Downloaded from NCBI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus. -
25 Chrysosporium
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM 25 Chrysosporium Dongyou Liu and R.R.M. Paterson contents 25.1 Introduction ..................................................................................................................................................................... 197 25.1.1 Classification and Morphology ............................................................................................................................ 197 25.1.2 Clinical Features .................................................................................................................................................. 198 25.1.3 Diagnosis ............................................................................................................................................................. 199 25.2 Methods ........................................................................................................................................................................... 199 25.2.1 Sample Preparation .............................................................................................................................................. 199 25.2.2 Detection Procedures ........................................................................................................................................... 199 25.3 Conclusion .......................................................................................................................................................................200 -
25 Chrysosporium
25 Chrysosporium Dongyou Liu and R.R.M. Paterson contents 25.1 Introduction ..................................................................................................................................................................... 197 25.1.1 Classification and Morphology ............................................................................................................................ 197 25.1.2 Clinical Features .................................................................................................................................................. 198 25.1.3 Diagnosis ............................................................................................................................................................. 199 25.2 Methods ........................................................................................................................................................................... 199 25.2.1 Sample Preparation .............................................................................................................................................. 199 25.2.2 Detection Procedures ........................................................................................................................................... 199 25.3 Conclusion .......................................................................................................................................................................200 References .................................................................................................................................................................................200 -
Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis
Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Desjardins, Christopher A. et al. “Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis.” Ed. Paul M. Richardson. PLoS Genetics 7.10 (2011): e1002345. Web. 10 Feb. 2012. As Published http://dx.doi.org/10.1371/journal.pgen.1002345 Publisher Public Library of Science Version Final published version Citable link http://hdl.handle.net/1721.1/69082 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/2.5/ Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis Christopher A. Desjardins1, Mia D. Champion1¤a, Jason W. Holder1,2, Anna Muszewska3, Jonathan Goldberg1, Alexandre M. Baila˜o4, Marcelo Macedo Brigido5,Ma´rcia Eliana da Silva Ferreira6, Ana Maria Garcia7, Marcin Grynberg3, Sharvari Gujja1, David I. Heiman1, Matthew R. Henn1, Chinnappa D. Kodira1¤b, Henry Leo´ n-Narva´ez8, Larissa V. G. Longo9, Li-Jun Ma1¤c, Iran Malavazi6¤d, Alisson L. Matsuo9, Flavia V. Morais9,10, Maristela Pereira4, Sabrina Rodrı´guez-Brito8, Sharadha Sakthikumar1, Silvia M. Salem-Izacc4, Sean M. Sykes1, Marcus Melo Teixeira5, Milene C. Vallejo9, Maria Emı´lia Machado Telles Walter11, Chandri Yandava1, Sarah Young1, Qiandong Zeng1, Jeremy Zucker1, Maria Sueli Felipe5, Gustavo H. Goldman6,12, Brian J. Haas1, Juan G. McEwen7,13, Gustavo Nino-Vega8, Rosana -
Identification and Characterization of Genes Found in Coccidioides Spp
bioRxiv preprint doi: https://doi.org/10.1101/413906; this version posted October 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Identification and characterization of genes found in Coccidioides spp. but not nonpathogenic Onygenales Theo N. Kirkland University of California San Diego School of Medicine Departments of Pathology and Medicine [email protected] Abstract Coccidioides spp. are dimorphic, pathogenic fungi that can cause severe human and animal disease. Like the other primary fungal pathogens, infections of animals results in a morphologic transformation to a tissue phase, which in this case is known as a spherule. The sequencing and annotation of Coccidioides spp. and the genomes of several nonpathogenic Onygenales species allows comparisons that might provide clues about the Coccidioides spp. genes that might be involved in pathogenesis. This analysis is a gene by gene orthology comparison. Although there were few differences in the size of genes families in the Coccidioides spp.-specific group compared to the genes shared by Coccidioides spp. and nonpathogenic Onygenales, there were a number of differences in the characterization of the two types of genes. Many more Coccidioides spp.-specific genes are up-regulated expression in spherules. Coccidioides spp.- specific genes more often lacked functional annotation, were more often classified as orphan genes and had SNPs with stop codons or higher non-synonymous/ synonymous ratios. Review of individual genes in the Coccidioides spp.-specific group identified two genes in the Velvet family, a histidine kinase, two thioredoxin genes, a calmodulin gene and ureidoglycolate hydrolase. -
Comparative Genomic Analyses of the Human Fungal Pathogens Coccidioides and Their Relatives
Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives Thomas J. Sharpton,1,11 Jason E. Stajich,1 Steven D. Rounsley,2 Malcolm J. Gardner,3 Jennifer R. Wortman,4 Vinita S. Jordar,5 Rama Maiti,5 Chinnappa D. Kodira,6 Daniel E. Neafsey,6 Qiandong Zeng,6 Chiung-Yu Hung,7 Cody McMahan,7 Anna Muszewska,8 Marcin Grynberg,8 M. Alejandra Mandel,2 Ellen M. Kellner,2 Bridget M. Barker,2 John N. Galgiani,9 Marc J. Orbach,2 Theo N. Kirkland,10 Garry T. Cole,7 Matthew R. Henn,6 Bruce W. Birren,6 and John W. Taylor1 1Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA; 2Department of Plant Sciences, The University of Arizona, Tucson Arizona 85721, USA; 3Department of Global Health, Seattle Biomedical Research Institute, Seattle, Washington 98109-5219, USA; 4Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; 5J. Craig Venter Institute, Rockville, Maryland 20850, USA; 6Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; 7Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, USA; 8Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland; 9Valley Fever Center for Excellence, The University of Arizona, Tuscon, Arizona 85721, USA ; 10Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA While most Ascomycetes tend to associate principally with plants, the dimorphic fungi Coccidioides immitis and Coccidioides posadasii are primary pathogens of immunocompetent mammals, including humans. -
Genetics, Evolutionary Biology, Environment Endemic and Other
10/2/2018 Endemic and Other Mycoses : Genetics, Evolutionary Biology, Environment John Taylor UC Berkeley [email protected] Endemic and Other Mycoses : Genetics, Evolutionary Biology, Environment John Taylor, Rachel Adams, Cheng Gao, Bridget Barker UC Berkeley, Northern Arizona University, TGen 1 10/2/2018 Where are the agents of endemic mycoses? Basidiomycota - Cryptococcus Ascomycota – Taphrinomycotina - Pneumocystis Ascomycota – Saccharomycotina - Candida Ascomycota – Pezizomycota – Eurotiomycetes Eurotiales - Aspergillus Ascomycota – Pezizomycota – Eurotiomycetes Onygenales – Endemic Mycoses Where are the agents of endemic mycoses? Basidiomycota - Cryptococcus Ascomycota – Taphrinomycotina - Pneumocystis Ascomycota – Saccharomycotina - Candida Ascomycota – Pezizomycota – Eurotiomycetes Eurotiales - Aspergillus Ascomycota – Pezizomycota – Eurotiomycetes Onygenales – Endemic Mycoses 2 10/2/2018 Muñoz et al. 2018. Scientific Reports Coccidioides DOI:10.1038/s41598-018-22816-6 Histoplasma Onygenales Blastomyces Paracoccidioides Coccidioides Aspergillus Muñoz et al. 2018. Scientific Reports Coccidioides DOI:10.1038/s41598-018-22816-6 Histoplasma Onygenales Blastomyces Paracoccidioides Coccidioides Aspergillus 3 10/2/2018 Muñoz et al. 2018. Scientific Reports Coccidioides DOI:10.1038/s41598-018-22816-6 Histoplasma Onygenales Blastomyces Paracoccidioides Coccidioides Aspergillus What is coccidioidomycosis? Healthy Infected www.emedicine.com 4 10/2/2018 What is coccidioidomycosis and why should we care? Distribution of Coccidioides species -
Valley Fever on the Rise—Searching for Microbial Antagonists to the Fungal Pathogen Coccidioides Immitis
microorganisms Article Valley Fever on the Rise—Searching for Microbial Antagonists to the Fungal Pathogen Coccidioides immitis Antje Lauer 1,*, Joe Darryl Baal 1 , Susan D. Mendes 1, Kayla Nicole Casimiro 1, Alyce Kayes Passaglia 1, Alex Humberto Valenzuela 1 and Gerry Guibert 2 1 Department of Biology, California State University Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311-1022, USA; [email protected] (J.D.B.); [email protected] (S.D.M.); [email protected] (K.N.C.); [email protected] (A.K.P.); [email protected] (A.H.V.) 2 Monterey County Health Department, 1270 Natividad, Salinas, CA 93906, USA; [email protected] * Correspondence: [email protected]; Tel.: +01-661-654-2603 Received: 26 November 2018; Accepted: 18 January 2019; Published: 24 January 2019 Abstract: The incidence of coccidioidomycosis, also known as Valley Fever, is increasing in the Southwestern United States and Mexico. Despite considerable efforts, a vaccine to protect humans from this disease is not forthcoming. The aim of this project was to isolate and phylogenetically compare bacterial species that could serve as biocontrol candidates to suppress the growth of Coccidioides immitis, the causative agent of coccidioidomycosis, in eroded soils or in areas close to human settlements that are being developed. Soil erosion in Coccidioides endemic areas is leading to substantial emissions of fugitive dust that can contain arthroconidia of the pathogen and thus it is becoming a health hazard. Natural microbial antagonists to C. immitis, that are adapted to arid desert soils could be used for biocontrol attempts to suppress the growth of the pathogen in situ to reduce the risk for humans and animals of contracting coccidioidomycosis. -
Evidence for a Phylogenetic Connection Between Coccidioides Immitis and Uncinocarpus Reesii (Onygenaceae)
Microbiology (1994), 140, 1481-1494 Printed in Great Britain Evidence for a phylogenetic connection between Coccidioides immitis and Uncinocarpus reesii (Onygenaceae) Shuchong Pan,’ Lynne Sigler2and Garry T. Cole’ Author for correspondence: Garry T. Cole. Tel: + 1 512 471 4866. Fax: + 1 512 471 3878. e-mail: gtcole(a1 utxvms.cc.utexas.edu 1 Department of Botany, Coccidioides immitis is an anomaly amongst the human systemic fungal University of Texas, Austin, pathogens. Its unique parasitic cycle has contributed to confusion over its Texas 78713-7640, USA taxonomy. Early investigators mistakenly suggested that the pathogen is a 2 University of Alberta protist, while others agreed it to be a fungus but placed it in four different Microfungus Collection and Herbarium, Devonian divisions of the Eumycota. The taxonomy of C. immitis is still unresolved. Botanic Garden, Ultrastructural examinations of its parasitic and saprobic phases have revealed Edmonton, Alberta, features that are diagnostic of the ascomycetous fungi. Moreover, striking Canada T6G 2El similarities between the kind of asexual reproduction (i.e. arthroconidium formation) of this pathogen and certain anamorphic and teleomorphic members of the genus Malbranchea have suggested a close relationship. Teleomorphs of these Malbranchea species are members of the Onygenaceae (Order, Onygenales). This family also includes teleomorphs of two human respiratory pathogens, Histoplasma capsulatum and Blastomyces dermatitidis. Although the 185 rRNA gene sequences (1713 bp) of these two pathogenic forms differ from that of C. immitis by only 35 and 33 substitutions, respectively, their mode of conidiogenesis is characterized by production of solitary aleurioconidia rather than alternate arthroconidia. In this study we have used characters derived from biochemical, immunological and molecular analyses to compare relatedness between C. -
Metagenome Sequence of Elaphomyces Granulatus From
bs_bs_banner Environmental Microbiology (2015) 17(8), 2952–2968 doi:10.1111/1462-2920.12840 Metagenome sequence of Elaphomyces granulatus from sporocarp tissue reveals Ascomycota ectomycorrhizal fingerprints of genome expansion and a Proteobacteria-rich microbiome C. Alisha Quandt,1*† Annegret Kohler,2 the sequencing of sporocarp tissue, this study has Cedar N. Hesse,3 Thomas J. Sharpton,4,5 provided insights into Elaphomyces phylogenetics, Francis Martin2 and Joseph W. Spatafora1 genomics, metagenomics and the evolution of the Departments of 1Botany and Plant Pathology, ectomycorrhizal association. 4Microbiology and 5Statistics, Oregon State University, Corvallis, OR 97331, USA. Introduction 2Institut National de la Recherché Agronomique, Centre Elaphomyces Nees (Elaphomycetaceae, Eurotiales) is an de Nancy, Champenoux, France. ectomycorrhizal genus of fungi with broad host associa- 3Bioscience Division, Los Alamos National Laboratory, tions that include both angiosperms and gymnosperms Los Alamos, NM, USA. (Trappe, 1979). As the only family to include mycorrhizal taxa within class Eurotiomycetes, Elaphomycetaceae Summary represents one of the few independent origins of the mycorrhizal symbiosis in Ascomycota (Tedersoo et al., Many obligate symbiotic fungi are difficult to maintain 2010). Other ectomycorrhizal Ascomycota include several in culture, and there is a growing need for alternative genera within Pezizomycetes (e.g. Tuber, Otidea, etc.) approaches to obtaining tissue and subsequent and Cenococcum in Dothideomycetes (Tedersoo et al., genomic assemblies from such species. In this 2006; 2010). The only other genome sequence pub- study, the genome of Elaphomyces granulatus was lished from an ectomycorrhizal ascomycete is Tuber sequenced from sporocarp tissue. The genome melanosporum (Pezizales, Pezizomycetes), the black assembly remains on many contigs, but gene space perigord truffle (Martin et al., 2010). -
Genome Analysis Reveals Evolutionary Mechanisms of Adaptation In
www.nature.com/scientificreports OPEN Genome analysis reveals evolutionary mechanisms of adaptation in systemic dimorphic Received: 16 October 2017 Accepted: 1 March 2018 fungi Published: xx xx xxxx José F. Muñoz 1, Juan G. McEwen2,3, Oliver K. Clay3,4 & Christina A. Cuomo 1 Dimorphic fungal pathogens cause a signifcant human disease burden and unlike most fungal pathogens afect immunocompetent hosts. To examine the origin of virulence of these fungal pathogens, we compared genomes of classic systemic, opportunistic, and non-pathogenic species, including Emmonsia and two basal branching, non-pathogenic species in the Ajellomycetaceae, Helicocarpus griseus and Polytolypa hystricis. We found that gene families related to plant degradation, secondary metabolites synthesis, and amino acid and lipid metabolism are retained in H. griseus and P. hystricis. While genes involved in the virulence of dimorphic pathogenic fungi are conserved in saprophytes, changes in the copy number of proteases, kinases and transcription factors in systemic dimorphic relative to non-dimorphic species may have aided the evolution of specialized gene regulatory programs to rapidly adapt to higher temperatures and new nutritional environments. Notably, both of the basal branching, non-pathogenic species appear homothallic, with both mating type locus idiomorphs fused at a single locus, whereas all related pathogenic species are heterothallic. These diferences revealed that independent changes in nutrient acquisition capacity have occurred in the Onygenaceae and Ajellomycetaceae, and underlie how the dimorphic pathogens have adapted to the human host and decreased their capacity for growth in environmental niches. Among millions of ubiquitous fungal species that pose no threat to humans, a small number of species cause dev- astating diseases in immunocompetent individuals. -
Comparative Phylogenomics of Pathogenic and Nonpathogenic Species
INVESTIGATION Comparative Phylogenomics of Pathogenic and Nonpathogenic Species Emily Whiston1 and John W. Taylor Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 ORCID IDs: 0000-0001-7054-9371 (E.W.); 0000-0002-5794-7700 (J.W.T.) ABSTRACT The Ascomycete Onygenales order embraces a diverse group of mammalian pathogens, KEYWORDS including the yeast-forming dimorphic fungal pathogens Histoplasma capsulatum, Paracoccidioides spp. fungal evolution and Blastomyces dermatitidis, the dermatophytes Microsporum spp. and Trichopyton spp., the spherule- genomics forming dimorphic fungal pathogens in the genus Coccidioides, and many nonpathogens. Although coccidioides genomes for all of the aforementioned pathogenic species are available, only one nonpathogen had been onygenales sequenced. Here, we enhance comparative phylogenomics in Onygenales by adding genomes for Amaur- phylogenetics oascus mutatus, Amauroascus niger, Byssoonygena ceratinophila, and Chrysosporium queenslandicum— four nonpathogenic Onygenales species, all of which are more closely related to Coccidioides spp. than any other known Onygenales species. Phylogenomic detection of gene family expansion and contraction can provide clues to fungal function but is sensitive to taxon sampling. By adding additional nonpathogens, we show that LysM domain-containing proteins, previously thought to be expanding in some Onygenales, are contracting in the Coccidioides-Uncinocarpus clade, as are the self-nonself recognition Het loci. The denser genome sampling presented here highlights nearly 800 genes unique to Coccidiodes, which have signif- icantly fewer known protein domains and show increased expression in the endosporulating spherule, the parasitic phase unique to Coccidioides spp. These genomes provide insight to gene family expansion/ contraction and patterns of individual gene gain/loss in this diverse order—both major drivers of evolution- ary change.