Trisenox, INN-Arsenic Trioxide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Systematic Review of the Effectiveness of Docetaxel and Mitoxantrone for the Treatment of Metastatic Hormone-Refractory Prostate Cancer
British Journal of Cancer (2006) 95, 457 – 462 & 2006 Cancer Research UK All rights reserved 0007 – 0920/06 $30.00 www.bjcancer.com A systematic review of the effectiveness of docetaxel and mitoxantrone for the treatment of metastatic hormone-refractory prostate cancer *,1 1 1 1 2 3 4 5 R Collins , R Trowman , G Norman , K Light , A Birtle , E Fenwick , S Palmer and R Riemsma 1 2 Centre for Reviews and Dissemination, University of York, Heslington, York YO10 5DD, UK; Rosemere Cancer Centre, Royal Preston Hospital, Sharoe 3 Green Lane North, Fulwood, Preston PR2 9HT, UK; Public Health & Health Policy, Division of Community Based Sciences, University of Glasgow, 4 5 1 Lilybank Gardens, Glasgow G12 8RZ, UK; Centre for Health Economics, University of York, Heslington, York YO10 5DD, UK; Kleijnen Systematic Reviews Ltd, Westminster Business Centre, 10 Great North Way, Nether Poppleton, York YO26 6RB, UK Clinical Studies A systematic review was performed to evaluate the clinical effectiveness of docetaxel in combination with prednisolone (docetaxel is licensed in the UK for use in combination with prednisone or prednisolone for the treatment of patients with metastatic hormone- refractory prostate cancer. Prednisone is not used in the UK, but it is reasonable to use docetaxel plus prednisone data in this review of docetaxel plus prednisolone) for the treatment of metastatic hormone-refractory prostate cancer. A scoping search identified a trial of docetaxel plus prednisone vs mitoxantrone plus prednisone, but did not identify any trials comparing docetaxel plus prednisolone/prednisone with any other treatments. Therefore, we considered additional indirect evidence that would enable a comparison of docetaxel plus prednisolone/prednisone with other chemotherapy regimens and active supportive care. -
Mitomycin C: Indications for Use and Safe Practice in Ophthalmology Published by American Society of Ophthalmic Registered Nurses
Mitomycin C: Indications for Use and Safe Practice in Ophthalmology Published by American Society of Ophthalmic Registered Nurses Editor Susan Clouser, RN, MSN, CRNO American Society of Ophthalmic Registered Nurses 655 Beach Street, San Francisco, CA 94109 1 This publication includes independent authors’ guidelines for the safe use and handling of mitomycin C in ophthalmic practices. Readers should use these guidelines as a resource only. These guidelines should never take precedence over manufacturers’ recommended practices, facilities policies and procedures, or compliance with federal regulations. Information in this publication may assist facilities in developing policies and procedures specifc to their needs and practice environment. American Society of Ophthalmic Registered Nurses For questions regarding content or association issues contact ASORN at [email protected] or 1.415.561.8513. Copyright © 2011 by American Society of Ophthalmic Registered Nurses American Society of Ophthalmic Registered Nurses has the exclusive rights to reproduce this work, to prepare derivative works from this work, to publicly distribute this work, to publicly perform this work and to publicly display this work. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of American Society of Ophthalmic Registered Nurses. Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 ACKNOWLEDGMENTS The development of this educational resource would not have been possible without the knowledge and expertise of the ophthalmologists and ophthalmic registered nurses who wrote the content and the subsequent reviewers who provided valuable input. -
NOVANTRONE (Mitoxantrone for Injection Concentrate) in Patients with Hepatic Insufficiency Is Not Established (See CLINICAL PHARMACOLOGY)
NOVANTRONE® mitoXANTRONE for injection concentrate WARNING NOVANTRONE® (mitoxantrone for injection concentrate) should be administered under the supervision of a physician experienced in the use of cytotoxic chemotherapy agents. NOVANTRONE® should be given slowly into a freely flowing intravenous infusion. It must never be given subcutaneously, intramuscularly, or intra-arterially. Severe local tissue damage may occur if there is extravasation during administration. (See ADVERSE REACTIONS, General, Cutaneous and DOSAGE AND ADMINISTRATION, Preparation and Administration Precautions). NOT FOR INTRATHECAL USE. Severe injury with permanent sequelae can result from intrathecal administration. (See WARNINGS, General) Except for the treatment of acute nonlymphocytic leukemia, NOVANTRONE® therapy generally should not be given to patients with baseline neutrophil counts of less than 1,500 cells/mm3. In order to monitor the occurrence of bone marrow suppression, primarily neutropenia, which may be severe and result in infection, it is recommended that frequent peripheral blood cell counts be performed on all patients receiving NOVANTRONE®. Cardiotoxicity: Congestive heart failure (CHF), potentially fatal, may occur either during therapy with NOVANTRONE® or months to years after termination of therapy. Cardiotoxicity risk increases with cumulative NOVANTRONE dose and may occur whether or not cardiac risk factors are present. Presence or history of cardiovascular disease, radiotherapy to the mediastinal/pericardial area, previous therapy with other anthracyclines or anthracenediones, or use of other cardiotoxic drugs may increase this risk. In cancer patients, the risk of symptomatic CHF was estimated to be 2.6% for patients receiving up to a cumulative dose of 140 mg/m2. To mitigate the cardiotoxicity risk with NOVANTRONE, prescribers should consider the following: NOVANTRONE mitoXANTRONE for injection 1 All Patients: - All patients should be assessed for cardiac signs and symptoms by history, physical examination, and ECG prior to start of NOVANTRONE® therapy. -
Arsenic Summary & Details: Greenfacts
http://www.greenfacts.org/ Copyright © GreenFacts page 1/9 Scientific Facts on Source document: IPCS (2001) Arsenic Summary & Details: GreenFacts Level 2 - Details on Arsenic 1. What is arsenic?.............................................................................................................3 1.1 What are the properties of arsenic?...................................................................................3 1.2 How are arsenic levels measured?.....................................................................................3 2. Where does environmental arsenic come from?....................................................3 2.1 What are the natural sources of environmental arsenic?.......................................................3 2.2 What are the man-made sources of environmental arsenic?..................................................4 2.3 How is arsenic transported and distributed in the environment?............................................4 3. What are the levels of exposure to arsenic?...........................................................4 3.1 How much arsenic is there in the environment?..................................................................4 3.2 What levels of arsenic are found in living organisms?...........................................................5 3.3 What levels of arsenic are humans exposed to?..................................................................5 4. What happens to arsenic in the body?......................................................................6 4.1 -
Arsenic Trioxide Is Highly Cytotoxic to Small Cell Lung Carcinoma Cells
160 Arsenic trioxide is highly cytotoxic to small cell lung carcinoma cells 1 1 Helen M. Pettersson, Alexander Pietras, effect of As2O3 on SCLC growth, as suggested by an Matilda Munksgaard Persson,1 Jenny Karlsson,1 increase in neuroendocrine markers in cultured cells. [Mol Leif Johansson,2 Maria C. Shoshan,3 Cancer Ther 2009;8(1):160–70] and Sven Pa˚hlman1 1Center for Molecular Pathology, CREATE Health and 2Division of Introduction Pathology, Department of Laboratory Medicine, Lund University, 3 Lung cancer is the most frequent cause of cancer deaths University Hospital MAS, Malmo¨, Sweden; and Department of f Oncology-Pathology, Cancer Center Karolinska, Karolinska worldwide and results in 1 million deaths each year (1). Institute and Hospital, Stockholm, Sweden Despite novel treatment strategies, the 5-year survival rate of lung cancer patients is only f15%. Small cell lung carcinoma (SCLC) accounts for 15% to 20% of all lung Abstract cancers diagnosed and is a very aggressive malignancy Small cell lung carcinoma (SCLC) is an extremely with early metastatic spread (2). Despite an initially high aggressive form of cancer and current treatment protocols rate of response to chemotherapy, which currently com- are insufficient. SCLC have neuroendocrine characteristics bines a platinum-based drug with another cytotoxic drug and show phenotypical similarities to the childhood tumor (3, 4), relapses occur in the absolute majority of SCLC neuroblastoma. As multidrug-resistant neuroblastoma patients. At relapse, the efficacy of further chemotherapy is cells are highly sensitive to arsenic trioxide (As2O3) poor and the need for alternative treatments is obvious. in vitro and in vivo, we here studied the cytotoxic effects Arsenic-containing compounds have been used in tradi- of As2O3 on SCLC cells. -
How to Manage Acute Promyelocytic Leukemia
Leukemia (2012) 26, 1743 -- 1751 & 2012 Macmillan Publishers Limited All rights reserved 0887-6924/12 www.nature.com/leu HOW TO MANAGEy How to manage acute promyelocytic leukemia J-Q Mi, J-M Li, Z-X Shen, S-J Chen and Z Chen Acute promyelocytic leukemia (APL) is a unique subtype of acute myeloid leukemia (AML). The prognosis of APL is changing, from the worst among AML as it used to be, to currently the best. The application of all-trans-retinoic acid (ATRA) to the induction therapy of APL decreases the mortality of newly diagnosed patients, thereby significantly improving the response rate. Therefore, ATRA combined with anthracycline-based chemotherapy has been widely accepted and used as a classic treatment. It has been demonstrated that high doses of cytarabine have a good effect on the prevention of relapse for high-risk patients. However, as the indications of arsenic trioxide (ATO) for APL are being extended from the original relapse treatment to the first-line treatment of de novo APL, we find that the regimen of ATRA, combined with ATO, seems to be a new treatment option because of their targeting mechanisms, milder toxicities and improvements of long-term outcomes; this combination may become a potentially curable treatment modality for APL. We discuss the therapeutic strategies for APL, particularly the novel approaches to newly diagnosed patients and the handling of side effects of treatment and relapse treatment, so as to ensure each newly diagnosed patient of APL the most timely and best treatment. Leukemia (2012) 26, 1743--1751; doi:10.1038/leu.2012.57 Keywords: acute promyelocytic leukemia (APL); all-trans-retinoic acid (ATRA); arsenic trioxide (ATO) INTRODUCTION In this review, we introduce the therapeutic strategies of APL, Acute promyelocytic leukemia (APL) is a distinct subtype of acute including the treatment of newly diagnosed and relapsed myeloid leukemia (AML) characterized by its abnormal promye- patients, as well as the ways to deal with the side effects. -
Arsenic Trioxide
Arsenic trioxide DRUG NAME: Arsenic trioxide 1 SYNONYM(S): arsenic, As2O3, white arsenic COMMON TRADE NAME(S): TRISENOX® CLASSIFICATION: miscellaneous Special pediatric considerations are noted when applicable, otherwise adult provisions apply. MECHANISM OF ACTION: Arsenic is an element classed as a semi-metal or metalloid and it exists as chemically unstable oxides and sulfides as well as arsenites or arsenates of sodium, calcium, and potassium. Arsenic trioxide is an inorganic form of arsenic and is the most widely studied arsenical-based cancer drug.1 Although its mechanism is not completely understood, arsenic trioxide may have a multi-modal mechanism of action likely dependent on dose. At lower doses, arsenic trioxide promotes partial cellular differentiation, while at higher doses it leads to morphological changes and DNA fragmentation characteristic of apoptosis. Other key effects include damage or degradation of the fusion protein PML-RARα and inhibition of growth and angiogenesis. Arsenic trioxide also reduces procoagulant activity and tissue factor gene expression. It demonstrates antivasculogenic activity in tumour xenografts and enhances the sensitivity of neoplastic cell lines and tumour xenografts to radiation therapy.2 PHARMACOKINETICS: Absorption arsenious acid (primary pharmacologically active form) formed immediately by hydrolysis in solution Distribution rapid distribution to highly perfused organs; arsenic accumulates in liver, kidney, heart, and to a lesser extent in lung, hair, and nails; no evidence of distribution -
DRUG NAME: Thioguanine
Thioguanine DRUG NAME: Thioguanine SYNONYM(S): 2-amino-6-mercaptopurine,1 6-TG, TG COMMON TRADE NAME(S): LANVIS® CLASSIFICATION: antimetabolite, cytotoxic2 Special pediatric considerations are noted when applicable, otherwise adult provisions apply. MECHANISM OF ACTION: Thioguanine is a purine antagonist.1 It is a pro-drug that is converted intracellullarly directly to thioguanine monophosphate3 (also called 6-thioguanylic acid)4 (TGMP) by the enzyme hypoxanthine-guanine phosphoribosyl transferase (HGPRT). TGMP is further converted to the di- and triphosphates, thioguanosine diphosphate (TGDP) and thioguanosine triphosphate (TGTP).5 The cytotoxic effect of thioguanine is a result of the incorporation of these nucleotides into DNA. Thioguanine has some immunosuppressive activity.1 Thioguanine is specific for the S phase of the cell cycle.6 PHARMACOKINETICS: Oral Absorption • incomplete and variable (14-46%)7 • preferably taken on an empty stomach8; may be taken with food if needed • children9: <20% Distribution crosses the placenta10 cross blood brain barrier? negligible11 volume of distribution12 148 mL/kg plasma protein binding no information found Metabolism hepatic10 activation by4: • hypoxanthine-guanine phosphoribosyl transferase (HGPRT) elimination by4: • guanase to 6-thioxanthine • thiopurine methyltransferase (TPMT) to 2-amino-6-methyl thiopurine active metabolites3,4 thiopurine nucleotides inactive metabolites4 6-thioxanthine, 2-amino-6-methyl thiopurine Excretion renal excretion12; initially intact drug, then metabolites urine12 -
Arsenic Trioxide Targets MTHFD1 and SUMO-Dependent Nuclear De Novo Thymidylate Biosynthesis
Arsenic trioxide targets MTHFD1 and SUMO-dependent PNAS PLUS nuclear de novo thymidylate biosynthesis Elena Kamyninaa, Erica R. Lachenauera,b, Aislyn C. DiRisioa, Rebecca P. Liebenthala, Martha S. Fielda, and Patrick J. Stovera,b,c,1 aDivision of Nutritional Sciences, Cornell University, Ithaca, NY 14853; bGraduate Field of Biology and Biomedical Sciences, Cornell University, Ithaca, NY 14853; and cGraduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853 Contributed by Patrick J. Stover, February 12, 2017 (sent for review December 1, 2016; reviewed by I. David Goldman and Anne Parle-McDermott) Arsenic exposure increases risk for cancers and is teratogenic in levels. Decreased rates of de novo dTMP synthesis can be caused animal models. Here we demonstrate that small ubiquitin-like by the action of chemotherapeutic drugs (19), through inborn modifier (SUMO)- and folate-dependent nuclear de novo thymidylate errors of folate transport and metabolism (15, 18, 20, 21), by (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As2O3), inhibiting translocation of the dTMP synthesis pathway enzymes leading to uracil misincorporation into DNA and genome instability. into the nucleus (2) and by dietary folate deficiency (22, 23). Im- Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine paired dTMP synthesis leads to genome instability through well- hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahy- characterized mechanisms associated with uracil misincorporation drofolate for de novo dTMP biosynthesis and translocate to the nu- into nuclear DNA and subsequent futile cycles of DNA repair (24, cleus during S-phase, where they form a multienzyme complex with 25). Nuclear DNA is surveyed for the presence of uracil by a thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as family of uracil glycosylases including: uracil N-glycolase (UNG), well as the components of the DNA replication machinery. -
Severe Myelotoxicity Associated with Thiopurine S-Methyltransferase*3A
Case Report DOI: 10.4274/tjh.2013.0082 Severe Myelotoxicity Associated with Thiopurine S-Methyltransferase*3A/*3C Polymorphisms in a Patient with Pediatric Leukemia and the Effect of Steroid Therapy Pediatrik Bir Lösemi Olgusunda Tiyopurin S-Metiltransferaz *3A/*3C Polimorfizmi ile İlişkili Ağır Miyelotoksisite-Steroid Tedavisinin Etkisi Burcu Fatma Belen1, Türkiz Gürsel1, Nalan Akyürek2, Meryem Albayrak3, Zühre Kaya1, Ülker Koçak1 1Gazi University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey 2Gazi University Faculty of Medicine, Department of Pathology, Ankara, Turkey 3Kırıkkale University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey Abstract: Myelosuppression is a serious complication during treatment of acute lymphoblastic leukemia and the duration of myelosuppression is affected by underlying bone marrow failure syndromes and drug pharmacogenetics caused by genetic polymorphisms. Mutations in the thiopurine S-methyltransferase (TPMT) gene causing excessive myelosuppression during 6-mercaptopurine (MP) therapy may cause excessive bone marrow toxicity. We report the case of a 15-year-old girl with T-ALL who developed severe pancytopenia during consolidation and maintenance therapy despite reduction of the dose of MP to 5% of the standard dose. Prednisolone therapy produced a remarkable but transient bone marrow recovery. Analysis of common TPMT polymorphisms revealed TPMT *3A/*3C. Key Words: Myelosuppression, Thiopurine S-methyl transferase, Acute leukemia Özet: Miyelosupresyon, -
List of Drugs Not Repackaged by Safecor Health
Drugs Not Repackaged by Safecor Health The following tables list specific medications that are not repackaged by Safecor Health due to regulatory restrictions or specific manufacturer requirements. The items not repackaged are alphabetically listed below, both by brand name (table 1) and generic name (table 2). Please note: Safecor Health cannot repackage any beta lactam antibiotics (such as penicillins, amoxicillin and cephalosporins) or potent chemotherapeutic agents. Also, due to FDA restrictions, we cannot repackage half- or quarter-tabs, compounded or diluted drugs, powders, and ointments or creams. Safecor Health can repackage most hazardous drugs on the NIOSH list. Contact us for a complete list of hazardous drugs repackaged by Safecor Health. Table 1. Do Not Repackage Drugs Sorted Alphabetically by Brand Name Brand Name(s) Generic Name(s) Reason Item Cannot Be Repackaged Adrucil Fluorouracil Potent chemotherapy agent Aspirin and Extended-Release Specific manufacturer recommendations for very Aggrenox Dipyridamole limited expiration dating Albenza Albendazole Cost per dose prohibitive Alkeran Melphalan Potent chemotherapy agent Augmentin Amoxicillin and Clavulanate Potassium Safecor Health does not repackage this drug class Manufacturer states, "dispense in original container," Belsomra Suvorexant on the drug label Manufacturer states, "dispense in original container," Biktarvy Bictegravir, Emtricitabine and Tenofovir Alafenamide on the drug label Bion Tears Dextran, Hypromellose Ophthalmic Drops Sterile and unpreserved CeeNU Lomustine -
Characteristics of Doxorubicin‑Selected Multidrug‑Resistant Human Leukemia HL‑60 Cells with Tolerance to Arsenic Trioxide and Contribution of Leukemia Stem Cells
ONCOLOGY LETTERS 15: 1255-1262, 2018 Characteristics of doxorubicin‑selected multidrug‑resistant human leukemia HL‑60 cells with tolerance to arsenic trioxide and contribution of leukemia stem cells JING CHEN, HULAI WEI, JIE CHENG, BEI XIE, BEI WANG, JUAN YI, BAOYING TIAN, ZHUAN LIU, FEIFEI WANG and ZHEWEN ZHANG Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China Received December 29, 2015; Accepted June 9, 2017 DOI: 10.3892/ol.2017.7353 Abstract. The present study selected and characterized resistance (MDR) frequently induces therapy failure or tumor a multidrug-resistant HL-60 human acute promyelocytic recurrence (1-3). MDR involves various mechanisms including, leukemia cell line, HL-60/RS, by exposure to stepwise adenosine triphosphate-binding cassette (ABC) transporters, incremental doses of doxorubicin. The drug-resistant P-glycoprotein (P-gp), multidrug-resistance-related protein HL-60/RS cells exhibited 85.68-fold resistance to doxoru- (MRP) and breast-cancer-resistance protein (BCRP) overex- bicin and were cross-resistant to other chemotherapeutics, pression, which function to efflux certain molecules out of including cisplatin, daunorubicin, cytarabine, vincristine the cells (4-8). In addition, mechanisms of acquired MDR and etoposide. The cells over-expressed the transporters in leukemia also include abnormal drug metabolism and the P-glycoprotein, multidrug-resistance-related protein 1 presence of leukemia stem cells (LSC). LSCs are particu- and breast-cancer-resistance protein, encoded by the larly of interest and considered to serve an important role adenosine triphosphate-binding cassette (ABC)B1, ABCC1 in leukemia resistance and relapse (4).