through primary afferent fi bers that course in nerves related to both the somatic and autonomic nervous systems. The somatic pelvis includes the bony pelvis, its ligaments, and its surrounding skeletal muscle of the urogenital and anal triangles, whereas the visceral pelvis includes the endopelvic fascial lining of the levator ani and the organ systems that it surrounds such as the rectum, reproductive organs, and urinary bladder. Uncovering the origin of pelvic pain patterns created by the convergence of these two separate primary afferent fi ber systems – somatic and visceral – on common neuronal circuitry in the sacral and thoracolumbar spinal cord can be a very dif fi cult process. Diagnosing these blended somatovisceral pelvic pain patterns in the female is further complicated by the strong descending signals from the cerebrum and brainstem to the dorsal horn neurons that can signi fi cantly modulate the perception of pain. These descending systems are themselves signi fi cantly in fl uenced by both the physiological (such as hormonal) and psychological (such as emotional) states of the individual further distorting the intensity, quality, and localization of pain from the pelvis. The interpretation of pelvic pain patterns requires a sound knowledge of the innervation of somatic and visceral pelvic structures coupled with an understand- ing of the interactions occurring in the dorsal horn of the lower spinal cord as well as in the brainstem and forebrain. This review will examine the somatic and vis- ceral innervation of the major structures and organ systems in and around the female pelvis.
    [Show full text]
  • New Insights in Lumbosacral Plexopathy
    New Insights in Lumbosacral Plexopathy Kerry H. Levin, MD Gérard Said, MD, FRCP P. James B. Dyck, MD Suraj A. Muley, MD Kurt A. Jaeckle, MD 2006 COURSE C AANEM 53rd Annual Meeting Washington, DC Copyright © October 2006 American Association of Neuromuscular & Electrodiagnostic Medicine 2621 Superior Drive NW Rochester, MN 55901 PRINTED BY JOHNSON PRINTING COMPANY, INC. C-ii New Insights in Lumbosacral Plexopathy Faculty Kerry H. Levin, MD P. James. B. Dyck, MD Vice-Chairman Associate Professor Department of Neurology Department of Neurology Head Mayo Clinic Section of Neuromuscular Disease/Electromyography Rochester, Minnesota Cleveland Clinic Dr. Dyck received his medical degree from the University of Minnesota Cleveland, Ohio School of Medicine, performed an internship at Virginia Mason Hospital Dr. Levin received his bachelor of arts degree and his medical degree from in Seattle, Washington, and a residency at Barnes Hospital and Washington Johns Hopkins University in Baltimore, Maryland. He then performed University in Saint Louis, Missouri. He then performed fellowships at a residency in internal medicine at the University of Chicago Hospitals, the Mayo Clinic in peripheral nerve and electromyography. He is cur- where he later became the chief resident in neurology. He is currently Vice- rently Associate Professor of Neurology at the Mayo Clinic. Dr. Dyck is chairman of the Department of Neurology and Head of the Section of a member of several professional societies, including the AANEM, the Neuromuscular Disease/Electromyography at Cleveland Clinic. Dr. Levin American Academy of Neurology, the Peripheral Nerve Society, and the is also a professor of medicine at the Cleveland Clinic College of Medicine American Neurological Association.
    [Show full text]
  • 35. Lumbar Plexus. Sacral Plexus. Coccygeal Plexus
    GUIDELINES Students’ independent work during preparation to practical lesson Academic discipline HUMAN ANATOMY Topic LUMBAR PLEXUS. SACRAL PLEXUS. COCCYGEAL PLEXUS 1. Relevance of the topic Lumbar, sacral and coccygeal plexuses innervate the skin of the abdomen, lower back and lower extremities and all the muscles of the lower limbs. Acquired knowledge is the basis for many fields of practical medicine, such as neurology, surgery and traumatology. 2. Specific objectives After the lesson the student should know and be able to: - describe the sources of the formation of the lumbar plexus; - classify the nerves of the lumbar plexus; - to be able to demonstrate and define the branches of the lumbar plexus; - describe sources of sacral plexus formation; - classify sacral plexus nerves; - be able to demonstrate and identify short and long branches of the sacral plexus; - describe the sources of formation coccygeal plexus; - classify coccygeal plexus nerves; - be able to demonstrate and identify branches of coccygeal plexus; - to explain the innervation of muscles and skin in the areas of the lower back and lower extremity. 3. Basic level of preparation For practical this lesson a student should know and be able: - to know the anatomy of the spine, pelvis, lower extremities; - to analyze and show large and small pelvis, their bones; - to analyze and demonstrate bones and joints of the lower limbs; - to demonstrate muscles of the abdomen, perineum, pelvic girdle and lower limbs; - to know the anatomy (external and internal structure) of the spinal cord; - to know the spinal nerve anatomy. 4. Tasks for independent work during preparation for the classes 4.1.
    [Show full text]
  • Quadratus Lumborum Blocks
    REGIONAL ANAESTHESIA Tutorial433 Quadratus Lumborum Blocks Ro´ isı´ n Nee†1, John McDonnell2 1Regional Fellow, Galway University Hospital, Galway, Ireland 2Consultant Anaesthetist, Galway University Hospital, Galway, Ireland Edited by: Dr. Su Cheen Ng, University College Hospital London, UK Dr. Gillian Foxall, Consultant Anaesthetist, Royal Surrey County Hospital, Guildford, UK †Corresponding author e-mail: [email protected] Published 29 September 2020 KEY POINTS Quadratus lumborum blocks (QLB) are a variation on transversus abdominis plane (TAP) blocks. Four different approaches to ultrasound-guided QLB have been described. QLB can be used to provide adjuvant analgesia for abdominal, orthopaedic, gynaecological and urological surgery. They can be performed in the lateral or supine position with a wedge under the patient’s hip. The shamrock sign of the psoas, erector spinae and the quadratus lumborum muscles around the transverse process on ultrasound allows identification of the needle insertion point. INTRODUCTION Dr. Rafa Blanco first described quadratus lumborum blocks (QLBs) in 20071 as a ‘‘no pops’’ transversus abdominis plane (TAP) block. It has been proposed as a more consistent method of accomplishing somatic as well as visceral analgesia of the abdomen than the TAP block and may provide an extended sensory blockade between T4 and L1. It can be used as an adjuvant technique for analgesia but does not provide adequate blockade to be used for anaesthesia. The QLB was developed to address the fact that as ultrasound imaging for regional anaesthesia has become more widespread, the tendency has been to move the injection point of the TAP block more anterior on the abdominal wall as compared with the original landmark technique, which is at the Triangle of Petit.
    [Show full text]
  • ANATOMICAL VARIATIONS and DISTRIBUTIONS of OBTURATOR NERVE on ETHIOPIAN CADAVERS Berhanu KA, Taye M, Abraha M, Girma A
    https://dx.doi.org/10.4314/aja.v9i1.1 ORIGINAL COMMUNICATION Anatomy Journal of Africa. 2020. Vol 9 (1): 1671 - 1677. ANATOMICAL VARIATIONS AND DISTRIBUTIONS OF OBTURATOR NERVE ON ETHIOPIAN CADAVERS Berhanu KA, Taye M, Abraha M, Girma A Correspondence to Berhanu Kindu Ashagrie Email: [email protected]; Tele: +251966751721; PO Box: 272 Debre Tabor University , North Central Ethiopia ABSTRACT Variations in anatomy of the obturator nerve are important to surgeons and anesthesiologists performing surgical procedures in the pelvic cavity, medial thigh and groin regions. They are also helpful for radiologists who interpret computerized imaging and anesthesiologists who perform local anesthesia. This study aimed to describe the anatomical variations and distribution of obturator nerve. The cadavers were examined bilaterally for origin to its final distribution and the variations and normal features of obturator nerve. Sixty-seven limbs sides (34 right and 33 left sides) were studied for variation in origin and distribution of obturator nerve. From which 88.1% arises from L2, L3 and L4 and; 11.9% from L3 and L4 spinal nerves. In 23.9%, 44.8% and 31.3% of specimens the bifurcation levels of obturator nerve were determined to be intrapelvic, within the obturator canal and extrapelvic, respectively. The anterior branch subdivided into two, three and four subdivisions in 9%, 65.7% and 25.4% of the specimens, respectively, while the posterior branch provided two subdivisions in 65.7% and three subdivisions in 34.3% of the specimens. Hip articular branch arose from common obturator nerve in 67.2% to provide sensory innervation to the hip joint.
    [Show full text]
  • The Lumbosacral Plexus: Anatomic Considerations for Minimally Invasive Retroperitoneal Transpsoas Approach
    Surg Radiol Anat (2012) 34:151–157 DOI 10.1007/s00276-011-0881-z ORIGINAL ARTICLE The lumbosacral plexus: anatomic considerations for minimally invasive retroperitoneal transpsoas approach Patrick Gue´rin • Ibrahim Obeid • Anouar Bourghli • Thibault Masquefa • Ste´phane Luc • Olivier Gille • Vincent Pointillart • Jean-Marc Vital Received: 2 May 2011 / Accepted: 21 September 2011 / Published online: 5 October 2011 Ó Springer-Verlag 2011 Abstract plexus was performed. All nerve branches and sympathetic Purpose The minimally invasive transpsoas approach can chain were identified. Intervertebral disc space from L1L2 be employed to treat various spinal disorders, such as disc to L4L5 was divided into four zones. Zone 1 being the degeneration, deformity, and lateral disc herniation. With anterior quarter of the disc, zone 2 being the middle this technique, visualization is limited in comparison with anterior quarter, zone 3 the posterior middle quarter and the open procedure and the proximity of the lumbar plexus zone 4 the posterior quarter. Crossing of each nervous to the surgical pathway is one limitation of this technique. branch with the disc was reported and a safe working zone Precise knowledge of the regional anatomy of the lumbar was determined for L1L2 to L4L5 disc levels. A safe plexus is required for safe passage through the psoas working zone was defined by the absence of crossing of a muscle. The primary objective of this study was to deter- lumbar plexus branch. mine the anatomic position of the lumbar plexus branches Results No anatomical variation was found during blunt and sympathetic chain in relation to the intervertebral disc dissection.
    [Show full text]