Methotrexate Cross-Resistance in a Mitoxantrone-Selected Multidrug-Resistant MCF7 Breast Cancer Cell Line Is Attributable to Enhanced Energy-Dependent Drug Efflux1
[CANCER RESEARCH 60, 3514–3521, July 1, 2000] Methotrexate Cross-Resistance in a Mitoxantrone-selected Multidrug-resistant MCF7 Breast Cancer Cell Line Is Attributable to Enhanced Energy-dependent Drug Efflux1 Erin L. Volk, Kristin Rohde, Myung Rhee, John J. McGuire, L. Austin Doyle, Douglas D. Ross, and Erasmus Schneider2 Wadsworth Center, New York State Department of Health, Albany, New York 12201 [E. L. V., K. R., M. R., E. S.]; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12201 [E. L. V., E. S.]; Grace Cancer Drug Center, Roswell Park Cancer Institute, Buffalo, New York 14263 [J. J. M.]; Greenbaum Cancer Center of the University of Maryland, Baltimore, Maryland 21201 [L. A. D., D. D. R.]; Department of Medicine, Division of Hematology/Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 [L. A. D., D. D. R.]; and Baltimore Veterans Medical Center, Department of Veterans Affairs, Baltimore, Maryland 21201 [D. D. R.] ABSTRACT resistance has been shown to be caused by decreased uptake attribut- able to the absence (2) of or defects (5, 6) in RFC1, reduced poly- Cellular resistance to the antifolate methotrexate (MTX) is often caused glutamylation either through decreased FPGS activity and/or expres- by target amplification, uptake defects, or alterations in polyglutamyla- sion (7), or enhanced ␥-GH activity and/or expression (8), and DHFR tion. Here we have examined MTX cross-resistance in a human breast carcinoma cell line (MCF7/MX) selected in the presence of mitoxantrone, overexpression (9) or mutation (10–12). an anticancer agent associated with the multidrug resistance (MDR) In contrast, a putative role for drug efflux in MTX resistance, phenotype.
[Show full text]