Acute Myeloid Leukemia Following 3M (Mitoxantrone, Mitomycin and Methotrexate) Chemotherapy for Advanced Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Acute Myeloid Leukemia Following 3M (Mitoxantrone, Mitomycin and Methotrexate) Chemotherapy for Advanced Breast Cancer Correspondence 2211 S Savas¸an1 Barbara Ann Karmanos Cancer Ginsberg C, Trujillo J, Stass S, Champlin RE. Preliminary results of E Abella1,2 Institute and 1Children’s Hospital treatment with filgrastim for relapse of leukemia and myelodyspla- AJ Akhtar2 of Michigan, Division of sia after allogeneic bone marrow transplantation. New Engl J Med 1 2 1993; 329: 757–761. Y Ravindranath Hematology/Oncology and Bone 4 Shinohara K, Oeda E, Nomiyama J, Inoue H, Kamei S, Tajiri M, Marrow Transplantation Unit, Ichikawa T, Kuwaki T, Tachibana K. The levels of granulocyte col- Harper Hospital, Wayne State ony-stimulating factor in the plasma of the bone marrow aspirate University, Detroit, MI, USA in various hematological disorders. Stem Cells 1995; 13: 421–427. 5 Gabrilove JL, Jakubowski A. Granulocyte colony-stimulating fac- tor: preclinical and clinical studies. Hematol Oncol Clin North Am 1989; 3: 427–440. References 6 Keil F, Kalhs P, Haas OA, Fritsch G, Lechner K, Mannhalter C, Greinix HT. G-CSF stimulation of donor myelopoiesis prolongs ¨ 1 Terpstra W, Lowenberg B. Application of myeloid growth factors survival of relapsed BCR-ABL-positive acute lymphoblastic leuke- in the treatment of acute myeloid leukemia. Leukemia 1997; 11: mia after allogeneic marrow transplantation. Bone Marrow Trans- 315–327. plant 1996; 18: 655–657. 2 Rowe JM, Liesveld JL. Hematopoietic growth factors in acute leu- 7 Savas¸an S, Abella E, Karanes C, Ravindranath Y. Recurrent breast kemia. Leukemia 1997; 11: 328–341. relapses in a patient with acute lymphoblastic leukaemia following 3 Giralt S, Escudier S, Kantarjian H, Deisseroth A, Freireich EJ, And- allogeneic bone marrow transplantation. Acta Haematol 1997; ersson BS, O’Brien S, Andreeff M, Fisher H, Cork A, Hirsch- 871. Acute myeloid leukemia following 3M (mitoxantrone, mitomycin and methotrexate) chemotherapy for advanced breast cancer TO THE EDITOR were admitted in 1996 to our Department for acute leukemia. Clinical characteristics of the patients are shown in Table 1. The risk of secondary acute myeloid leukemia (AML) among Patient No. 1, a 44-year-old woman, was well until 4 years subjects with breast cancer receiving standard-dose cyclopho- earlier, when breast cancer occurred. She was treated with sphamide and doxorubicin has been reported equivalent to radical surgery plus six courses of cyclophosphamide, metho- that of the general population.1 Recently an increased fre- trexate and 5-fluorouracil (CMF). One year after the initial quency of therapy-related leukemias has been documented, diagnosis, she had recurrence of the disease with bone metast- paralleling the more widespread use of dose-intensive ther- ases and was treated with six courses of 3M followed by med- apies and the longer survival of cancer patients.2 roxyprogesteron acetate (MAP) and radiation therapy (RT) on Alkylating agents3 or more recently, epidophyllotoxins- the bone lesions. About 6 months from the start of 3M a related4 secondary AML have been described, but also decrease of white blood cells and platelets count was noted. growth factors or different drug combinations seem to affect Eighteen months later she was admitted to our Department cellular proliferation, especially in subjects with genetic because of a hemorrhagic syndrome: the bone marrow exam- susceptibility.5 ination revealed AML M0 according to FAB criteria. The Because of the effectiveness of chemotherapeutic agents patient died 4 days later. such as topoisomerase II inhibitors (epidophyllotoxins, anthra- Patient No. 2, a 60-year-old woman, had a history of breast cyclines and their derivates) it is important to define their leu- cancer treated with radical surgery at 50 years. Six years later, kemogenic potential in patients with advanced diseases and bone metastases developed and she was treated with eight mainly in adjuvant regimens for early cancer. courses of CMF and RT to lesions of the skeleton. At the age We describe three cases of secondary AML observed in the of 58, the disease progressed and she was therefore treated last year in our Institution, which occurred in women treated with seven courses of 3M followed by MAP. One year after with 3M (methotrexate, mitoxantrone, mitomycin) regimen for the end of the therapy, piastrinopenia and hemorrhagic syn- advanced breast cancer. drome occurred: bone marrow examination disclosed acute Clinical and biologic features are described and the poss- promyelocytic leukemia. All-trans retinoic acid therapy was ible relationship between these drugs and the onset of acute started and at +10 months from diagnosis the patient is alive leukemia is discussed. and well. Three women with a history of advanced breast cancer Patient No. 3 was a 52-year-old woman. She was well until treated with mitoxantrone (8 mg/m2 intravenously every 3 10 years earlier when she underwent radical surgery and weeks), mitomycin (8 mg/m2 intravenously every 6 weeks) and breast RT for breast cancer. Thirty months before admission, methotrexate (30 mg/m2 intravenously every 3 weeks) (3M) the patient received five courses of 3M followed by tamoxifen for disease recurrence to skeleton and skin. After that a pro- gressive anemia and leucopenia developed: bone marrow examination revealed refractory anemia. Transfusional ther- Correspondence: LMA Melillo apy was prescribed. Two weeks before admission acute mon- Received 20 February 1997; accepted 5 September 1997 ocytic leukemia developed; the patient was treated with Correspondence 2212 Table 1 Clinical and laboratory features at diagnosis of breast cancer patients developing acute myeloid leukemia Patient No. Age FAB Latent period from 3M Previous treatment WBC Organomegaly or (months) for breast cancer (× 109/l) adenopathy 1 44 M0 24 Radical mastectomy + 6CMF 0.5 No 2 60 M3 12 Radical mastectomy + Tamoxifen 21.3 No 8CMF + RT 3 52 M5 30 Radical mastectomy + RT 43.4 No mitoxantrone and intermediate doses of cytosine arabinoside, genetic abnormalities, but molecular analysis was not but she died a few days later. reported. In our series, however, Southern blot analysis Chromosome investigations were carried out at diagnosis detected a germline configuration of MLL gene. on bone marrow samples using direct or short term (24–48 h) Since methotrexate seems to have little leukemogenic poten- culturing techniques. Twenty well-spread GTG banded meta- tial,12 the increased risk of AML appears to be probably related phases were analyzed for each patient. to mitoxantrone, alone or by an interaction with mitomycin or Patient 1 had normal karyotype; patient 2 was found to methotrexate and/or previous therapies, including RT. have 46,XX,t(15;17)(q22;q12). In patient 3, cytogenetic In conclusion, the clinical features of our cases resemble analysis revealed a complex karyotype interpreted as those of secondary AML occurring after treatment with topo- 45,XX,del(3)(q12.q25), −7,−19,+mar. The chromosome 3 isomerase II agents: nevertheless, the lack of MLL rearrange- interstitial deletion was confirmed by whole chromosome ments in our series suggests a different pathway by which painting with a digoxygenin-labelled probe specific for chro- cytotoxic drugs and radiations interfere with the genetic pro- mosome 3 (Oncor, Gaithersburg, MD, USA) that did not show gram of hemopoietic cells. any translocation. Molecular analysis by RT-PCR assay was able to detect fusion transcript PML/RAR alpha (bcr3) in case 2. Southern blot analysis with 0.74 kb MLL cDNA probe to Acknowledgements detect MLL gene rearrangements revealed a germline con- figuration in all three examined cases. We wish to thank Dr Daniela Diverio and Dr MC Rapanotti, AML occurs in up to 15% of patients treated with cytotoxic Cattedra di Ematologia, Dipartimento di Biopatologia Umana, 3 ` drugs, radiation or both. Two different forms of secondary Universita La Sapienza, Rome for performing the molecular AML are described. The classic one, in patients treated with analysis. alkylating agents and/or RT, is characterized by a long latency period (3–5 years), a high incidence of preleukemic phase, LMA Melillo Divisione di Ematologia, frequent cytogenetic abnormalities involving chromosomes 5 MR Sajeva Ospedale ‘Casa Sollievo della Sofferenza’ 5 and 7 and an extremely poor prognosis. The second form, P Musto IRCCS, that occurs in patients who have received agents targeting G Perla S Giovanni Rotondo, DNA topoisomerase II, such as epidophyllotoxin derivates N Cascavilla Italy 4 (etoposide, teniposide) or anthracyclines and their derivates MM Minervini 6 (such as mitoxantrone) develops after a short latency period G D’Arena (2–3 years), a brief myelodysplastic phase and is associated M Carotenuto with myelomonocytic or monocytic morphology. In this form, most cases show a balanced translocation involving chromo- some 11q23 leading to rearrangement of MLL gene. This gene References encodes a transcription factor with extensive homology to the Drosophila homeotic regulator trithorax and is probably 1 Tallman MS, Gray R, Bennet JM, Variakojis D, Robert N, Wood involved in the regulation of differentiation pathway through WC, Rowe JM, Wiernik PH. Leukemogenic potential of adjuvant DNA interaction.7 Many different mechanisms (aberrant V-D- chemotherapy for early breast cancer: the Eastern Cooperative J recombination, homologous recombination between Alu- Oncology Group experience. J Clin Oncol 1995; 13: 1557–1563. repeats, and topoisomerase II-mediated non-homologous 2 Shepherd L, Ottaway J, Miles J, Levine M. Therapy related leuke- 8 mia associated with high-dose 4-epi-doxorubicin
Recommended publications
  • A Systematic Review of the Effectiveness of Docetaxel and Mitoxantrone for the Treatment of Metastatic Hormone-Refractory Prostate Cancer
    British Journal of Cancer (2006) 95, 457 – 462 & 2006 Cancer Research UK All rights reserved 0007 – 0920/06 $30.00 www.bjcancer.com A systematic review of the effectiveness of docetaxel and mitoxantrone for the treatment of metastatic hormone-refractory prostate cancer *,1 1 1 1 2 3 4 5 R Collins , R Trowman , G Norman , K Light , A Birtle , E Fenwick , S Palmer and R Riemsma 1 2 Centre for Reviews and Dissemination, University of York, Heslington, York YO10 5DD, UK; Rosemere Cancer Centre, Royal Preston Hospital, Sharoe 3 Green Lane North, Fulwood, Preston PR2 9HT, UK; Public Health & Health Policy, Division of Community Based Sciences, University of Glasgow, 4 5 1 Lilybank Gardens, Glasgow G12 8RZ, UK; Centre for Health Economics, University of York, Heslington, York YO10 5DD, UK; Kleijnen Systematic Reviews Ltd, Westminster Business Centre, 10 Great North Way, Nether Poppleton, York YO26 6RB, UK Clinical Studies A systematic review was performed to evaluate the clinical effectiveness of docetaxel in combination with prednisolone (docetaxel is licensed in the UK for use in combination with prednisone or prednisolone for the treatment of patients with metastatic hormone- refractory prostate cancer. Prednisone is not used in the UK, but it is reasonable to use docetaxel plus prednisone data in this review of docetaxel plus prednisolone) for the treatment of metastatic hormone-refractory prostate cancer. A scoping search identified a trial of docetaxel plus prednisone vs mitoxantrone plus prednisone, but did not identify any trials comparing docetaxel plus prednisolone/prednisone with any other treatments. Therefore, we considered additional indirect evidence that would enable a comparison of docetaxel plus prednisolone/prednisone with other chemotherapy regimens and active supportive care.
    [Show full text]
  • NOVANTRONE (Mitoxantrone for Injection Concentrate) in Patients with Hepatic Insufficiency Is Not Established (See CLINICAL PHARMACOLOGY)
    NOVANTRONE® mitoXANTRONE for injection concentrate WARNING NOVANTRONE® (mitoxantrone for injection concentrate) should be administered under the supervision of a physician experienced in the use of cytotoxic chemotherapy agents. NOVANTRONE® should be given slowly into a freely flowing intravenous infusion. It must never be given subcutaneously, intramuscularly, or intra-arterially. Severe local tissue damage may occur if there is extravasation during administration. (See ADVERSE REACTIONS, General, Cutaneous and DOSAGE AND ADMINISTRATION, Preparation and Administration Precautions). NOT FOR INTRATHECAL USE. Severe injury with permanent sequelae can result from intrathecal administration. (See WARNINGS, General) Except for the treatment of acute nonlymphocytic leukemia, NOVANTRONE® therapy generally should not be given to patients with baseline neutrophil counts of less than 1,500 cells/mm3. In order to monitor the occurrence of bone marrow suppression, primarily neutropenia, which may be severe and result in infection, it is recommended that frequent peripheral blood cell counts be performed on all patients receiving NOVANTRONE®. Cardiotoxicity: Congestive heart failure (CHF), potentially fatal, may occur either during therapy with NOVANTRONE® or months to years after termination of therapy. Cardiotoxicity risk increases with cumulative NOVANTRONE dose and may occur whether or not cardiac risk factors are present. Presence or history of cardiovascular disease, radiotherapy to the mediastinal/pericardial area, previous therapy with other anthracyclines or anthracenediones, or use of other cardiotoxic drugs may increase this risk. In cancer patients, the risk of symptomatic CHF was estimated to be 2.6% for patients receiving up to a cumulative dose of 140 mg/m2. To mitigate the cardiotoxicity risk with NOVANTRONE, prescribers should consider the following: NOVANTRONE mitoXANTRONE for injection 1 All Patients: - All patients should be assessed for cardiac signs and symptoms by history, physical examination, and ECG prior to start of NOVANTRONE® therapy.
    [Show full text]
  • Adjuvant Therapy for Breast Cancer
    PATIENT & CAREGIVER EDUCATION Adjuvant Therapy for Breast Cancer This information explains what adjuvant therapy is, how different kinds of adjuvant therapies work, and how to manage possible side effects. What Is Adjuvant Therapy? Adjuvant therapy is treatment given in addition to your breast surgery. It’s used to kill any cancer cells that may be left in your breast or the rest of your body. It’s also sometimes given before surgery to help make the procedure easier to do. Adjuvant therapy lowers the chance of having your breast cancer come back. Your doctor will decide which therapy is right for you. Adjuvant therapy could be 1 or more of the following: Chemotherapy kills cancer cells by stopping the cells’ ability to multiply. Your chemotherapy may last 3 to 6 months or longer. Hormonal therapy uses medications to stop your body from making some hormones or change the way these hormones affect the body. Hormonal therapy may be taken for years. Antibody therapy is when antibodies attach to growth proteins on cancer cells and kill cancer cells. Antibody therapy may be taken for up to 1 year. Radiation therapy targets cancer cells that doctors can’t see but remain in the breast or lymph nodes after surgery. Radiation therapy may last 3 to 7 weeks. Adjuvant Therapy for Breast Cancer 1/29 Planning Your Adjuvant Therapy Your treatment plan is created for you based on many factors. Your doctor will review your full history, and do a physical exam. Then they will review your test results, pathology results, and imaging, and use this information to design your treatment plan.
    [Show full text]
  • Adjuvant Therapy
    JAMA ONCOLOGY PATIENT PAGE Adjuvant Therapy Adjuvant therapy refers to any treatment that is given for cancer after the main treatment, with the goal of making the main treatment more likely to be successful. What Is Adjuvant Therapy? Sequential cancer treatment As noted of neoadjuvant therapy in a previous Patient Page, the con- cept of adjuvant therapy is that it serves as a “helper” to the primary, Neoadjuvant therapy Primary therapy Adjuvant therapy definitive treatment for cancer. While neoadjuvant therapy refers to Purpose treatment given before the primary treatment, adjuvant therapy re- Reduce primary tumor size Eliminate tumor Eliminate remaining fers to treatment given after the primary treatment. The most com- Eliminate cancer cells that cancer cells mon setting for adjuvant therapy is when a patient with early-stage spread to other locations cancer undergoes surgery, which is then followed by additional sys- Treatment (alone or in combination) temic treatments, which may include any of the following: Chemotherapy Surgery Chemotherapy Hormone therapy Radiation therapy Hormone therapy • Chemotherapy, often given for several months. Targeted therapy Targeted therapy • Hormone or endocrine therapy, often given for many years to pa- Radiation therapy Radiation therapy tients with a hormone-sensitive cancer. • Molecularly targeted therapy,often given for years to patients with Surgical a cancer driven by a specific mutation. removal Local Tumor shrinkage therapy • Radiation therapy,often given over several weeks if there is a high Primary risk of local recurrence near the initial location of the cancer. tumor Why Is Adjuvant Therapy Beneficial? Cancer Even though adjuvant therapy increases the overall cancer treat- cells Lymph nodes ment time, it has been shown to improve the chance of cure for many Original with cancer cells tumor size Systemic types of cancer.
    [Show full text]
  • Of Adjuvant Temozolomide in Adults with Newly Diagnosed High Grade Gliomas: a Review of Clinical Effectiveness, Cost- Effectiveness, and Guidelines
    CADTH RAPID RESPONSE REPORT: SUMMARY WITH CRITICAL APPRAISAL Extended Dosing (12 Cycles) of Adjuvant Temozolomide in Adults with Newly Diagnosed High Grade Gliomas: A Review of Clinical Effectiveness, Cost- Effectiveness, and Guidelines Service Line: Rapid Response Service Version: 1.0 Publication Date: February 26, 2018 Report Length: 23 Pages Authors: Stella Chen, Sarah Visintini Cite As: Extended dosing (12 cy cles) of adjuv ant temozolomide in adults with newly diagnosed high grade gliomas: a rev iew of clinical ef f ectiveness, cost- ef f ectiveness, and guidelines. Ottawa: CADTH; February 2018. (CADTH rapid response report: summary with critical appraisal). ISSN: 1922-8147 (online) Disclaimer: The inf ormation in this document is intended to help Canadian health care decision-makers, health care prof essionals, health sy stems leaders, and policy -makers make well-inf ormed decisions and thereby improv e the quality of health care serv ices. While patients and others may access this document, the document is made av ailable f or inf ormational purposes only and no representations or warranties are made wit h respect to its f itness f or any particular purpose. The inf ormation in this document should not be used as a substitute f or prof essional medical adv ice or as a substitute f or the application of clinical judgment in respect of the care of a particular patient or other prof essional judgment in any decision-making process. The Canadian Agency f or Drugs and Technologies in Health (CADTH) does not endorse any inf ormation, drugs, therapies, treatments, products, processes, or serv ic es.
    [Show full text]
  • Radiotherapy Plus Concomitant and Adjuvant Temozolomide for Glioblastoma
    The new england journal of medicine original article Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma Roger Stupp, M.D., Warren P. Mason, M.D., Martin J. van den Bent, M.D., Michael Weller, M.D., Barbara Fisher, M.D., Martin J.B. Taphoorn, M.D., Karl Belanger, M.D., Alba A. Brandes, M.D., Christine Marosi, M.D., Ulrich Bogdahn, M.D., Jürgen Curschmann, M.D., Robert C. Janzer, M.D., Samuel K. Ludwin, M.D.,Thierry Gorlia, M.Sc., Anouk Allgeier, Ph.D., Denis Lacombe, M.D., J. Gregory Cairncross, M.D., Elizabeth Eisenhauer, M.D., and René O. Mirimanoff, M.D., for the European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups and the National Cancer Institute of Canada Clinical Trials Group* abstract background Glioblastoma, the most common primary brain tumor in adults, is usually rapidly fatal. From the Centre Hospitalier Universitaire The current standard of care for newly diagnosed glioblastoma is surgical resection to Vaudois, Lausanne, Switzerland (R.S., R-C.J., R.O.M.); Princess Margaret Hospital, the extent feasible, followed by adjuvant radiotherapy. In this trial we compared radio- Toronto (W.P.M.); Daniel den Hoed Oncol- therapy alone with radiotherapy plus temozolomide, given concomitantly with and after ogy Center–Erasmus University Medical radiotherapy, in terms of efficacy and safety. Center Rotterdam, Rotterdam, the Neth- erlands (M.J.B.); the University of Tübin- methods gen Medical School, Tübingen, Germany (M.W.); the University of Western Ontario, Patients with
    [Show full text]
  • How to Manage Acute Promyelocytic Leukemia
    Leukemia (2012) 26, 1743 -- 1751 & 2012 Macmillan Publishers Limited All rights reserved 0887-6924/12 www.nature.com/leu HOW TO MANAGEy How to manage acute promyelocytic leukemia J-Q Mi, J-M Li, Z-X Shen, S-J Chen and Z Chen Acute promyelocytic leukemia (APL) is a unique subtype of acute myeloid leukemia (AML). The prognosis of APL is changing, from the worst among AML as it used to be, to currently the best. The application of all-trans-retinoic acid (ATRA) to the induction therapy of APL decreases the mortality of newly diagnosed patients, thereby significantly improving the response rate. Therefore, ATRA combined with anthracycline-based chemotherapy has been widely accepted and used as a classic treatment. It has been demonstrated that high doses of cytarabine have a good effect on the prevention of relapse for high-risk patients. However, as the indications of arsenic trioxide (ATO) for APL are being extended from the original relapse treatment to the first-line treatment of de novo APL, we find that the regimen of ATRA, combined with ATO, seems to be a new treatment option because of their targeting mechanisms, milder toxicities and improvements of long-term outcomes; this combination may become a potentially curable treatment modality for APL. We discuss the therapeutic strategies for APL, particularly the novel approaches to newly diagnosed patients and the handling of side effects of treatment and relapse treatment, so as to ensure each newly diagnosed patient of APL the most timely and best treatment. Leukemia (2012) 26, 1743--1751; doi:10.1038/leu.2012.57 Keywords: acute promyelocytic leukemia (APL); all-trans-retinoic acid (ATRA); arsenic trioxide (ATO) INTRODUCTION In this review, we introduce the therapeutic strategies of APL, Acute promyelocytic leukemia (APL) is a distinct subtype of acute including the treatment of newly diagnosed and relapsed myeloid leukemia (AML) characterized by its abnormal promye- patients, as well as the ways to deal with the side effects.
    [Show full text]
  • Adjuvant Therapy for Renal Cell Carcinoma
    Sawhney et al. J Cancer Metastasis Treat 2021;7:48 Journal of Cancer DOI: 10.20517/2394-4722.2021.64 Metastasis and Treatment Review Open Access Adjuvant therapy for renal cell carcinoma Paramvir Sawhney1, Suyanto Suyanto2, Agnieszka Michael2, Hardev Pandha2 1Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK. 2St Luke’s Cancer Centre, Royal Surrey County Hospital, Guildford GU2 7XX, UK. Correspondence to: Dr. Hardev Pandha, St Luke’s Cancer Centre, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK. E-mail: [email protected] How to cite this article: Sawhney P, Suyanto S, Michael A, Pandha H. Adjuvant therapy for renal cell carcinoma. J Cancer Metastasis Treat 2021;7:48. https://dx.doi.org/10.20517/2394-4722.2021.64 Received: 15 Mar 2021 First Decision: 25 May 2021 Revised: 16 Jun 2021 Accepted: 29 Jun 2021 First online: 4 Jul 2021 Academic Editors: Lucio Miele, Hendrik Van Poppel Copy Editor: Yue-Yue Zhang Production Editor: Yue-Yue Zhang Abstract Recent advances in the treatment of metastatic renal cell carcinoma expose a gap in the treatment of less advanced, localized disease. Tyrosine kinase inhibitors, which revolutionized the treatment of metastatic disease, have not provided a similar survival benefit in the adjuvant setting and currently only sunitinib is approved by the Food and Drug Administration for adjuvant treatment in patients with high-risk of recurrence based on S-TRAC disease-free survival data. The advent of immune checkpoint inhibitors has offered a fresh hope in the field of adjuvant treatment after encouraging results are seen with combination of immune checkpoint inhibitors as well as with targeted therapy in the metastatic setting.
    [Show full text]
  • Methotrexate Cross-Resistance in a Mitoxantrone-Selected Multidrug-Resistant MCF7 Breast Cancer Cell Line Is Attributable to Enhanced Energy-Dependent Drug Efflux1
    [CANCER RESEARCH 60, 3514–3521, July 1, 2000] Methotrexate Cross-Resistance in a Mitoxantrone-selected Multidrug-resistant MCF7 Breast Cancer Cell Line Is Attributable to Enhanced Energy-dependent Drug Efflux1 Erin L. Volk, Kristin Rohde, Myung Rhee, John J. McGuire, L. Austin Doyle, Douglas D. Ross, and Erasmus Schneider2 Wadsworth Center, New York State Department of Health, Albany, New York 12201 [E. L. V., K. R., M. R., E. S.]; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12201 [E. L. V., E. S.]; Grace Cancer Drug Center, Roswell Park Cancer Institute, Buffalo, New York 14263 [J. J. M.]; Greenbaum Cancer Center of the University of Maryland, Baltimore, Maryland 21201 [L. A. D., D. D. R.]; Department of Medicine, Division of Hematology/Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 [L. A. D., D. D. R.]; and Baltimore Veterans Medical Center, Department of Veterans Affairs, Baltimore, Maryland 21201 [D. D. R.] ABSTRACT resistance has been shown to be caused by decreased uptake attribut- able to the absence (2) of or defects (5, 6) in RFC1, reduced poly- Cellular resistance to the antifolate methotrexate (MTX) is often caused glutamylation either through decreased FPGS activity and/or expres- by target amplification, uptake defects, or alterations in polyglutamyla- sion (7), or enhanced ␥-GH activity and/or expression (8), and DHFR tion. Here we have examined MTX cross-resistance in a human breast carcinoma cell line (MCF7/MX) selected in the presence of mitoxantrone, overexpression (9) or mutation (10–12). an anticancer agent associated with the multidrug resistance (MDR) In contrast, a putative role for drug efflux in MTX resistance, phenotype.
    [Show full text]
  • Importance of Node Dissection in Relation to Neoadjuvant and Adjuvant Therapy
    JN04X_Jrnl_41011Bochn.qxd 11/7/06 11:56 AM Page 1019 1019 Original Article Importance of Node Dissection in Relation to Neoadjuvant and Adjuvant Therapy William C. Huang, MD, and Bernard H. Bochner, MD, New York, New York Key Words opment of regional lymph node (LN) involvement, dis- Bladder cancer, pelvic lymph node dissection, lymphadenectomy, tant disseminated disease, and death.2,3 chemotherapy Radical cystectomy with pelvic lymphadenectomy (RC/PLND) is currently the gold standard treatment for Abstract managing localized and regionally advanced invasive Since the advent of effective chemotherapeutic regimens for treat- bladder cancer. Although RC/PLND cures most patients ing transitional cell carcinoma, multimodal therapy has become part with organ-confined disease, the risk for recurrence after of the contemporary management of patients with muscle-invasive bladder cancer. However, radical cystectomy with pelvic lym- surgery significantly increases for tumors extending beyond phadenectomy remains the cornerstone of treatment for patients the confines of the bladder or involving the regional with localized and regionally advanced muscle-invasive disease. The pelvic LNs.4–6 The incidence of node-positive bladder effectiveness of chemotherapy models in bladder cancer can de- cancer in contemporary surgical series is relatively high, pend greatly on the quality of surgery. Unfortunately, without suf- with approximately 25% of patients who undergo ficient level I data, the boundaries of lymphadenectomy and the RC/PLND showing pathologic
    [Show full text]
  • CNAJTZRT Protocol
    BC Cancer Protocol Summary for Concomitant (Dual Modality) and Adjuvant Temozolomide for Newly Diagnosed Malignant Gliomas with Radiation Protocol Code CNAJTZRT Tumour Group Neuro-Oncology Contact Physician Dr. Brian Thiessen ELIGIBILITY: . Patients with newly diagnosed glioblastoma all variants, Grade 2-4 astrocytoma IDH wild type, and Grade 4 astrocytoma IDH mutant . Karnofsky Performance Status greater than 50, ECOG 0-2 . Adequate renal and hepatic function . Age less than 70 EXCLUSIONS: . Creatinine greater than 1.5X normal . Significant hepatic dysfunction . Pregnant or breast feeding women TESTS: . Baseline and before starting adjuvant temozolomide: CBC and differential, platelets, ALT, Bilirubin, serum creatinine, random glucose (patients on dexamethasone) . During concomitant temozolomide with RT (dual modality): . Weekly CBC and differential . Before week 1 and before week 4: ALT and bilirubin . Before each treatment of adjuvant temozolomide: . Day 1: CBC and differential, platelets, serum creatinine, ALT and bilirubin . Day 22: CBC and differential, platelets . Before cycles #3 and 5 and at completion of adjuvant temozolomide: neuroimaging . If clinically indicated: sodium, potassium, magnesium, calcium, random glucose PREMEDICATIONS: . For concomitant temozolomide with RT (dual modality): ondansetron 8 mg given 30 minutes prior to first dose of temozolomide, then prochlorperazine 10 mg po 30 minutes prior to each subsequent dose of temozolomide . For adjuvant temozolomide: ondansetron 8 mg po 30 minutes prior to each dose of temozolomide BC Cancer Protocol Summary CNAJTZRT Page 1 of 5 Activated: 1 Oct 2004 Revised: 1 Oct 2021 (Eligibility criteria clarified) Warning: The information contained in these documents are a statement of consensus of BC Cancer professionals regarding their views of currently accepted approaches to treatment.
    [Show full text]
  • Cellular Pharmacology of Mitoxantrone in P
    Leukemia (1997) 11, 2066–2074 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 Cellular pharmacology of mitoxantrone in p-glycoprotein-positive and -negative human myeloid leukemic cell lines U Consoli, NT Van, N Neamati, R Mahadevia, M Beran, S Zhao and M Andreeff Department of Hematology, Section of Experimental Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Previous reports suggest that resistance to mitoxantrone in dif- protein is particularly important because it confers cross-resist- ferent tumor cell lines is unrelated to the overexpression of p- ance to several structurally unrelated drugs.9 The mechanisms glycoprotein. In order to determine the role of p-glycoprotein in the cellular pharmacology of mitoxantrone flow cytometry of action of mitoxantrone resistance are not well known. and confocal microscopy were used to study two human Although mitoxantrone seems to select for a unique drug- myeloid leukemia cell lines selected for resistance to mitoxan- resistance phenotype, some cross-resistance with anthracy- trone (HL-60MX2) and doxorubicin (HL-60DOX). To optimize the clines has been shown in vitro.10,11 Human colon carci- detection of intracellular mitoxantrone, we determined the noma,12 leukemia13 and gastric carcinoma14 cell lines selec- maximum excitation (607 nm) and emission (684 nm) wave- length by fluorescence spectroscopy. The modified flow cyto- ted by continuous exposure to increasing concentrations of metric conditions using 568.2 nm laser emission for excitation mitoxantrone had no p-glycoprotein overexpression. Clinical and a 620 nm long pass filter for fluorescence collection cross-over studies have not demonstrated complete cross- resulted in a 1-log increase in sensitivity, compared with stan- resistance between mitoxantrone and doxorubicin,15,16 pro- dard 488-nm laser excitation.
    [Show full text]