Investigations Towards the Design, Synthesis and Application of New Sulfur-Based Transfer Reagents
Total Page:16
File Type:pdf, Size:1020Kb
Investigations towards the design, synthesis and application of new sulfur-based transfer reagents Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen im Promotionsprogramm der Georg-August University School of Science (GAUSS) vorgelegt von Bernd Waldecker aus Emden Göttingen, 2019 Betreuungsausschuss: Prof. Dr. M. Alcarazo (Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077 Göttingen) Prof. Dr. L. Ackermann (Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077 Göttingen) Mitglieder der Prüfungskommission: Referent: Prof. Dr. M. Alcarazo (Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077 Göttingen) Korreferent: Prof. Dr. L. Ackermann (Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077 Göttingen) Weitere Mitglieder der Prüfungskommission: Prof. Dr. D. Stalke (Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen) Dr. S. Das (Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077 Göttingen) Dr. F. Thomas (Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077 Göttingen) Dr. M. Hansmann (Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077 Göttingen) Tag der mündlichen Prüfung: 02.05.2019 Die vorliegende Arbeit entstand unter Anleitung von Herrn. Prof. Dr. Manuel Alcarazo in der Zeit von Juli 2015 bis Dezember 2015 am Max‐Planck‐Institut für Kohlenforschung in Mülheim an der Ruhr und in der Zeit von Januar 2016 bis Dezember 2018 an der Georg- August-Universität zu Göttingen. Teile dieser Arbeit wurden bereits veröffentlicht: J. Peña, G. Talavera, B. Waldecker, M. Alcarazo, Chem. Eur. J. 2017, 23, 75-78. B. Waldecker, F. Kraft, C. Golz, M. Alcarazo, Angew. Chem. Int. Ed. 2018, 57, 12538-12542. Ein Patent zu den in der Arbeit synthetisierten Verbindungen und zu deren synthetischer Anwendbarkeit wurde von der Universität Göttingen eingereicht (DE102018211606.7). Hiermit versichere ich, dass ich die eingereichte Dissertation selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie Zitate kenntlich gemacht habe. ………………………………… Bernd Waldecker Abbreviation Å Ångstrom (10-10m) ESI-MS Electrospray Ionisation Mass Spectrometry ACM Alkyne cross metathesis et al. et alia ADIMET Acyclic diyne metathesis EtOAc Ethyl acetate polymerization Ar generic arene EtOH Ethanol Bn Benzyl 18F Fluorine-18 Boc tert-Butyloxycarbonyl protecting group g gram BuLi Butyllithium GC-MS Gas Chromotography Mass Spectrometry Bz Benzoyl HRMS High Resolution Mass Spectrometry cald. calculated hʋ Light irradiation cat. catalytic IR Infrared spectroscopy Cbz Carboxybenzyl iPr iso-propyl CF3 Trifluoromethyl group J Joule CoA Coenzyme A J Coupling constant CPPA Cycloparaphenyleneacetylene K Kelvin CuAAC Copper-catalyzed azide-alkyne KAPA Potassium 3-aminopropylamide cycloaddition DBCO dibenzylcyclooctyne KB cell Subline of tumor cell line HeLa DBU 1,8-Diazabicyclo(5.4.0)undec-7-ene L Ligand DCE 1,2-Dichloroethane LDA Lithium diisopropylamide DCM Dichloromethane m meta DDQ 2,3-Dichlor-5,6-dicyano-1,4- M Metal benzochinon DIPEA N,N-Diisopropylethylamine M Molar (Mold m-3) DMAP 4-Dimethylaminopyridine mCPBA meta-Chloroperoxybenzoic acid DMF N,N-dimethylformamide MeCN Acetonitrile DMP Dess–Martin periodinane MOF Metal−organic framework DNA Deoxyribonucleic acid MS Molecular sieves EBX EthynylBenziodoXolone NEt3 Triethylamine ECHC 4-epoxycyclohexenylmethyl-3,4- NMR Nuclear Magnetic Resonance epoxycyclo-hexenyl carboxylate EI Electron Ionisation Nu Nucleophile equiv. equivalents o ortho I p para X Generic heteroatom P388 Leukaemia cell line X-ray X-ray crystallography cells PBS Phosphate-buffered saline Y Generic substituent buffer PET Positron emission tomography Z Generic heteroatom Ph Phenyl δ Chemical shift PMB 4-Methoxybenzyl λ wavelength ppm parts per million PPTS Pyridinium p-toluenesulfonate Pr Propyl q quartet (NMR) quant. quantitative R Generic substituent RCAM Ring-Closing Alkene Metathesis RNA Ribonucleic acid ROM ring opening metathesis rt Room temperature RuAAC ruthenium-catalyzed azide-alkyne cycloaddition s singlet (NMR) SAM S-(Adenosylmethionin) T Temperature t Time TAMRA Tetramethylrhodamine TBAX Tetra-n-butylammonium salt TES Triethylsilyl tBu tert-butyl TBS tert-Butyldimethylsilyl ether Tf Trifluoromethanesulfonyl THF Tetrahydrofurane TIPS Triisopropyl TMS Trimethylsily II Table of Contents 1 General Part ..................................................................................................................................... 1 1.1 Introduction ............................................................................................................................. 1 1.2 The alkyne group ..................................................................................................................... 2 1.2.1 General properties of alkynes .......................................................................................... 2 1.2.2 Synthesis of alkynes in a laboratory scale ....................................................................... 3 1.2.2.1 Synthesis of alkynes by elimination ............................................................................ 3 1.2.2.2 The Corey-Fuchs reaction ........................................................................................... 4 1.2.2.3 The Seyferth-Gilbert homologation ............................................................................ 8 1.2.3 Reactivity of alkynes ..................................................................................................... 12 1.2.3.1 Azide-alkyne cycloaddition ("click chemistry") ........................................................ 14 1.2.3.2 [2+2+2] Cyclization .................................................................................................. 18 1.2.3.3 Alkyne metathesis ..................................................................................................... 21 1.2.3.4 Alkyne zipper reaction .............................................................................................. 25 1.2.4 Incorporation of alkyne moieties into organic molecules.............................................. 27 1.2.4.1 Nucleophilic substitution with acetylides .................................................................. 27 1.2.4.2 The Sonogashira reaction .......................................................................................... 29 1.2.4.3 Electrophilic umpolung ............................................................................................. 32 1.2.4.3.1 Halogen compounds ............................................................................................ 32 1.2.4.3.2 Hypervalent iodine λ3 compounds ....................................................................... 33 1.3 Chalcogen salts as transfer reagents ...................................................................................... 39 1.3.1 Umemoto reagent .......................................................................................................... 40 1.3.2 Thioimidazolium salts ................................................................................................... 43 2 Design of the project ..................................................................................................................... 44 2.1 State of research .................................................................................................................... 44 2.1.1 Alkyne-transferring reagents formerly developed in the Alcarazo group ..................... 44 2.1.2 Alkyne-based cationic polymerization initiators developed by Liska et al. .................. 46 2.2 Project aims ........................................................................................................................... 47 3 Results and discussion ................................................................................................................... 49 III 3.1 Further development of the newly discovered thioalkynylation reaction ............................. 49 3.1.1 Synthesis of new thioimidazolium-based alkynylation reagents ................................... 49 3.1.2 Scope and limitations of the transfer reaction ............................................................... 50 3.1.3 Further derivatization of the synthesized sulfides ......................................................... 52 3.2 The diphenylsulfonium-based reagent .................................................................................. 53 3.2.1 Synthesis of the diphenylsulfonium reagent .................................................................. 53 3.2.2 Scope and limitations of the transfer reaction ............................................................... 53 3.3 Searching for new dibenzothiophene-based reagents ............................................................ 55 3.3.1 Synthesis of the dibenzothiophene-based reagents ....................................................... 55 3.3.2 Expanding the scope towards different dibenzothiophenium salts ................................ 56 3.3.3 Optimization of the reaction conditions ........................................................................ 60 3.3.4 Scope and limitations of the transfer reaction ............................................................... 62 3.3.5 Comparison of the new reagents with TIPS-EBX ........................................................