Non-Theraphosidae Mygalomorphs of North America

Total Page:16

File Type:pdf, Size:1020Kb

Non-Theraphosidae Mygalomorphs of North America Non-Theraphosidae Mygalomorphs of North America © 2015 by Andrew Olson North America has a rich collection of fauna in all the families of Mygalomorphae. This paper introduces these families, with a special emphasis on the taxa of the USA. To see what non­Theraphosidae mygalomorphs appear in your state, please consult this large table: http://cacoseraph.x10host.com/ntmygs/ntmygs_usa.php ​ Taxonomical placement of mygalomorph families found in the USA. Family arrangement based on Platnick’s World Spider Catalog and is indicative of the “closeness” of relation between various families. Kingdom: Animalia . Convenience taxonomical level: Invertebrata # . Phylum: Arthropoda . Class: Arachnida . Order: Araneae . Suborder: Opisthothelae . Infraorder: Mygalomorphae . Family: Atypidae / Atypidae­ Pursewebs or Atypical tarantulas­ “Atypical” ​ ​ ​ ​ ​ ​ ! . Family: Antrodiaetidae / Antrodiaetidae ­ Folding trapdoors ​ ​ ​ ​ ​ ​ ! . Family: Mecicobothriidae / Mecicobothriidae ­ Dwarf tarantulas ​ ​ ​ ​ ​ ​ ! . Family: Dipluridae / Dipluridae ­ Funnel­web tarantulas ­ “Two Tails” ​ ​ ​ ​ ​ ​ ! . Family: Cyrtaucheniidae / Cyrtaucheniidae ­ Waferlid/Wafer trapdoors ​ ​ ​ ​ ​ ​ ! . Family: Ctenizidae / Ctenizidae ­ Corklid trapdoors/Trapdoors ​ ​ ​ ​ ​ ​ . Family: Euctenizidae / Euctenizidae ­ ????????? ​ ​ ​ ​ ​ ​ . Family: Nemesiidae / Nemesiidae ­ False tarantulas ​ ​ ​ ​ ​ ​ . Family: Barychelidae / Barychelidae ­ Brushed trapdoors/Brushfoot trapdoors ​ ​ ​ ​ ​ ​ ! . Family: Theraphosidae / Theraphosidae ** ­ Tarantulas ​ ​ ​ ​ ​ ​ Key: WSC Link / Wiki Link ­ Common name(s) ­ “Translation of family name” # Invertabrata is not a genuine taxon, but is used as a way to conveniently describe all critters that lack a backbone/notochord/major central never channel/etc ! Taxa so marked occur in Arizona. ** Not the focus of this discussion Atypidae / Atypidae- Pursewebs or Atypical tarantulas- “Atypical” ​ ​ ​ ​ Atypids are known as purseweb spiders because of the type of web and burrow they create. They will make a silk lined burrow in which the silk lining extends out and up away from the burrow entrance to form an above ground, exposed length of tubeweb. This tubeweb almost always ends up a piece of structure like a rock or tree trunk. Hunting involves waiting to sense the passage of a prey item across the exposed portion of tube web. The spider will then bite their prey through the webbing, then once subdued will drag the victim through the webbing and into their burrow. Because of this hunting method atypids have VERY large chelicerae compared to other spiders of similar size. This gives them what some perceive as a fierce look. Atypids lack most of the setae on the cephalothorax that is present in Theraphosidae. Marshal Hedin ­ Atypidae Web Patrick Edwin Moran ­ Sphodros rufipes, mature male CCASA2.5G* GNUFDL* Antrodiaetidae / Antrodiaetidae - Folding trapdoors ​ ​ ​ ​ Antrodiaetids are an interesting mix of shape and behavior of Atypids and other, less closely related trapdoor spiders. They have more massive chelicerae and fangs like Atypids but make actual trapdoors on their burrows. The doors are thought to possibly help retain moisture and explain the increased range of Antrodiaetids compared to Atypids. Some Antrodiaetids will block their burrows with plugs made of either silk or silk and soil to increase the insulating factor. Antrodiaetus tend to make their burrows topped with a turret while Aliatypus do not. Marshal Hedin CCA2.0G* Marshal Hedin CCA2.0G* Antrodiaetus unicolor Aliatypus torridus Mecicobothriidae / Mecicobothriidae - Dwarf tarantulas ​ ​ ​ Mecicobothriids appear similar to very small tarantulas, though they are not as hirsute. Their main spinnerets are longer than the longest of any Theraphosid, also. The largest are around 1­1.5” DLS (diagonal leg span). They tend to live under structures or in preexisting holes in a sheetweb construct. Not unusual to find them within 30m of a water feature. Mecicobothriids make lenticular, fixed eggsacs. The smallest species average under ten eggs per sac and the largest species average approximately 80 eggs per eggsac. Mecicobothrids lack the scopulae that tarantulas possess and thus can not walk or run up smooth vertical surfaces. Andrew Olson ­ Megahexura fulva, size Andrew Olson ­ Megahexura fulva, mating comparison Andrew Olson ­ Megahexura fulva, in situ Andrew Olson ­ Megahexura fulva, detail shot of tergal plates Dipluridae / Dipluridae - Funnel-web tarantulas - “Two Tails” ​ ​ ​ ​ Diplruids look very similar to tarantulas, but generally are smaller and have much larger main spinnerets. Diplurids use these large spinnerets to line their burrows with copious amounts of silk. A diplurid burrow will usually have sheet web extending out from the entrance, in comparison to US tarantulas which usually line their burrows but do not have much web extending beyond. Diplurids can be found under structures and do not tend to dig or use preexisting rodent burrows as much as US tarantulas. Diplurids in the US tend to be brown and yellowish colors, however there is a beautiful jet black species in Mexico and Diplurids from the other continents can be beautiful colors. Public Domain Microhexura montivaga Cyrtaucheniidae / Cyrtaucheniidae - Waferlid/Wafer trapdoors ​ ​ ​ ​ Cyrtaucheniids are limited to a single species of record in the USA, now that all genera with representatives have been moved to Euctenizidae. Cyrtauchenius talpa is listed in the World Spider Catalog as occurring in the USA, but the author was able to find no definite records to indicate which states. Ctenizidae / Ctenizidae - Corklid trapdoors/Trapdoors ​ ​ ​ ​ Ctenizids (hint: the “C” is silent) are classic trapdoor spiders. They tend to make thick doors to their burrows out of web and surrounding substrate. This can make their burrows extremely well camouflaged and hard to find. When their burrows occur on slopes, especially in disturbed areas like around streams and rivers, the ground level can wear away leaving a little tower capped by the trapdoor. Ctenizids leg structure is such that they can hold hold their door closed with full force against their predators (or collectors). If care is taken and the substrate cooperates an entire burrow and spider can be removed by a collector. One of the most interesting genera of Ctenizids to appear in the USA is Cyclocosmia. Trapdoors in this genus have a flattened, hardened posterior abdomen which can be used to defensively plug or block their burrow. N. M. Hentz, public domain LA Dawson CCASA2.5G* Cyclocosmia truncata, original illustration, 1875 Ummidia sp., showing classic Ctenizid shape Euctenizidae / Euctenizidae - ????????? ​ ​ ​ Formerly a subfamily of Cyrtaucheniidae, Euctenizids tend make either wafer or cork type trapdoors. Euctenizids can be some of the most interestingly colored species of non­Theraphosidae mygalomorphs found in the United States. The genus Aptostichus tends to be more brightly colored and sometimes possesses an interesting herringbone pattern on its abdomen. Eucentizids can be distinguished from Ctenizids by their lack of spines on legs I and II. Eutenizid burrows can have side passages and multiple entrances and exits. The genus Apomastus does not make trapdoors at all, ending up with an open, burrow somewhat similar to Atypidae, except the external portion is typically not anchored to anything and is relatively shorter. Marshal Hedin CCA2.5G* Andrew Olson Aptostichus sp., female Aptostichus sp., female with eggsac Andrew Olson Marshal Hedin CCA2.0G* Apomastus kristenae, tube web Aptostichus sp., burrow entrance and door Nemesiidae / Nemesiidae - False tarantulas ​ ​ ​ ​ Nemesiids are probably the most similar to tarantulas in looks and size of all the non­Theraphosidae mygalomorphs in North America. Species that appear in the United States all seem some form of brown and/or black in most light, but can take on a spectacular metallic coloration under the right light. While no more toxic to humans than North American tarantulas, more care should be taken as Nemesiids are much more inclined to bite and otherwise defend themselves. Nemesiids do not possess scopulae to the same degree as Theraphosids and thus typically can not climb smooth, vertical surfaces. The babies of some species, C. longitarsus in particular, can retain a lovely translucent white color for their first several instars. Andrew Olson Andrew Olson Calisoga (Brachythele) longitarsus Calisoga (Brachythele) longitarsus, mating, male bottom Barychelidae / Barychelidae - Brushed trapdoors/Brushfoot trapdoors ​ ​ ​ ​ An interesting family, if for no other reason than their range. This family only is represented only in Hawaii out of all the 50 states and D.C. Up until the 1980’s it was thought that Hawaii lacked any mygalomorphs but now several species are known from there. Barychelids have scopulae (the “sticky pads” on their feet) approximately equal to Theraphosids and thus can climb smooth vertical surfaces like glass. Sean Salamon CCASA2.5G* Nihoa makina, Artist’s representation of this Hawaiian species Theraphosidae / Theraphosidae - Tarantulas ​ ​ ​ ​ The most well known family of mygalomorphs, Theraphosids are not the subject of this paper. A subset of the dichotomous key to Mygalomorph families from Raven 1985. Branches that are not applicable to our North American concentration are weeded out (indicated by smaller font and italics). 1 a ) Claw tufts present ............ 2 b ) Claw tufts absent ............ 9 2 a ) Anterior maxillary lobe distinct and produced (fig.
Recommended publications
  • Biodiversity of the Huautla Cave System, Oaxaca, Mexico
    diversity Communication Biodiversity of the Huautla Cave System, Oaxaca, Mexico Oscar F. Francke, Rodrigo Monjaraz-Ruedas † and Jesús A. Cruz-López *,‡ Colección Nacional De Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City C. P. 04510, Mexico; [email protected] (O.F.F.); [email protected] (R.M.-R.) * Correspondence: [email protected] † Current address: San Diego State University, San Diego, CA 92182, USA. ‡ Current address: Instituto Nacional de Investigaciones Agrícolas y Pecuarias del Valle de Oaxaca, Santo Domingo Barrio Bajo, Etla C. P. 68200, Mexico. Abstract: Sistema Huautla is the deepest cave system in the Americas at 1560 m and the fifth longest in Mexico at 89,000 m, and it is a mostly vertical network of interconnected passages. The surface landscape is rugged, ranging from 3500 to 2500 masl, intersected by streams and deep gorges. There are numerous dolinas, from hundreds to tens of meters in width and depth. The weather is basically temperate subhumid with summer rains. The average yearly rainfall is approximately 2500 mm, with a monthly average of 35 mm for the driest times of the year and up to 500 mm for the wettest month. All these conditions play an important role for achieving the highest terrestrial troglobite diversity in Mexico, containing a total of 35 species, of which 27 are possible troglobites (16 described), including numerous arachnids, millipedes, springtails, silverfish, and a single described species of beetles. With those numbers, Sistema Huautla is one of the richest cave systems in the world. Keywords: troglobitics; arachnids; insects; millipedes Citation: Francke, O.F.; Monjaraz-Ruedas, R.; Cruz-López, J.A.
    [Show full text]
  • List of Ohio Spiders
    List of Ohio Spiders 2 August 2021 Richard A. Bradley Department of EEO Biology Ohio State University Museum of Biological Diversity 1315 Kinnear Road Columbus, OH 43212 This list is based on published specimen records of spider species from Ohio. Additional species that have been recorded during the Ohio Spider Survey (beginning 1994) are also included. I would very much appreciate any corrections; please mail them to the above address or email ([email protected]). 676 [+6] Species Mygalomorphae Antrodiaetidae (foldingdoor spiders) (2) Antrodiaetus robustus (Simon, 1890) Antrodiaetus unicolor (Hentz, 1842) Atypidae (purseweb spiders) (3) Sphodros coylei Gertsch & Platnick, 1980 Sphodros niger (Hentz, 1842) Sphodros rufipes (Latreille, 1829) Euctenizidae (waferdoor spiders) (1) Myrmekiaphila foliata Atkinson, 1886 Halonoproctidae (trapdoor spiders) (1) Ummidia audouini (Lucas, 1835) Araneomorphae Agelenidae (funnel weavers) (14) Agelenopsis emertoni Chamberlin & Ivie, 1935 | Agelenopsis kastoni Chamberlin & Ivie, 1941 | Agelenopsis naevia (Walckenaer, 1805) grass spiders Agelenopsis pennsylvanica (C.L. Koch, 1843) | Agelnopsis potteri (Blackwell, 1846) | Agelenopsis utahana (Chamberlin & Ivie, 1933) | Coras aerialis Muma, 1946 Coras juvenilis (Keyserling, 1881) Coras lamellosus (Keyserling, 1887) Coras medicinalis (Hentz, 1821) Coras montanus (Emerton, 1889) Tegenaria domestica (Clerck, 1757) barn funnel weaver In Wadotes calcaratus (Keyserling, 1887) Wadotes hybridus (Emerton, 1889) Amaurobiidae (hackledmesh weavers) (2) Amaurobius
    [Show full text]
  • Five Papers on Fossil and Extant Spiders
    BEITR. ARANEOL., 13 (2020) Joerg Wunderlich FIVE PAPERS ON FOSSIL AND EXTANT SPIDERS BEITR. ARANEOL., 13 (2020: 1–176) FIVE PAPERS ON FOSSIL AND EXTANT SPIDERS NEW AND RARE FOSSIL SPIDERS (ARANEAE) IN BALTIC AND BUR- MESE AMBERS AS WELL AS EXTANT AND SUBRECENT SPIDERS FROM THE WESTERN PALAEARCTIC AND MADAGASCAR, WITH NOTES ON SPIDER PHYLOGENY, EVOLUTION AND CLASSIFICA- TION JOERG WUNDERLICH, D-69493 Hirschberg, e-mail: [email protected]. Website: www.joergwunderlich.de. – Here a digital version of this book can be found. © Publishing House, author and editor: Joerg Wunderlich, 69493 Hirschberg, Germany. BEITRAEGE ZUR ARANEOLOGIE (BEITR. ARANEOL.), 13. ISBN 978-3-931473-19-8 The papers of this volume are available on my website. Print: Baier Digitaldruck GmbH, Heidelberg. 1 BEITR. ARANEOL., 13 (2020) Photo on the book cover: Dorsal-lateral aspect of the male tetrablemmid spider Elec- troblemma pinnae n. sp. in Burmit, body length 1.5 mm. See the photo no. 17 p. 160. Fossil spider of the year 2020. Acknowledgements: For corrections of parts of the present manuscripts I thank very much my dear wife Ruthild Schöneich. For the professional preparation of the layout I am grateful to Angelika and Walter Steffan in Heidelberg. CONTENTS. Papers by J. WUNDERLICH, with the exception of the paper p. 22 page Introduction and personal note………………………………………………………… 3 Description of four new and few rare spider species from the Western Palaearctic (Araneae: Dysderidae, Linyphiidae and Theridiidae) …………………. 4 Resurrection of the extant spider family Sinopimoidae LI & WUNDERLICH 2008 (Araneae: Araneoidea) ……………………………………………………………...… 19 Note on fossil Atypidae (Araneae) in Eocene European ambers ………………… 21 New and already described fossil spiders (Araneae) of 20 families in Mid Cretaceous Burmese amber with notes on spider phylogeny, evolution and classification; by J.
    [Show full text]
  • A New Species of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae)
    A peer-reviewed open-access journal ZooKeysA new 851: 17–25species (2019) of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae) 17 doi: 10.3897/zookeys.851.31802 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae) Jason E. Bond1, Trip Lamb2 1 Department of Entomology & Nematology, University of California Davis, Davis, California, USA 2 Department of Biology, East Carolina University, Greenville, North Carolina, USA Corresponding author: Jason E. Bond ([email protected]) Academic editor: Chris Hamilton | Received 20 November 2018 | Accepted 2 February 2019 | Published 3 June 2019 http://zoobank.org/894CD479-72A2-412D-B983-7CE7C2A54E88 Citation: Bond JE, Lamb T (2019) A new species of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae). ZooKeys 851: 17–25. https://doi.org/10.3897/zookeys.851.31802 Abstract The mygalomorph spider genusPionothele Purcell, 1902 comprises two nominal species known only from South Africa. We describe here a new species, Pionothele gobabeb sp. n., from Namibia. This new species is currently only known from a very restricted area in the Namib Desert of western Namibia. Keywords Biodiversity, New species, Spider taxonomy, Pionothele, Nemesiidae, Mygalomorphae Introduction The nemesiid genus Pionothele Purcell, 1902 is a poorly known taxon comprising only two species described from southwestern South Africa. In Zonstein’s (2016) review of the genus, he redescribed and illustrated P. straminea Purcell, 1902 and described a second, new species P. capensis Zonstein, 2016. Similarities between female specimens of Pionothele and those in the genus Spiroctenus Simon 1889a suggest that some spe- cies described as the latter may be misidentified as the former (Zonstein 2016); con- sequently, Pionothele may be more widespread and diverse than is currently known.
    [Show full text]
  • A Reconsideration of the Classification of the Spider Infraorder Mygalomorphae (Arachnida: Araneae) Based on Three Nuclear Genes and Morphology
    A Reconsideration of the Classification of the Spider Infraorder Mygalomorphae (Arachnida: Araneae) Based on Three Nuclear Genes and Morphology Jason E. Bond1*, Brent E. Hendrixson2, Chris A. Hamilton1, Marshal Hedin3 1 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America, 2 Department of Biology, Millsaps College, Jackson, Mississippi, United States of America, 3 Department of Biology, San Diego State University, San Diego, California, United States of America Abstract Background: The infraorder Mygalomorphae (i.e., trapdoor spiders, tarantulas, funnel web spiders, etc.) is one of three main lineages of spiders. Comprising 15 families, 325 genera, and over 2,600 species, the group is a diverse assemblage that has retained a number of features considered primitive for spiders. Despite an evolutionary history dating back to the lower Triassic, the group has received comparatively little attention with respect to its phylogeny and higher classification. The few phylogenies published all share the common thread that a stable classification scheme for the group remains unresolved. Methods and Findings: We report here a reevaluation of mygalomorph phylogeny using the rRNA genes 18S and 28S, the nuclear protein-coding gene EF-1c, and a morphological character matrix. Taxon sampling includes members of all 15 families representing 58 genera. The following results are supported in our phylogenetic analyses of the data: (1) the Atypoidea (i.e., antrodiaetids, atypids, and mecicobothriids) is a monophyletic group sister to all other mygalomorphs; and (2) the families Mecicobothriidae, Hexathelidae, Cyrtaucheniidae, Nemesiidae, Ctenizidae, and Dipluridae are not monophyletic. The Microstigmatidae is likely to be subsumed into Nemesiidae.
    [Show full text]
  • (Mygalomorphae, Atracinae), with Implications for Venom
    www.nature.com/scientificreports OPEN Phylogenomic reclassifcation of the world’s most venomous spiders (Mygalomorphae, Atracinae), with Received: 10 November 2017 Accepted: 10 January 2018 implications for venom evolution Published: xx xx xxxx Marshal Hedin1, Shahan Derkarabetian 1,2, Martín J. Ramírez3, Cor Vink4 & Jason E. Bond5 Here we show that the most venomous spiders in the world are phylogenetically misplaced. Australian atracine spiders (family Hexathelidae), including the notorious Sydney funnel-web spider Atrax robustus, produce venom peptides that can kill people. Intriguingly, eastern Australian mouse spiders (family Actinopodidae) are also medically dangerous, possessing venom peptides strikingly similar to Atrax hexatoxins. Based on the standing morphology-based classifcation, mouse spiders are hypothesized distant relatives of atracines, having diverged over 200 million years ago. Using sequence- capture phylogenomics, we instead show convincingly that hexathelids are non-monophyletic, and that atracines are sister to actinopodids. Three new mygalomorph lineages are elevated to the family level, and a revised circumscription of Hexathelidae is presented. Re-writing this phylogenetic story has major implications for how we study venom evolution in these spiders, and potentially genuine consequences for antivenom development and bite treatment research. More generally, our research provides a textbook example of the applied importance of modern phylogenomic research. Atrax robustus, the Sydney funnel-web spider, is ofen considered the world’s most venomous spider species1. Te neurotoxic bite of a male A. robustus causes a life-threatening envenomation syndrome in humans. Although antivenoms have now largely mitigated human deaths, bites remain potentially life-threatening2. Atrax is a mem- ber of a larger clade of 34 described species, the mygalomorph subfamily Atracinae, at least six of which (A.
    [Show full text]
  • Species List for Garey Park-Inverts
    Species List for Garey Park-Inverts Category Order Family Scientific Name Common Name Abundance Category Order Family Scientific Name Common Name Abundance Arachnid Araneae Agelenidae Funnel Weaver Common Arachnid Araneae Thomisidae Misumena vatia Goldenrod Crab Spider Common Arachnid Araneae Araneidae Araneus miniatus Black-Spotted Orbweaver Rare Arachnid Araneae Thomisidae Misumessus oblongus American Green Crab Spider Common Arachnid Araneae Araneidae Argiope aurantia Yellow Garden Spider Common Arachnid Araneae Uloboridae Uloborus glomosus Featherlegged Orbweaver Uncommon Arachnid Araneae Araneidae Argiope trifasciata Banded Garden Spider Uncommon Arachnid Endeostigmata Eriophyidae Aceria theospyri Persimmon Leaf Blister Gall Rare Arachnid Araneae Araneidae Gasteracantha cancriformis Spinybacked Orbweaver Common Arachnid Endeostigmata Eriophyidae Aculops rhois Poison Ivy Leaf Mite Common Arachnid Araneae Araneidae Gea heptagon Heptagonal Orbweaver Rare Arachnid Ixodida Ixodidae Amblyomma americanum Lone Star Tick Rare Arachnid Araneae Araneidae Larinioides cornutus Furrow Orbweaver Common Arachnid Ixodida Ixodidae Dermacentor variabilis American Dog Tick Common Arachnid Araneae Araneidae Mangora gibberosa Lined Orbweaver Uncommon Arachnid Opiliones Sclerosomatidae Leiobunum vittatum Eastern Harvestman Uncommon Arachnid Araneae Araneidae Mangora placida Tuft-legged Orbweaver Uncommon Arachnid Trombidiformes Anystidae Whirligig Mite Rare Arachnid Araneae Araneidae Mecynogea lemniscata Basilica Orbweaver Rare Arachnid Eumesosoma roeweri
    [Show full text]
  • John a Murphy & Michael J Roberts 2015 Spider Families of the World
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arachnologische Mitteilungen Jahr/Year: 2016 Band/Volume: 52 Autor(en)/Author(s): Bosselaers Jan, Jocque Rudy Artikel/Article: Buchbesprechung/Book review V-VII © Arachnologische Gesellschaft e.V. Frankfurt/Main; http://arages.de/ v Diversa — 1994 Spinnen aus Malaisefallen. – Arachnologische Mitteilungen Brandenburgs. – Arachnologische Mitteilungen 23: 45-48 – doi: 7: 31-40 – doi: 10.5431/aramit0703 10.5431/aramit2304 — 1995 Nachweis von Oxyopes heterophthalmus für Deutschland Platen R & — 2002 Checkliste und Rote Liste der Webspinnen (Araneae: Oxyopidae). – Arachnologische Mitteilungen 9: 36-37 und Weberknechte (Arachnida: Araneae, Opiliones) des Landes – doi: 10.5431/aramit0904 Berlin mit Angaben zur Ökologie. – Märkische Entomologische — 1995 Nachweis von Textrix caudata für Deutschland (Araneae: Nachrichten, Sonderheft 2: 1-69 Agelenidae). – Arachnologische Mitteilungen 10: 14 – doi: — & Jakobitz J 2003 Bemerkungen über zwei erstmals in Branden- 10.5431/aramit1003 burg nachgewiesene Spinnenarten. – Arachnologische Mittei- — 1996 Buchbesprechung: Hänggi A, Stöckli E & Nentwig W 1995 lungen 26: 26-31 – doi: 10.5431/aramit2602 Lebensräume mitteleuropäischer Spinnen: Charakterisierung der — & Jakobitz J 2004 Bemerkenswerte Spinnen aus der Niederlausitz Lebensräume der häufigsten Spinnenarten Mitteleuropas und der (Brandenburg). – Arachnologische Mitteilungen 27/28: 89-96 – mit diesen vergesellschafteten
    [Show full text]
  • Georgia's Purseweb & Trapdoor Spiders
    Georgia’s Purseweb and Trapdoor Spiders By Dirk J. Stevenson In Georgia, trapdoor and purseweb spiders are found statewide. Called mygalomorphs (the species are of the infraorder Mygalomorphae), these arachnids are ground-dwellers related to tarantulas. Male blue purseweb spider (Daniel D. Dye II) Here’s a quick look at both. Purseweb Spiders Three species of purseweb spiders (family Atypidae, genus Sphodros) are known to occur in the state. Each builds tough silken tubes carefully disguised with bits of lichen and moss. The tubes extend up the sides of tree trunks, with the bottoms ending a few inches underground, in damp soil. The tubes serve as shelter and hunting stations. The spiders spend most of their lives in them. Arachnologists enjoy describing the gruesome hunting strategy used by purseweb spiders. When an insect or other potential prey walks over the exposed portion of the tube, the spider, sensing vibrations, attacks from within the tube, impaling the prey with enormous fangs thrust through the tube wall. Once the prey is subdued, the spider cuts a slit in the tube and pulls the insect inside to consume at its leisure. The fastidious spider then stitches up the hole. The bottoms of many purseweb tubes I have excavated were littered with arthropod remains, including the chitonous parts of millipedes and beetles. Adult red-legged purseweb spider on Recent Georgia surveys for purseweb spiders conducted by well-known its tube (Daniel D. Dye II) Florida-based herpetologist Paul Moler and I focused on the status and distribution of the red-legged purseweb spider (Sphodros rufipes) and blue purseweb spider (Sphodros abboti) species.
    [Show full text]
  • An Analysis of the Secondary Structure of the Mitochondrial Large Subunit Rrna Gene (16S) in Spiders and Its Implications for Phylogenetic Reconstruction
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 2003 An Analysis of the Secondary Structure of the Mitochondrial Large Subunit rRNA Gene (16S) in Spiders and Its Implications for Phylogenetic Reconstruction Stacey DeWitt Smith University of Nebraska - Lincoln, [email protected] Jason E. Bond East Carolina University Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Life Sciences Commons Smith, Stacey DeWitt and Bond, Jason E., "An Analysis of the Secondary Structure of the Mitochondrial Large Subunit rRNA Gene (16S) in Spiders and Its Implications for Phylogenetic Reconstruction" (2003). Faculty Publications in the Biological Sciences. 111. https://digitalcommons.unl.edu/bioscifacpub/111 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 2003. The Journal of Arachnology 31:44±54 AN ANALYSIS OF THE SECONDARY STRUCTURE OF THE MITOCHONDRIAL LARGE SUBUNIT rRNA GENE (16S) IN SPIDERS AND ITS IMPLICATIONS FOR PHYLOGENETIC RECONSTRUCTION Stacey D. Smith1: Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 USA Jason E. Bond: East Carolina University, Department of Biology, Howell Science Complex, Greenville, North Carolina 27858 USA ABSTRACT. We investigated the pattern of molecular variation with respect to secondary structure in the 16S ribosomal RNA gene and its phylogenetic implications for arachnids with a focus on spiders. Based on a model by Gutell et al.
    [Show full text]
  • Spider Systematics: Past and Future
    Zootaxa 3683 (5): 595–600 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3683.5.8 http://zoobank.org/urn:lsid:zoobank.org:pub:E46AB773-C9E7-47DC-9372-6CC89ADDBF51 Spider Systematics: Past and Future NORMAN I. PLATNICK1 & ROBERT J. RAVEN2 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York NY 10024 USA. E-mail: [email protected] 2Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia. E-mail: [email protected] Spider systematics has a history that reaches back over 250 years, to the publication of Carl Clerck’s Svenska Spindlar (Clerck, 1757). Linnaeus (1758), in the famous 10th edition of his Systema Naturae that was published the following year (and which serves as the starting point for the rest of zoological nomenclature), recognized only 39 species of spiders, worldwide, even though he knew (and cited) Clerck’s book. Clerck had already recognized more species than that from Sweden alone, and (unlike Linnaeus) provided good, color illustrations of them, often including even drawings of the male palps. So it is not surprising that arachnologists take Clerck, rather than Linnaeus, as their starting point. The most current version, 13.5, of the World Spider Catalog (Platnick, 2013) lists a total of 43,678 currently valid species, placed in 3,898 genera and 112 families (Table 1). The database version of the catalog has recently been updated to include the information from version 11.0 of the text catalog (previously, only the information from version 8.5 was accessible in database form).
    [Show full text]
  • Phylogenetic Systematics and Evolution of the Spider Infraorder Mygalomorphae Using Genomic
    bioRxiv preprint doi: https://doi.org/10.1101/531756; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic 2 scale data 3 Vera Opatova1, Chris A. Hamilton2, Marshal Hedin3, Laura Montes de Oca4, Jiří Král5, 4 Jason E. Bond1 5 6 1Department of Entomology and Nematology, University of California, Davis, CA 95616, USA 7 2Department of Entomology, Plant Pathology & Nematology, University of Idaho, Moscow, ID 8 83844, USA 9 3Department of Biology, San Diego State University, San Diego, CA, 92182–4614, USA 10 4Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas 11 Clemente Estable, Montevideo, Uruguay. 12 5Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague, 13 128 44, Czech Republic 14 15 16 Corresponding authors: 17 Vera Opatova, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616 18 Telephone: +1 530-754-5805, E-mail: [email protected] 19 20 Jason E. Bond, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616 21 Telephone: +1 530-754-5805, E-mail: [email protected] 22 23 Running Head: PHYLOGENY OF MYGALOMORPH SPIDERS 24 bioRxiv preprint doi: https://doi.org/10.1101/531756; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]