<<

KAERI/TR-1363/99

KR9900234 SIT Ml Fluidic Device nm I )

Development of Fluidic Device in SIT for Korean Next Generation Reactor ( I )

31-02 SIT vfl Fluidic Device 7fl^ (I)"ofl

1999. 7.

-g-

o] o ofc

fe LBLOCA*! Sl#^ ^(Safety Injection BOM- =1^3 ^-2^. ^*}7] $M Fluidic Device Fluidic Device^ sl^fl glj }} Q

Fluidic Device^] -^-5O^^# ^3-Xf <^^- AEA Technology^

Fluidic Device

Fluidic Device^)

1/7 scaled full height, full pressure fe 7171 ^-^.S.^, ^^6fl 4^ Fluidic Device^ ^7j| Ml*l Mf-g-oJ 7}#5|^cf. -y^^^^ 71 71 ^ A^-A^ AlTi^ Cfl^l; ^-3O>( 6V^ 3J ^Cjel ^*1 3t7ll^-AiAS ^ 5l E|S Sii 7HV ^^^1 ^MS. •%•%<>] IL^JLS. ^H^lfe 717151 ^-^^ ^^^^

Ufl, £ -§•% ^ si-a- SUMMARY

The KNGR uses Fluidic Device to control the flow rate of safety injection coolant from SITOafety Injection Tank) during LBLOCA. This Fluidic Device is a passive safety equipment and it is installed at the bottom of the inner space of the SIT. During the past two years, a scale model test to obtain the required flow characteristics of the device under the KNGR specific conditions has been performed using the experience and existing facility of AEA Technology(UK) with appropriate modifications. The performance verification test is to be performed this year to obtain the optimum characteristics and design data of full size Fluidic Device. This report summarizes the results of the model test.

The purpose of the model test was to check the feasibility of developing the device and to produce a generic flow characteristic data. The test was performed in approximately 1/7 scale in terms of flow rate with full height and pressure. This report presents the details of system performance requirements for the device, design procedure for the Fluidic Device to be used, test facility and test method. The time dependent flow, pressure and Euler number are presented as characteristic curves and the most stable and the most effective flow control characteristic parameters were recommended through the evaluation. A method to predict the size of the Fluidic Device is presented. And a sizing algorithm, which can be used to conveniently determine the major geometric data of the device for various operating conditions, and a FORTRAN program to produce the prediction of performance curves have been developed.

The conditions of this test are very specific, that is, the fluid is high flow water with a very small pressure difference between supply and control port. Therefore, almost no empirical test data is available. Consequently, the test results will be utilized as reference for the future development of full scale of Fluidic Device.

- II - 2 # Fluidic Device*] 7^ 3 *1I 1 1 ^ 2) 3 4 2 ^ Vortex Valve*! ^-^ 3 4 3 ^ Vortex Valve*] ^-^^-^ 5 *11 4 ^ Vortex Valve*! -§~§-W 7

3 ^ Fluidic Device 71^2 16 4 l ^ ^^-fi-^i 16 4 2 ^ SIT Tank ^-^ ^^ 2.*i 18 *\] 3 ^ S^M^ ^«1*] ^-fi- ^4^^ 19

4 # S.

37 1 ^ Test Loop 37 2 ^ #*1 ^-^ 7171 gl 7fl^7l7l 42

y 6^ ^^ o^ 51 4 1 ^ Reference Parameters ^ ^^^.^i 51 ^1 2 ^ ^^ ^*> 53

7 # ^^^^ 55 4 11 ^^2:^ 55 ^1 2 ^ Processing of Data 56

- iii - 3 ^ -iM^f 3g7} 61

8 # Fluidic Device 'gTfl*!^ 67 ff 1 1 Fluidic Device^] -g^l 67 69

71

73

- iv - s. i s.^. ^^-ini^ ^g. -g^tH* 19 .5. 2 Pressure-Flow Characteristics for Oil Choke Valve 1 22 S 3 Pressure-Flow Characteristics for Oil Choke Valve 2 22 I£ 4 Pressure-Flow Characteristics for Oil Choke Valve 3 23 3£ 5 Pressure-Flow Characteristics for Oil Choke Valve 4 23 i£ 6 Reference Valve Designs 24 S 7 Supply Flow at Valve Open Versus Control Port Size 24 S 8 Summary of Data from Oil Choke Valve Work 25 -S 9 Comparison of Valve Dimension Ratios 26 S 10 Insert #2 W*l Vortex Valve^I tj|*> ^ Z%O}B\ 33 S 11 Valve Opening(%) vs Flow Resistance 52 S 12 i^^i H]JSL ^ 55 S 13 ^olW <*^ ^JSL »§a-^^ ^4^ &.<$ 63 S 14 il^otf A}-g4l |H«] j*& ^^]^ 65 S 15 ^«.5] ^A ^-^^^ ^.^ 66

- v - en

1 Vortex Valves ^ (7fl\|.£) 4 2 Vortex ValveSj -^3-^d 5 3 Vortex Diode^I *HHiel 7 4 Vortex Diode ^S^l *}-%• ^} 8 5 4U*}.3.6fl-M Diode7} Reverse Flow Restrictor^. -§--§-S

- vi - 3.U 29 SIT Valve Test Rig Layout & Arrangement Drawing(II) -.40 3.^' 30 SIT Valve Test Rig Layout & Arrangement Drawing(III) -41 3.H 31 3.^7} 7Krt>

- vii - M

7)71*1

blowdown, refill ^ 171 reflood(4^:^r) fe down-comer^

ZL

Fluidic Devicel-

Fluidic Devicefe chamber^. -8-^Slfe -%-S.S] ^M ^} chamber A v d e 1= vortex^l ^tl ^^^>7> 3.711 ^^Slfe ^ o * l-§-*H -^ o * ^Wfe 7) vortex chamber*^ Si^^o* ^-^-^Csupply port), ^^"o^ *fi port) gj -^^^ S-^?(discharge JEEfe exit port)^ ^] 7\x\$) port y d 7r . ^^ o^ "E-^S. # l chamber ^BS

chamber vortex^l

Fluidic Standpipe7> standpipefe chambers -

- 1 - Fluidic Device^ 7]7] *}afl uflofl ^^^^o] #^ 3g£. fl^=. ^ti *!•§• 7l7

Mitsubishi^ ZL#o] 7M*§^ APWR^ ^^^]# ^M o] ^Bfl*l Fluidic £fe vortex dampere>3. ^8^)1- ^-g-*>3. $1£L^ 1/5 ^«8*M 717151

Fluidic Device^- ^^*H^fe ttH AEA Technology7l-

Vortexl- -§-§-*> Fluidic DeviceS 7l|^*H °lnl 1977\d^l BNFL^ Dounreay 4^ el ^^"^l ^^l^>«}7f alT=>. UKAEA^ <>W ^tyQ*] AEA Technology 7f SiSi-fe-t-)!, ^i*fl7]-*l cyclone separator, fluidic pump, gas scrubber, liquid mixer, vortex flow valve, fluidic diverter, flow controller -%- t} Fluidic Device!- 7H^*M ^

Fluidic Device^ ^^-7B^- 2^7floflA-l-fe. AEA Technology^*} ^^*M Fluidic Device 7^ 7f^^-#- 4J^[^S ^^1*>^L ^^^^1 7l 7]51 ^.^x>s# ^Sferfl ^^*f^c>. Full scaled prototype Fluidic Device 71JWJ:

Fluidic Device^ AEA Technology^ ^^3- ^^^fSl1^ Fluidic Device^! 7flwjAj^<^| n.fl*> Fluidic Device^ Fluidic Devices]

1 ^

Vortex device[1][2]-b -R-*fl£| vortex o|-g-*M 5^ 717] ## <§^*Kr 5^S^ 1928^ D. Thoma[317f # *l-g-*I 7)7l# 7H^*M ^3. #W ^61 °>°fl ^^ yJ^*>

vortex^ ^el^

vortex device7f

fe Fluidic Device^ vortex device vortex valvee> <>1^^- n. ^.a.*> ^-^^S. vortex sink*

sinkU drain ofl7}

Vortex valve^l

Vortex l*i-b S-% ^& l^i ^1 37fl^l port ^, ^- ^ -^-g- port 91 ^^ (tangential)^^^ ^H port# short chamber(flA-l short chamberef^L ^fe ^^ ^tf]5] fe6^]- ft, 3. ^ nfl Vrr;7> 10^1 *f*l ^4"# t^K)S -7^5?

-b chamber chamber-^] •*&'$} end walWl •¥• £r ^-T" main flow-fe- chamber

portl- ^f-ajl chamber chamber-^1 o] main flow^l chamber-^ •§•• r vortex vortex strength^]

flow ]- t main flow-^1 chamber^]

O.^ 1 Vortex Valve^

- 4 - 3 ^ Vortex valve£| ^^^-

Vortex ^Ji

U chamber^ «]yg(r0)

Reynolds-rCMaximum Flow Reynolds Number),

Reynolds chamber^ft^ vortex

(transfer characteristics)^: *> Reynolds-r^l

AS vortex valve^ exit

3g-°-l-

01 _ 0.2 1.0 1.5 2.0 Non3im«m.onol Conlrol Flow, Hj. « K./Wm NonOlm.niloiKll Control Pr«si»r», Pc

H^ 2 Vortex Valve^l

- 5 - _o^. normalized & normalized Sit:f. Vortex valvefe

bistabletl ^1 # r p5][61[7]. Vortex valve^l

1. -n-l^ZE^Hl (Turn-down ratio)

TR= WJWCC= ifWc, (1)

2. *IIS xi|o|°J-^b| (Cutoff control pressure ratio)

= (Pcc-Pa)/(PS-Pa) (2)

3. -§-^ V^r^ (Quiescent power drain ratio)

7171 SI JL#6fl

power index7f enthalpy^ q°^

QP=PCCITR= Pcc Wcc (3) *l «H^ ^ 4 ^ valves

- 6 - [8] Pc,= 2.0 TR=8

Vortex valve£| -g-g-

vortex diode7> p 7fl Zobel[141 °1 °1# Vortex diode^ (reverse flow restrictor) 1 ^^-(leaking non-return valve)S-M^ -b vortex diode^

vortexS

diodicityeK ^ diodicity

LOW RESISTANCE HIGH RESISTANCE

O.^ 3 Vortex Diode^]

— 7 « Vortex diodeS] -^8-i- <>l-g-*M single 31 double-acting fluidic ^S 4-b single-acting diode ^S^ -§-£•

5][161. Vortex diode-b orifice plated orifice A V plate 4»B °1 O °1 blockage^

Alfl SUPPLY

DELIVERY PIPE DISPUCEMENT VESSEL SUPPLY TANK

Xo) OUTUT ^-^VORTEX DIODE SUCTION v—' VORTEX OIODE

O.^ 4 Vortex Diode ^gS

back-flow restrictor^.

. George 370 4.5 kg/s, ^S 624 K, 6«v^ 40 7]< 0.4 71

.^^ -0.^.01 Supersonic° choked nozzle ^1 ^r^^l Qc\. <>M 4^ ?Hwl3M^ S.^3. ^I* ^ slc>. Mori^ Promoli[1% <>1 ^(two-phase) -°-§-3 20%

- 8 - Heat uxchiinct'.'r Diode (Reverse Flow ftesinctorp > Reversed Fracture *y?/"\Kow

(Reverse Flow Resirtctor

^ 5 Diode7} Reverse Flow RestrictorS.

Vortex valve^r vortex diode7]- vortex fe- H^[ 631- o]

^ | O swirl flowS °1 7l7l-b turndown ratio 7f 10:1^1 £}JL ^M-n-^^: S-^*1-JL^> * |^! a|l£S. 71711- ampUfiere} -f^-cK Vortex amplified €: glove box-^ ^-^ ventilated enclosure

-T-6*H enclosure^] , glove box^l glove 7>

— 9 — CONTROL FLOW ZERO MAIN MODULATING CONTROL FLOW MAIN FLOW FLOW REDUCES MAIN FLOW

3-Q 6 Vortex Amplifier^!

7$ (a)-b inlet orificeS ^ 53.S-2. enclosure^ leakS.£ ^-^ enclosurel- -0.0381m. WG(water gage) &•€: -0.1524m. WG)

vortex ampHfier^ A>-§- 6j}7} -b o] 71715] ol 717151 ^ vortexl-

<>URGE OUCT -

BY-PASS REGULATING VALVE CONTROL SOLENOID VAIVE INWTS VORTEX AMPLIFIER -AXIAL OUTLET

PRESSURE I RAOIAL j ; SWITCH T INLET J INLET OfllFICE d INLET ORIflCE GLOVE GLOVE CT"O V / v—'

(a) 1b)

(a) electro-mechanical (b) fluicic

H%l 7 Globe-box Ventilation Control

- 10 - JPUPGE INl.tr i RESISTANCE

§ 7 , NORMAi OPERATING POINT

0. JMtHGENC* (ITHAIiW FOlNl /

" BREACH RESISTANC!

300 300 400 500 VENTILATION FLOW C.f.M

HU 8 Vortex Amplifier-^

Tippet[1932| Rimmer^f Ford[201

BNFL, UKAEA vortex devicel- -

fluidic Dounreay AH

CE7f siR(Safe Integral ReactorH fulidic doide7> membrane fluidic diode7]-

reverse directional fluidic diode!-

surge flow7> forward directional Sl'H fluidic diodeS 7f7ll ^rf.

^* *f.£^- fluidic diode7r

- 11 - FLUIDIC DIODE

REACTOR " COOLANT PUMP

FEEOWATER —» NATURAL CIRCULATION FLUIDIC DIODES

CORE SUPPORT BARREL (RISER)

9 SIR Primary Circuit Flow Paths

MS 300/60(Pf 1400 MWe •3- APWR(Advanced FWRW^-b H.Q KPt vortex H«-

standpipe-^ 4 #^cr vortex

standpipe^ vortex vortexl-

- 12 - t ®

Fluidic flgw ccmuol device

k.Lnr$e flow* rate. LSmcU flow-rate. Key: 1-fnoin-flow s'tandpipe; 2-side conneclion; 3-oupul porl.

-H^l 10 Principles of Mitsubishi Advanced Accumulator

PIUS(Process Inherent Ultimate Safety)-BWR^- PECOS(Passive Emergency Cooling Systems)!- *HW A¥Q BWR^-H g^^ ^*]*M(FIVES) *I#3^r ^

[22][23] natural-draft &3. aicf

Injection Tank)^ Vortex Valve^ Fluidic Device!- Fluidic Devicel" Att^ vortex chamber

- 13 - - STEAM DOME

DOWNCOMER WATER FROM STEAM ORYER ANO FEEOWATER

ELECTRIC HEATER COIL

O.Q 11 Schematic of Fluid Flow in PIUS-BWR Reactor Vessel

- 14 - St«ipfy port Inlet

Frurt Expansion Efptknl Part of SIT

3.Q 12 Fluidic Device

H«S 13 Vortex Chamber Mj

- 15 - Fluidic Device

1. Full size SIT

- Initial gas pressure: 570 psig - Tank diameter: 9 ft - Tank total capacity: 2406 cu. ft - Tank straight part height: 34.83 ft - Tank total height: 38.83 ft - Initial water volume in tank: 1600 cu. ft - Volume in elliptical part: 94.43 cu. ft - Volume of gas in tank: 806 cu. ft - Initial water level from the elliptical bottom: 25.65 ft - Top of standpipe level from the elliptical bottom: 13.08 ft * Water volume from the bottom of SIT to the top of standpipe: 800 cu. ft

2. Full size SIT

(1) Initial conditions for SIT - SIT total volume: 2400 cu. ft - SIT liquid volume: 1600 cu. ft - Nitrogen gas pressure: 584.7-646.7 psia (610 psig)

(2) Water volume from the bottom of SIT to the top of standpipe: about 800 cu. ft

- 16 - (3) Peak flow rate of vortex valve: 1723 lbm/s (2835 cu. m/hr)

(4) Flow turndown 1310 lbm/s - High flow rate of vortex valve: (2155 cu. m/hr) 453 lbm/s - Low flow rate of vortex valve: (745 cu. m/hr) about 2.9:1 - Flow turndown ratio:

(5) Optimized SIT flow rate curve: ZL^ * The position of standpipe shall be decided to keep the flow rate same as the conventional SIT during the first 35(at least) seconds after the actuation of SIT vortex valve.

2.0

0.0 60 BO 100 120 140 160 180 27.67S TIME, seconds O.Q 14 Optimized SIT Flow Rate Curve

- 17 - SIT Tank

Fluidic device7> - Excel spread sheetS 4~§-*H time-marching 7fl*M- *>54i=-K °1 ^-1 51

Figijre :F ul Sca e Fitild ic Case S T 80 1 70 0.9 **~ 0.8 60

• 0.7 « 50 0.6 ..« —' (0 Vol out S 40 ... k 0.5 S ~.™ wm Affvol - 1 30 0.4 E 20 y 0.3 0.2 10 h 0.1 0 o Time (s c) 100 200 300 400 )

15 SIT Tank

(1) ^1#, t=0 Q A \ uPk (2)

(3) Turn-down -g-so>^. \fce\x:\. (4)

(5) t| 7}^ polytropic index, r =1.43.

(6) ig«. ^f^ (7) ^^

(8) ^-3O^ driving force# head^l ^^}.

- 18 - l time step^l

("Qc+Qs"), time step •§•# ^rW ^.$] %ft {"Volouf), SM 1- ^1 ("Hstr"), SIT q ^-71^ ("Pair"), ^7] ^S ("Rhog"), t=O

^ ^-^ 1-51 ^ *H^ CTotlost"), 11 Cutoff factor (f,

("DP"), «|H^ «^^ #*} ("£>p")^ ^rH *]-§- iga. tfajn] ("Pce/Pse")

geometry

]fe full scaled prototype SITJtc}

Major Design Parameters Remarks Item (Ref. full size data) SIT Internal Diameter, ft.(m) 4.1 (1.25) 9 (2.74) SIT Internal Height, ft(m) 48 (14.63) 38.83 (11.84) Initial Pressure, psig(barg) 610 (42.1) 570-632 Volume Water in Tank, ft3(rri) 491 (13.9) 1600 Peak Flow from Tank, mVhr 584 2835 Norminal Valve Flow Ratio 5 to 2.9 5 Standpipe Height, ft.(m) Variable 14 (4.267) Downstream Loss Factor 207 ©0.6827 ft" duct 9 ©0.6827 ft" duct

Nominal Scale of Test 1/4.8 -

- 19 - Fluidic Device

fluidic device^ H^ 162} ^^>1 ^^-^ ^H^M S-^ 4 H7> afe ## ZL 71 ^r 3&S. *\%r}. o] fluidic device^ W^ ^r 7l7l5.-fB] S#5)^ -n-W^l ^^ Ml 43HI ^^11 nozzle insert intermediate plate)^ W>fl «4^ ^5f^i5. ^ insert!- <£3 ^*1^^. . ^^1* ^^-M-fe 27W M£l nozzle insert 7f nozzle insert^ ^g-^

H&Hc Ws

etu.lJ&*oio*H*D*hi< c^n/Pon,

W : Control and Supply Port Slot Width De ££-b- (ie : Chamber Exit Diameter H '• Chamber Height D '• Chamber Diameter

16 Vortex Valve

-b *l nozzle insert!- ^ AEA Technology7f 7} 71 standpipe n||-f nozzle insert! A}-g-*f^^r^ n ^S fluidic device^ - nozzle insert^ ^ >&*1T . °11- 4 sizing *M il ZL ^^fe

- 20 - Fluidic Device Insert #1

1. Air Data §! Initial Sizing

Fluidic device-^ sizing<>M #A# ^44r ^^l (DPCe/DPse)3-*\ S#^ £$) *}<& tj ^-g^J- S#^ £3 *}tfsl MIS. ^ W. Hfi^fl, SIT Tank frS> lfe «* 1.035 , fluidic device^ ^^H] S°l 1.032S.

AEA Technology7} M.^-^3. SX^ ^7] 3.

1.12-1.6

Initial sizi fe SIT ^a.^ DPce/DPseQ ML 5("i«. 4)^1^-1^ cflolBlS o]^- scaling

71 $\n " DPjDPce$\ al

(4) DP ~ DP LJrce urce

*fe fluidic device-^ Z)PCJ/i5Pce=0.032 (^^^^ DPa/DP5B=1.032<>lHS.)7> 5] Hfi *J (4)51 ^-711 <^1 A-1 jt^. 0.1047/0.032=3.38^1 5]

- 21 - 2 Pressure-Flow Characteristics for Oil Choke Valve 1

DPce DPse Qs Qc Qe/Qe DPee/DPse Pa Pa m3/s m3/s - 1494.6 0.0 -0.00667 0.00650 -38.235 00 1494.6 248.6 -0.00500 0.00583 7.024 6.012 1494.6 560.6 -0.00333 0.00500 2.994 2.666 1494.6 747.3 -0.00167 0.00425 1.647 2.000 1494.6 921.7 0.00000 0.00358 1.000 1.622 1494.6 1031.3 0.00167 0.00350 0.677 1.449 1494.6 1058.7 0.00333 0.00333 0.500 1.412 1494.6 1081.1 0.00417 0.00325 0.438 1.382 1494.6 1081.1 0.00667 0.00325 0.328 1.382 1494.6 1071.1 0.01000 0.00328 0.247 1.395 1494.6 1066.1 0.01667 0.00340 0.169 1.402 1494.6 1071.1 0.02000 0.00340 0.145 1.395 1494.6 1083.6 0.02500 0.00333 0.118 1.379 1494.6 1133.4 0.03333 0.00317 0.087 1.319 1494.6 1183.2 0.04333 0.00307 0.066 1.263 1494.6 1220.6 0.05000 0.00292 0.055 1.224 1494.6 1307.8 0.05833 0.002S8 0.042 1.143 1494.6 1419.9 0.06667 0.00208 0.030 1.053 1494.6 1494.6 0.07117 0.00167 0.023 1.000 1494.6 1631.6 0.07667 0.00108 0.014 0.916 1494.6 1818.4 0.08250 0.00000 0.000 0.822

3 Pressure-Flow Characteristics for Oil Choke Valve 2

DPce DPse Qs Oc Qc/Qe DPce/DPse Pa Pa ra3/s m3/s - - 1494.6 921.7 -0.000333 0.00808 1.702 1.622 1494.6 1096.0 -0.00167 0.00617 1.370 1.364 1494.6 1238.0 0.0000 0.00500 1.000 1.207 1494.6 1267.9 0.00167 0.00483 0.744 1.179 1494.6 1270.4 0.00333 0.00492 0.596 1.176 1494.6 1270.4 0.00667 0.00500 0.429 1.176 1494.6 1272.9 0.01000 0.00517 0.341 1.174 1494.6 1285.4 0.01667 0.00517 0.237 1.163 1494.6 1320.2 0.02500 0.00492 0.164 1.132 1494.6 1350.1 0.03333 0.00467 0.123 1.107 1494.6 1390.0 0.04167 0.00433 0.094 1.075 1494.6 1432.3 0.05000 0.00383 0.071 1.043 1494.6 1494.6 0.06000 0.00325 0.051 1.000 1494.6 1569.3 0.06667 0.00258 0.037 0.952 1494.6 1649.0 0.07167 0.00192 0.026 0.906 1494.6 1718.8 0.07667 0.00125 0.016 0.870 1494.6 1818.4 0.08250 0.00000 0.000 0.822

- 22 - 4 Pressure-Flow Characteristics for Oil Choke Valve 3

DPce DPse Qs Qc Qc/Qe DPce/DPse Pa Pa m3/s m3/s - 1494.6 1121.0 -0.00333 0.00817 1.690 1.333 1494.6 1225.6 -0.00167 0.00750 1.286 .220 1494.6 1300.3 0.00000 0.00683 1.000 1.149 1494.6 1320.2 0.00333 0.00650 0.661 .132 1494.6 1330.2 0.00667 0.00633 0.487 1.124 1494.6 1325.2 0.01333 0.00658 0.331 .128 1494.6 1345.1 0.02000 0.00667 0.250 l.lll 1494.6 1362.6 0.02500 0.00658 0.208 1.097 1494.6 1390.0 0.03333 0.00600 0.153 1.075 1494.6 1419.9 0.04167 0.00533 0.113 1.053 1494.6 1494.6 0.05500 0.00417 0.070 1.000 1494.6 1606.7 0.06667 0.00250 0.036 0.930 1494.6 1669.0 0.07167 0.00183 0.025 0.896 1494.6 1731.2 0.07667 0.00100 0.013 0.863 1494.6 1818.4 0.08250 0.00000 0.000 0.822

5 Pressure-Flow Characteristics for Oil Choke Valve 4

DPce DPse Qs Qc Qc/Qe DPce/DPse Pa Pa m3/s m3/s - - 1494.6 1200.7 -0.00333 0.007583 1.784 1.245 1494.6 1292.8 -0.00167 0.00650 1.345 1.156 1494.6 1337.7 0.00000 0.00600 1.000 1.117 1494.6 1347.6 0.00167 O.00633 0.792 1.109 1494.6 1352.6 0.00333 0.00667 0.667 1.105 1494.6 1347.6 0.00667 0.00708 0.515 1.109 1494.6 1347.6 0.01000 0.00725 0.420 1.109 1494.6 1357.6 0.01667 0.00725 0.303 1.101 1494.6 1377.5 0.02500 0.00708 0.221 1.085 1494.6 1407.4 0.03333 0.00675 0.168 1.062 1494.6 1439.8 0.04167 0.00642 0.133 1.038 1494.6 1494.6 0.05283 0.00567 0.097 1.000 1494.6 1551.9 0.06000 O.00492 0.076 0.963 1494.6 1614.2 0.06667 0.00425 0.060 0.926 1494.6 1669.0 0.07167 0.00333 0.044 0.896 1494.6 1733.7 0.07667 0.00217 0.027 0.862 1494.6 1818.4 0.08250 0 0.000 0.822

- 23 - 6 Reference Valve Designs

Valve Number H W De D Units inches inches inches inches 1 0.359 0.125 1.25 8 2 0.359 0.250 1.25 8 3 0.359 0.345 1.25 8 4 0.359 0.47 1.25 8

4, 44 Standpipe 7]7l# ^ 5*11 ^ DPJDP»=17\

7 Supply Flow at Valve Open Versus Control Port Size

Valve Ac/Ae Qs @ DPcs=0 - - m3/s 1 0.1463 0.07117 2 0.2926 0.06000 3 0.4037 0.05500 4 0.5512 0.05283

7<>fl ^ fitting

0 2318 Qs=0.045312(-^J) - (5)

*fe fluidic device-^ A/A=05512x3.38=1.877f . tc}eM, Q,=0.040m'/s (144 m)/hr)7l- ^#

idjc device^ Qc -0.00567).

- 24 - 3 Qc= 0.00567V 3.38 = 0.0104m Is (6)

c)± 0.0504m'/s7>

SIT (cavitation)

2. Cavitation Data SI Final Sizing

> cavitating - ^.^ ^ ^

3L3. ^«.^1

Qc/Q8s SummarEu se cavitatiny of gDatEa u frose mnon-cavitatin Oil Chokg e DPce/DPsValve Wore k 0 1.37 0.60 0.80 0.02 1.35 0.60 0.90 0.04 1.43 0.60 1.00 0.06 1.59 0.60 1.05 0.08 1.83 0.64 . 1-10 0.1 2.14 0.70 1.15 0.12 2.52 1.00 1.18 0.14 2.95 1.40 1.20 0.15 3.19 1.60 1.22 0.175 3.84 2.00 1.23 0.2 4.56 2.40 1.24 0.3 7.87 4.80 1.25 0.4 11.32 7.00 1.26 0.5 14.16 9.00 1.26 oo 90.00 80.00 1.30

.^ (Pe Patm-

- 25 - #«H^t;K SIT SIT »S«.

7} Pe-5 bar, Patm=0, i 37 bar7> 0.13457} ^(Euler number)^

(7)

^lAZ,

9 Comparison of Valve Dimension Ratios

Ratio Ac/Ae H/De D/De Valve Oil valve 0.181 0.314 6.4 Valve 1 0.146 0.287 6.4

371

+Qc) 0.0504 w

z Valve l<>M-te- 4 ^ ^-%*( Q,+ Qc)^ 0.0728 m /s 0.6923^1

-Hr ^ 2.086yflS. 37H 1121 scale ^^}^L 7}^g^ 4, cavitating 2.086x1.27=2.6471- ^

- 26 - Ae

z ^^ »3«.fe ec= 0.0104 m /s Q,= 0.26, Eu-2.64, p=1000 Asfif/wxH^K

3 .165 m /s 7f %cf. ZL^HS *J (8)5.-¥-B| Ae= 0.0393

3. Sizing 3^s| fief

g.»Sl flexibility* -§•21-

- De=72 mm - £>=460 mm

- Ws-226 mm (S 9^ oil valve

- H=46 mm (fl/De=0.314)

- Wc=84 mm

Vortex (Chamber, Intermediate Plate iJ Nozzle Insert; Insert #1>£ 225}

- 27 - r :B H p

1 I-HI

0- 6?

•5

17 Vortex Chamber & Nozzle Arrangement

- 28 - 188

22.5 1 84 DIA

4 OFF 10.2 D)A HOLES

-H^l 18 Intermediate Platesdnsert #1) Details

1.5 x 45- CHAMFER

1R (MAX.) 12 - 14 DIA 2.3 HOLCS ON 330 PCO 2.3 2.2

1.5 < *5- CKAMFO

TAPER OUTLET SPOOL - ITEM No.6 SCALE 1:5 1 OFF REQD. O-Q 19 Taper Outlet Spool (Item #6)

- 29 - 1.5 x 45' CHAMFER

IR (MAX.) 12 - 14 DIA • HOLES ON 330 PCD

1.5 x 45' CHAMFER

TAPER OUTLET SPOOL - ITEM No.7 SCALE 1:5 1 OFF REQO. •3-fJ 20 Taper Outlet SpooKItem #7)

1.5 x 45' CHAMBER

TAPER OUTLET SPOOL - ITEM No.8 SCALE 1:5 1 OFF REQD. 3.1J 21 Taper Outlet Spool (Item #8)

- 30 - 1R 7 3

24R- ^

10 120

1.5 x 45* CHAMFER

O-Q 22 Nozzle Insert Details (Insert #1)

Fluidic Device Insert #2

1. data

Fluidic device^ High Low

.(9) _ _ u 2 2 \I2PU SP(QS+QC)

QS=Q<&

EUL : 4 base port)-a}

- 31 - : a StandpipeS-W *&\i\3. flow rate)

Qc : Tank^l baseS.W %\i]£. flow rate)

De : fluidic device-^ IK?- throat U : fluidic device^ #9- throat^

fluidic device^

fluidic device^ -cr standpipe^ standpipe^ SIT ^>^ 4*^

(ID

Standpipe^- tank

Ps •• fluidic device tl Standpipe

Pe • fluidic device g

Insert #2 vortex vale^l 10^

- 32 - 10 Insert #2 Vortex Valve

Fluid OP D De h s AP R EuL EuH P' - - " " •< psig - - - - air D 8 1.25 1.18 0.278x4 0.228 1.12 0.683 10.70 0.0261 air N 8 1.25 0.63 0.325x4 0.235 1.50 1.727 72.9 0.0449 air N 8 1.25 0.94 0.325x4 0.235 1.00 1.191 51.1 0.0277 air D 8 1.25 0.94 0.325x4 0.235 1.00 0.855 52.6 0.0406 air N 8 1.25 1.26 0.325x4 0.235 0.75 1.015 33.1 0.0225 air D 8 1.25 1.26 0.325x4 0.235 0.75 0.552 24.7 0.0309 air N 8 1.25 1.57 0.325x4 0.235 0.60 0.967 23.4 0.0173 air D 8 1.25 1.57 0.325x4 0.235 0.60 0.452 25.1 0.0277 air D 8 1.25 1.89 0.325x4 0.235 0.50 0.374 21.5 0.0299 air N 2.5 0.25 0.24 0.108x4 0.185 0.47 1.060 12.3 0.0341 air N 2.5 0.37 0.24 0.108x4 0.164 1.00 1.506 28.7 0.0718 air N 2.5 0.50 0.24 0.108x4 0.181 1.89 2.595 63.4 0.1074 air D 2.5 0.31 0.24 0.108x4 0.162 0.75 0.578 16.3 0.0638 air D 2.5 0.45 0.33 0.108x4 0.174 1.12 .844 29.2 0.0752 air D 2.5 0.31 0.49 0.108x4 0.183 0.36 .409 7.0 0.0256 H2O N 2.5 0.33 0.16 0.108x4 47.7 1.25 4.762 41.9 0.0460 H2O N 2.5 0.25 0.24 0.108x4 47.7 0.47 2.140 17.5 0.0173 H2O N 2.5 0.30 0.24 0.108x4 47.7 0.66 2.004 21.8 0.0256 H2O N 25 0.30 0.33 0.108x4 47.7 0.48 1.510 15.4 0.0173 H2O N 2.5 0.33 0.33 0.108x4 47.7 0.61 1.908 19.0 0.0225 H2O N IS 0.33 0.49 0.108x4 62.2 0.37 1.375 13.1 0.0152 H2O D 2.5 0.31 0.24 0.108x4 47.6 0.75 2.666 26.2 0.0267 H2O D 2.5 0.31 0.33 0.108x4 46.7 0.54 1.602 20.2 0.0194 H2O D 2.5 0.31 0.40 0.108x4 47.6 0.44 1.394 14.7 0.0163 H2O D 2.5 0.45 0.49 0.108x4 33.2 0.75 1.674 19.7 0.0331 H2O D 2.5 0.45 0.65 0.108x4 46.2 0.57 1.245 15.6 0,0267

conical diffuser#

2. insert #2 ^-3.

insert #2fe K Insert fluidic device^ 0.015*131 ^r <$ 0.57} aj^tt °1 7}^- a 10^

- 33 - (h/De)=129,

scaling^ 50 ramS () insert 60 460 mmS 15] slot^l 16.4 mmS. i?=0.5, /i/Z?e=1.2

insert #2# ^7^1 ^1^^-fe-c^ o] fluidic device-^ vortex A chamber 9! S#i^# ^ o^ ^-^ 23^- 4^- insert #2^ -& ^.^ 244} n^ 255}

/ I A

ELEVATOH DM 'A' - "A"

DJ% 23 Vortex Chamber and Nozzle Arrangement(II)

- 34 - ASSEMBLY OF INTERMEDIATE PLATES mmsr Ha. R£Q'O SOS 22.5 a 2 IS 1

INTERMEDIATE PLATE DETAIL

H^ 24 Intermediate Platesdnsert #2) Details

- 35 - 120

OUTLET PLATE NOZZLE INSERT H-%. 25 Nozzle Insert Details(Insert #2)

- 36 - Test Loop

^^^v*Htest loop)^ c}-gr ZL l 3. $1±= 7]$. 27^ test loop^ P&IDl-

KEY: INSTRUMENTATION KEY: UNE WWBER MSRlPTOR:

Lpl6-0SO-SCH4O Xt NORMALLY OPEN VALVE sarrwK IHTCTLOCK SCaUENTW. NOUtNAL PIPE M NORMALLY CLOSED VALVE IEVEL IHDICATOR UNE SOE SCMEOULE IDENTIFIER K] PRESSURE REDUCING VALVE VOID FRACTION (DENSITY] DETtCTOft IMI LOCKED CLOSED VALVE FLOW INDICATOR TRANSMITTER S CONTROL VALVE PRESSURE TMNSMffTER !j!_ PNEUMATICALLY TWPtRATUBE TIWNSUITTER "*"*J**"" OPERATED VALVE POSITIONER « cLOee VALVE

W NON RETURN VALVE PRESSURE Si DIAPHRAGM VALVE IT.OW t*3 NEEDLE VALVE

• FILTER/STRAJNER

HF, KsctwtiON CiWCTY sac IUTEFW. SU»LW TJCO1 sn TANK 14m W i 1.2V\ I/D CMOONSTta KATtcmocr T20O2 STOCK im SO m»(imoi(,) 7m tKI « Mm I/O SUV. t«mw mn Ml* »ms/hf 4 kWotU W80N SXta/ttSI «W OW«f05 Ot 5MU1 aw MCOimSSOR 17-2J l/i TAD. «- W k»0» C*90N Stm/WSIIWK HMWW VWKCJ nuioe WLVE CMSONSTCa *£ATtenwiocr T2CO5 KM INK ar5m Wl > OAn ft. MOON STEEL «*TtO«lKT TJ057 KCEKR Mb. rowto www sita Dsrne T3D0S Mb. WKO ©WOK SICE EXSTiW STS004 STUKD CUSONSTta ST2O10 cwwsrm.

^ 26 Symbols and Descriptions of System Equipment for R&ID

- 37 - U V O.& 27 P&DD for SIT Valve Test Loop

- 38 - 30& -Built Drawing)-^

JCD @. " .

28 SIT Valve Test Rig Layout & Arrangement Drawing

(a) Plan View

- 39 - k

^ 29 SIT Valve Test Rig Layout & Arrangement Drawing

(b) Elevation View

- 40 - (.

UH4-03O-SCH40

UO1B-O5O-SCH4O

,~l(W0-O«0-SCHB0

L0OJ-2DO-SCH8O

SECTION ON A-A SCALE: 1:50

^L^ 30 SIT Valve Test Rig Layout & Arrangement Drawing

(c) A-A Section View

- 41 - 1. SIT Tank

OT-g- SIT Tank(T2001)fe ASME Section VIII Div. 1^ ^t}n\ -§:& 1.8 m o]c>. 3. w^0! ^1^ ^r $1^ 4 7} ^-^£1. *1 3^^r ^^^5] ufl^ol 328 mm6J flange fluidic valve^ ^ofl n^-eV ^A^> standpipe-^

fe 2

2. Standpipe

Standpipe flange 15 standpipe# standpipe flanged. "^

* \^<

HU 31 Standpipe

- 42 - 3. Fluidic Valve

Fluidic valve(VXC2005)^ vortex chamber^ Si^}. chamber^ insert ^1 handling support7>

O.^ 32 Fluidic Device Q Handling-§- Support

4.

-b SIT

15-34 ^-71

5. %

30 m3/hr, ^^^& 2.5 ^i stock tank^l A V SIT 4 kW, 415 V, 3 O ^ control panelofl-M SIT *&3L$\ ^$\7} ^^^} set points! Sic}. ^Sfe 7]^^ stock

- 43 - tank(T2002)^ ^eflofl Hj-^H ^*l^uf. *g^»] ^§-^-*fe Grunfos^l^f.

6. Stock Tank

Stock tank(T2002)fe 7]^ 6 m «|3.0k»l 6 m x *J3 3 m)S

©1 *$3.2\ -g-eo>£- SIT *J.=LS.-?-e| Wflf-Sfe ## ^*1

33^1 A>^1 (a)Aj- ^^1 stock tank^ ^-^-fe open^H SX±- K Stock tank^

1 *

! \ ; - »

(a)

(b) l 33 Stock Tank

- 44 - 7. HHS S! UJ^

Fluidic valves 1«.(V1 £ V2)7> h VI

pre-setting^> pneumatic ml 34 ^ H^] 35

H^l 34 SIT Tank, Fluidic Device ^ Stock Tank^

ZL^ 35 S#^-^- Pneumatic Valve (V2)

- 45 - 8. Data Logging System

- Model : IBM PC-Pentium P133, Eagle PC30 series I/O board - Vendor : Edward Dewhurst - Performance . HP VEE software *Y%- . Data logging speed : variable speed, max. 200 Hz/each channel - Channel -r-^>(137fl) . A (dPT-1004) . B : (PT-1007) . C Void (VOID-1009) . D (VI) . E (FIT-1013) . F (PT-1012) . G (FIT-1015) . H (PT-1014) . I -) (dPT-1004) . J (PT-1016) . K (TT-1008) . L : (PT-1018) . M (FIT-1012) - Panel Display ; . VI position(pre-setting) . Tank Pressure(pre-setting) . Tank Level . Pump ^ compressor ^^ S.-*-] Panel *J PC -g*l : O.Q 36 3 37

I :^'. Hit).-

HU 36 Data Logging System

- 46 - Sv i(v , t > -•>>.

, %, .,,

' f , y

HH 37 Panel Display

9. Pressure Transmitter

fe PT-1007(Ptank)( PT-1012(Pc), PT-1014(Ps), PT-1016(Pe)

PT-1018(P()Ut) # 5A$] ^^ ^-^-S- pressure transmitted - Model : 3349-A115 - Vendor : Kobold - Measuring Range -0-60 bar - Accuracy : ±0.5 % ^-^ 38 ^f^l

H^] 38 Pressure Trasmitter

- 47 - 10. Level Gage

9! standpipe vfl

(a) Top

(b) Bottom ZL^ 39 Differential Pressure Type Tank Level Indicator (DPT 1004)

- 48 - t -

(a) Top

(c) Bottom

n.^} 40 Differential Pressure Type Standpipe Level Indicator (DPT 1003)

- 49 - 11. Flow Transmitter

#*H-c- FIT-1013(Qc), FIT-1015(Qs) ^ FIT-1012(Qe) %• 3 flow transmitted

Measuring Identification Model Vendor Accuracy Range Series 8900VR, Rosemount 0-180 nvVhr ±0.5 % FIT-1013(Qc) PROBAR(12")

FIT-1015(Q ) it s 0-650 "

it « FIT-1012(Qc) (8") 0-650 "

Flow Transmitter^] ^-^ 41S]

H^] 41 Flow Transducer (FIT 1015)

- 50 - 6 3-

1 ^ Reference parameters

vfl^ 1.25 (full scale) SIT£) i-fl^^r 2.74 nH^h v\z\M ^^^Sr ^^H tflt!: scale-down scale-down) Hfe 4.8«=>1 ^cf. >g ^-S SIT^ 7j]^ ^Tfl 71- ^: 570 psig(39.3 barg)e}$X°-^\ ^^-§- E53.fe 610 psig(42.0 barg)l- 7] ^£.3. 'gTllSl&t;}. rc}eH ^^^A^ ^§3.^ >y^ 7^ ^ ^^H ^^^ ^^ ^

2. 271 gas volume

^ ^S-S SIT^ 3L71 ^3. vfl gas volume^ 22.8 m3 (806 cu. scale «1# 3.^-S-}1^ ^^E|3. M|5l 3L7l gas volume^ 4.78 m3*! 5l«Ho> 517] gas volume^ BJ-^71 ^«J ^eM-fe- El^.^ ^r 10.6 m(^, ^3.51 *^^^4 ^ ^^ transducer^ 0.5 m ]Sl fl^ ^]

3. Standpipe

standpipe7} l-te- 1600-800=800 cu. ftS. scale-down t> -§-^ •^•alfe- 166.7 cu. ft(4.7 m3H 1.25 m^ *$3.*K^ ^4\ ¥.Q 3.8 m^ ^B^^^K ^, standpipe 6.8 m *1 transducer^ ^3. H}t]-AS.-f-5i 0.5 m 1 7.3 l ^»

- 51 - 4. LHH fcl

-c- vortex 1«- 3 2150 448 m /nr7r

butterfly 1«- 0-100% setting^

.±= bend butterfly ^H. 11 ^ butterfly ^^- 30-35%^

11 Valve Opening(%) vs Flow Resistance

Butterfly Butterfly 2 Test 2 Test ^ w. 4s. DP/Q Run # 1 a. 7flJE DP/Q (%) (%) Run # 2.0x10"4 15 3.2xlO'5 34 5 1 5 l.OxlO" 16 30 4.0xl0" 38 1.2x10"' 17 4.0xl0"5 41 10 5.6xlO"2 18 5.5xlO"5 8 1.5xlO"4 21 3.0xl0"5 9 4.4xlO"2 19 2.4xlO"s 33 15 1.4xlO"2 22 5.6xlO"5 35

3.7xlO"4 20 2.3x10'5 36 20 35 4.5xlO"4 23 2.0xl0~* 37

22.5 1.3xl0'4 25 2.1xlO'5 40 1.1 xlO"4 24 2.3xlO"5 42

6.2xlO"5 27 1.9xlO'5 44 25 5.2X10"5 31 1.2x10"* 45

5.6xlO"5 32 50 8.8xlO"5 11

27.5 4.7xlO"5 26 65 5.3xlO"5 12

- 52 - -H51 H^ 26 "P&ED for SIT Valve Test Loop" test rurH test run#

y v (1) Pneumatic o #^S^-(V2)l-

(2) ^3.^ vent^«-(V15)S

(3) SIT ^^(T2001)^ °J^#

(4) Standpipe vent^ W-(V14)»

(5) Stock tank bypassl^L(V6)l-

(6) Tank -M-^^r^ ^a.(V7)#

(7) ^^^ ^, ^K> wfl^; ^«.(V3, V4 iJ V5)$]

(8) 4*1^ HiL(V19) 5J ^-^-^^ »S«.(V20)^

5 B (9) Stock tank(T2002) ^fl-^ # ^fl^ o^l SIT |3.(T2001)-

stock tank^l

(10) ^S(

(11) V14

- 53 - o

(13)

(14) V6

(15) Data Logger# reset

(16)

(17)

(18)

(19)

(20) Butterfly

(21) V2#

(22) SIT , ZLel3. stock

(23) SIT «|a. ^l stock tank^.^ 50 m3/hr V2S ^fet;}.

(24) 213. (1) T£?\]3.

- 54 - 12 «l: (1/2) Water Test Test Tank Logger S-Pipe Valve Time Valve Run # Date ^initial Frequency Location Level Insert # Lag Open Remarks (bar g) (Hz) (m) (sec) 1 5 20 4 12 1 20 valve #1 2 10 It " " " tt " 3 15 tt tr tf " tt tt 4 19.3 40 it tf tt it tt 5 " " tt it tt it It 6 It 20 tt U tt tt n

tt it 7 42.3 " 3 " " 8 tt it " It 35 tt

9 it " tt " It " " 10 16/11/98 tt 10 It 12.1 tt 17 H tt 11 If if tt " tf 23.1 50 ti 12 17/11/98 tf tt tf 30.77 65 it

a tf n tt 13 " " " 17 35 14 18/11/98 n tf 6.1 " 33 " tt

tt tt 15 " " 12.1 " « 5 16 19/11/98 u 11.2 24 tt 17 •> « 22 10 » IS 20/11/98 40 « « 24 « it 19 38 « 34 15 tt 20 40 « 31 20 ti 21 22/11/98 42.3 2 33 10 valve #2 22 23/11/98 « « » 22 15 " 23 u (4 u 20 20 It u 24 " 24 25 tt 25 24/11/98 « « « " 23 tt

- 55 - 12 (2/2)

Tank Logger Water Time Valve Test S-Pipe Valve Remarks Run # Date "initial Frequency Location Level Lag Open (bar g) (Hz) (m) Insert # (sec) 26 24/11/98 42.3 10 3 11.2 2 24 27.5 " 27 25/11/98 40 u u u 47.5 25 " 28 u 42.3 (4 u « « 49.1 30 " 29 « « u a u 53 35 30 26/11/98 38 u u u 44.4 30 " 31 27/11/98 « « " 47.5 25 "

32 « • « 5 It 47.3 " 33 7/12/98 40 10 « 12.1 It 47.4 35 valve #3 34 « » « 11.2 « 59.1 30 35 8/12/98 <• M « 59.5 35 It u M « u 36 38 58 " 37 10/12/98 40 U « 12.1 If 64.6 « valve #4 38 tt It 11.2 tt 30 tt 39 » ft // " tf 35 tt

tf n tt ft 40 38 " "

41 40 ft •' 12.1 " " it 42 It It tt " It il valve #5 43 if If tt 11.2 tt 40 " 44 rt tt tt " It 35 "

45 38 " tf It tt

Processing of Data

data logger-^ A A^AS-^ ^4 4000 ^I^l^fe EXCEL spread sheets. &*% 4000

spread sheet 7^1

- 56 - processing^ cfg-aj-

1.

Qs(standpipe# «-S.^

Test run

FLOW VERSUS TIME

CB ..A Q5 QctQs I ! K- Level f^c

O 2i 0 2 0 3 0

r.m. {>)

42 Flow Rate vs. Time Curve (Test Run # 35)

°1* Plottl differentiation^: 10 time-average*H

- 57 - error7>

180 m3/hr setting*}^ ^SLtfetfl, <>] ^ 180 m3/hr3. raw data 3JH ^ -3 m3/hr7|- £]&£}•. a^-fl o] v%6\] standpipe

error7} 01

2.

Test run 35^ -& 3^ 43^}

LEVEL VERSUS TIME (above tank base)

—^s I \ \ -Act Vessel Act Pips i X ; standppe level

200 300 400 Tlme(«)

H^J 43 Level vs. Time Curve (Test Run # 35)

- 58 - standpipe plot transducer^ £ $1*1(0.47

Standpipe AoVJf transducer standpipe elbow-^ standpipe standpipe^ 1.4 m standpipe 1.4 m

standpipe^ ^^1^ transducer^ 1.8 m standpipe

3.

Test run 35^ 1^; nej 445}

Pressure versus time

-Pc -Ps Pe -Adabalic H—- Tank press

-* •-&-! *•

ZL^ 44 Pressure vs. Time Curve (Test Run # 35)

- 59 - , Pe(Fluidic valve *J

Pout(butterfly ^J* ^T££| tf3j) uj p^SE.^ Tank Pres&.)(*&3J\ 5 7M

^^ (Adiabatic) fe Adiabatic ^^^^2f Tank Press. ^-^

- Standpipe

fe transducer^ transducer

4.

U : %3. -frS ^^(reference cross-sectionH

throat^

- 60 - Test run 35^

KValue tor FliHdta Valve

—I—fc_J—I—1—I—«—1—-I—I—I—I—>__J—1—1_ H—i—t—i—i—|—1_ 50 100 150 200 250 300 350 400

H^ 45 Loss Factor vs. Time Curve (Test Run # 35)

(1)

Fluidic Device^ itff

- 61 - (2)

Fluidic Device7f <& standpipeS. 7^# ^^A^l^] ^JL ^^^ ^ Si Fluidic Deviceofl-M -n-^^^^ ^ ^, shutdown^ fe standpipe M}£] - ^- ^^- standpipe standpipe standpipe

(3)

Fluidic Device^ Fluidic Device ^flS] ^A ^1^# scale*H T. 71^

2.

Fluidic Device^

- 62 - 13

TRIAL q' p' AL Q t EuL EuH Valve UNITS - - m m3/hr s - - - 8* 3.1 0.032 . 662 - - 17.2 1 9* 2.9 0.032 4.62 541 26 1.7 17.5 1 10* 3.0 0.063 . 550 25.5 _ - 1 11* 2.4 0.053 4.46 553 25.9 1.7 12 1 12* 2.2 0.034 4.59 542 27.5 - 18.6 1 13* 2.7 0.044 4.41 540 27 2.3 17 1 14 - - - - I 15 - - I 16 - _ 1 17* 0.092 1 18* - 0.082 - - - - - 1 19* 1.2 0.074 3.11 200 - 7.7 - 1 20* 2.2 0.061 3.99 395 30 - 18.6 1 21 - 0.019 2.61 - - 4.1 34 2 22 3.5 0.019 2.83 202 1.0 50 2 23 3.5 0.018 2.70 237 52.5 2.8 38 2 24 3.4 0.018 2.19 217 73.5 4.0 40 2 25 3.5 0.018 2.67 226 49 4.5 37 2 26 3.1 0.018 2.70 236 50 3.8 38.6 2 27 3.1 0.018 2.60 214 51 3.8 39.7 2 28 3.8 0.017 2.38 221 50 - - 2 29 3.5 0.017 2.58 219 53 4.4 40.7 2 30 3.5 0.017 2.38 215 55 4.4 40.9 2 31 3.5 0.018 2.33 213 55 4.4 40.6 2 32 3.4 0.018 2.38 209 55 4.2 39.7 2 33 3.6 0.015 1.55 208 70 3.6 45.2 3 34 3.5 0.015 1.92 263 46 2.6 26.9 3 35 3.5 0.015 2.09 260 49 2.5 27.3 3 36 3.4 0.015 2.04 260 49 2.6 24.9 3 37 4.0 0.037 3.42 386 38 3.7 46.3 4 38 3.6 0.035 4.47 406 - 3.6 54.8 4 39 3.7 0.034 4.47 405 - 4.7 59.8 4 40 4.0 0.038 3.38 382 38 3.8 59.4 4 41 - 0.037 3.50 349 38 3.7 - 4 42 3.8 0.023 2.20 332 52 3.0 36.3 5 43 3.8 0.020 2.99 336 35.5 3.0 35.4 5 44 3.7 0.021 2.93 342 34.5 3.0 34.4 5 45 4.0 0.021 2.81 325 36.2 3.0 35.6 5 * Trials on valve 1 difficult to ascertain accurate p' because of short vortex time.

- 63 - Fluidic Device^

(1) (q') standpipe ^ steady

(2) <&q a] (p') ^S. standpipeS. #<>!

^ Pc, Ps

error7l-

(13)

standpipe-^1 (3) (JL) vortex-restricted flow standpipe^I

(4) ^§5: 4rso* (0) Fluidic Valve7l- standpipeS.

(5) Standpipe

K Full

Qc+Qs ^jt^. linear extrapolation*}^

standpipe (6) Low

l^(steadyt>

(7) High (EUH)

- 64 - Pg Pe Flow turn-down $) &<>1 tKsteady*>

(8) ^w.^ ^Efl •?-§• Ik*] 57\x\$] vortex valvei-

14 Z> d h We W Test e s A al 2. (mm) (mm) (mm) (mm) (mm) run # Valve #1 460 75 45 84 226 0.29 1-20 insert #1 Valve #2 460 50 45 16.4 16.4 0.67 21-32 insert #2 Valve #3 460 50 60 16.4 16.4 0.50 33-36 insert #2 Valve #4 460 75 60 16.4 16.4 1.12 37-41 insert #2 Valve #5 460 58 60 16.4 16.4 0.67 42-45 insert #2

1 vortex - D '• vortex

- de '• vortex valve-2} S# - h '• vortex ^^-^ -fe^l

- Wc • ^MfiBS] slot ^

VV s ' O l=J —*— '—1 olOL —i

^ valve #1-^: vortex

d 6 valve insert ^ 18 Af-§-«> Valve #2, 3, 4 o w valve insert #2(H^ 24 f. Valve insert #2

3.

- 65 - 5 valve JE 15 if 3°.

15 *&2L

Valve q' P* AL Q t EuL EuH - - - m m3/hr s - - 1 2.8 0.038 4.52 565 26.4 1.7 17.6 2 3.4 0.018 2.53 219 52 4.2 39.6 3 3.5 0.015 1.90 261 48 2.6 26.4 4 3.8 0.036 3.85 386 38 3.7 55.0 5 3.8 0.021 2.75 334 35 3.0 35.4

(1) Valve ft*]

(2) Valve #3-b Fluidic Device

(3) rt}eH valve #3# ^1-g-*}^ validation test* °] full scaled Fluidic Device# scale up*Kr 7]& S1!^- (4) Fluidic Device-^ ^7ilx)^^ computer modeWM ^r^ p'=0.015, £«J>2.6 il EuH=26A7\ Qt\.

insert #2 fluidic device-^ S. p'=0.016, EUL=1A O-Z)3. EuH=lA.l o)

} p'=0.015, £uL-2.6 ^

EuH=26A3. p' ft& EaL/EuH ftS. AA o|

cavitation

- 66 - 8 ^ Fluidic Device

Fluidic Device^

1. Scaling rules

m& 16»fe Fluidic Device^ scale *}7\

o> ^^£.©3. scale *f7l $}n*\±=; p, EaL ^# 44 0.016, 2.66 ^ 26.5S scale «17} ^ scale Hi7]-

AS scale ^^ H sigoj ajcu -8-^.M.cl gufl 3. fluidic scaling factor^ 3<^1 ^^f. Scale rule# dluidic device^]

^^ (De) (D)

slot ^ (W) '-1 ^-1- - £# t]^-x\ throat-^1

2. M TT-2. Fluidic device

(1) FD - Peak flow: 2835 m7hr (1723 lbm/s) - SIT initial gas pressure: 38 barg (551 psig)

- 67 - - Hydraulic head driving the flow: 1.4 bar (20 psi) - K-factor for the system, excluding the fluidic device: 9.0 on a reference diameter of 0.284 m (ID=11.2 inches)

(2)

Step 1) Scale-up factor ^^ - Pressure drop across the system, excluding the fluidic device:

bar - Total pressure drop to be sustained by system: 38 + 1.4 = 39.4 bar - Pressure drop across fluidic device: 39.4-5.24 = 43.2 bar - Euler number for fluidic device: 2.66 - Required exit port diameter for fluidic device:

8X2.66X1QQ0[H|§-| 4./ V ( /X34.2X105 "14L0 Scale-up factor: 141 50 = 2.81

Step 2)

scale a]^«/£c|)^ 2.81 safe FD^I ^A^- *I^N= - Outlet Nozzle Diameter (De) : 50 x 2.81 = 141 (mm) - Supply Port Slot Width (s) : 16.35 x 2.81 - 46.0 (mm) - Control Port Slot Width (s) : 16.35 x 2.81 = 46.0 (mm) - Chamber Diameter (D) : 460 x 2.81 = 1293 (mm) - Chamber Height (h) : 60 x 2.81 = 169 (mm)

- 68 - - FD Outlet Nozzle Area : ^O-j41) =0.0156 (m2)

- Supply Port Area (Standpipe *t) : 0.046x0.169x4 = 0.0127 (m2) - Control Port Area : 0.0127 (m2)

Flow Loss Coefficient Sfe K &(Euler

- FD7> ^^*r7l # ^H-n-^ MB#A1 FD<^1 Sjt> Flow loss coefficient^uL) : 2.66 with a reference area of 0.00196 m2 (or 0.0218 ft2) - FD7f ^*> -?• ^-fr^ «H#A1 FD*fl -W Flow loss coefficient^^//) : 26.5 with a reference area of 0.00196 m2 (or 0.0218 ft2)

^l^- an

Fluidic Device

scaled Fluidic Device^] ^-^

^^ FORTRANA^. program^

464 ^-fl 474 ^-A

- 69 - FLOW VERSUS TIME

.\ :\ 2500- : \ i \

QC Qs

I i

8 S 0 —L_J 20 40 60 100 120 140 160 180 200 Tim* (s)

ILQ 46 Full Scale Flow Rate vs Time Curve(Prediction)

KValu» lor Fluldlc Valve

r

0 20 40 SO 80 100 120 140 160 180 200 Tln»(s)

-H^l 47 Full Scale Loss Factor vs Time Curve (Prediction)

- 70 - 10

Fluidic DeviceS

Fluidic Device^ Fluidic Device^] AEA Technology^

l^ AEA Technology*}** ffe Fluidic Device AEA Technology*}^]

prototype 7fl«J- A] scaled prototype Fluidic Device^! 71)^

Fluidic Device^

(1)

(2)

(3) 75 mmflj Valve

(4) 50 mm*I Valve 54H)7} Fluidic Device

- 71 - (5) n^H valve #3# °l-g-«H validation testS 7fl<*f*}$i2. °] JL full scaled Fluidic Device* scale up*fe 7]^ SJ&S. (6) Fluidic Device^) -M^l^-l^^fl S^% computer modeMH H

^^ p'=0.015, 5uL-2.6 ^ EuH=26A7\ (7)

(8)

(9) -S^Wl- <^l-§-*>

1/7 ^s.*i scale-up*H ^ T?-S51 Fluidic Device^

^1A-| 4J^f-S^ full scale Fluidic Device *H # ^ ^^y ^W^H^^S Fluidic Device^ H chamber

- 72 - [I] Tippet J. R. et al., "Developments in Power for Application in Nuclear Plant." Trans. Am. Soc. Mech. Engrs, 1981, 103, 342-350. [2] Etherinton C, "Power Fluidics Technology and Its Application in the Nuclear Industry," Nuclear Energy, Vol.23, No. 4, Aug. 1984, pp. 227-235. [3] Thoma D., "Vorrichtung zur Behinderung des Ruchstromens," Deutsche Patentschrift nr. 507 713, June 1928. [4] Kirshner J. M. ed., "Fluid Amplifiers," N.Y., McGraw-Hill, 1966. [5] Wormley D. N., "A Review of Vortex Diode and Triode Static and Dynamic Design Techniques," Fluidic Quarterly, Vol.8, No. 1, 1976. [6] Wormley D. N. and Richardson H. H., "A Design Basis for Vortex-Type Fluid Amplifiers Operating in the Incompressible Flow Regime," Trans. ASME, J. Basic Engineering, Vol. 92, 1970. [7] Brombach H., "Flow Control by Use of Digital and Analogue Switched Vortex Amplifier," Proc. of the 6th Cranfield Conference, Cranfield, BHRA, 1974. [8] Gebben V. D., "Vortex Valve Performance Power Index," in Brown F. T., ed. "Advances in Fluidics," New York, ASME, 1967. [9] Taplin L. B., "Small Analysis of Vortex Amplifiers," AGARDo graph 118, 1968. [10] Syred N. and Royle J. K., "Operating Characteristics of High Performance Vortex Amplifiers," Fluidic Quarterly, Vol.4, Issue 1, Jan., 1972, pp. 56-73. [II] Chow S. K., "An Experimental Study on the Characteristics of Vortex Valves," Proc. of the IFAC Symposium on Fluidics, 1968. [12] Lawley T. J. and Richardson H. H., "Design of Vortex Fluid Amplifiers with Asymmetric Flow Field," Trans, of the ASME, J. of Dynamic Systems, Measurement and Control, Vol. 94, 1972. [13] McCloy D. and Stevenson I. J., "Some Experiments with Oil Hydraulic

- 73 - Vortex Valves," Proc. of the 5th Cranfield Fluidics Conference, Cranfield, BHRA, 1972. [14] Zobel R., "Experiments on a Hydraulic Reversing Elbow," Mitt. Hydraulic Institute, Munich, 1983, 1-47. [15] McGuigan J. A. K, "A Pumping Circuit Using Vortex Diodes," MSc Thesis, Queen's University, Balfast, 1971. [16] Tippets J. R. and Priestman G. H., "Detail and Strategy in Fluidic Developments for the Nuclear Industry," Proc. 2nd Int. Symp. and Strategy on Fluid Control, Measurement, Mechanics and Flow Visualization, H.S. Stephens, 1988. [17] George P. T., Wward J. R. and Mitchell F. M, "Vortex Diode Characteristics at High Pressure Ratios," Symposium Process Control by Power Fluidics, Institute of Measurement & Control, London, 1976. [18] Mori G. and Premoli A., "Vortex Diodes in Two-Phase Flow," European Two-Phase Flow Group Meeting, Brussels, 1973. [19] Tippets J. R. et al., "Vortex Diode Characteristics at High Pressure Ratios/'Process Control by Power Fluidics Symposium, 1975. [20] Rimmer E. and Ford L. H., "Power Fluidic Achievements in the Nuclear Industry," Proc. 2nd Int. on Fluid Control Measurement, Mechanics and Flow Visualization, H.S. Stephens, 1988, pp. 117-123. [21] Shiraishi T. et al., "Development of the Flow Controlled Accumulator," Int. Conf. Design and Safety of Next Generation Nuclear Power Plants, Tokyo, Japan, October 25-29, 1992 [22] Forsberg C. W., "A Process Inherent Ultimate Safety Boilin Water Reactor/'Nuclear Technology, Vol.72, 1986, pp. 121-134 [23] Forsberg C. W., "Passive Emergency Cooling System for Boiling Water Reactor (PECOS-BWR)," Nuclear Technology, Vol.76, Jan. 1987. [24] Bong-Hyun Cho et al, "Development of Fluidic Device in SIT for KNGR Design," Proc. The 11th KAIF/KNS Annual Conference, Apr. 1996, pp. 475-484. [25] -g^ %, "Vortex Valve7f|^ KAERVTR-611/95, 1995.

- 74 - [26] %^ >§•, "$>*HHJB3a. -8-*g^«g- Vortex 1*-^ A^]fiJ4 "A -n- •§• ^H ^4," KAER1/TR-835/97, 1997. [27] Crossley M. J., and Parker D. E., "Investigation s into the Performance of the 10,000bls/day Seawater Injection Vortex Choke Valve," FTN/VXC/3, Internal AEA Technology Document, 1991. [28] Crossley M. J., and Parker D. E., "Vortex and Tandem Choke Design Guide Single Phase Gas and Multiphase Liquid," FTN/VXC/14, Internal AEA Technology Document, 1993. [29] Donnelly P., "Control and Operating Philosophy of KNGR SIT Valve Rig," AEA Report No. 18/600/R001 Issue2, February 1998 [30] Stairmand J. W., "Trial Report on KNGR SIT Valve-January 1999," AEA Report No. 18/0600/P004 Issue 1, January 1, 1999 [31] Stairmand J. W., "Design Guide for KNGR SIT Valve-March 1999," AEA Report No. 18/0600/P005 Issue 2, March 17, 1999 [32] Stairmand J. W., "Verification Trials for KNGR SIT Valve-February 1999," AEA Report No. 18/0600/P006 Issue 1, January 1, 1999

- 75 - *\ *| $ M. <$ q ^7l«Ji^«i^ IMS ^2£

KAERI/TR-1363/99 afl^/JMII *&x\S. SIT Ml Fluidic Device 7j^- (I)

£ •?• *f Si -¥• ^ *g

# s> *1 til # 1^71 # ^*3S4 1999 5)1 ©1 *1 83 pg £ a ai-§-(v), tt#( ) •3 7l 21 cm x 30 cm *MldHJ4£7a£ D ^7H( V ), m*H( ). _ ^1 J 7l#^aA-i

*4 -?-•£] ^T"7| -*^ ^ (15-20#q)£])

i E Fluidic Device-^- *>^^ y i53.(Safety Injection Tank) v()-y- •§- _*1*1<^ LBLOCAA] 6V^^^E|a^g.^.t]6] ^^^^ "-34^ -n-5ov-i- sl

•fe- Fluidic Device^! -n-^-T-^-S- =-3.^1- ^-^" AEA Techno logy AJ-AJ ^g^2^ ^l^-i: ^^^l 7112: %-§-*H 71^1 7j^-i- fltt ^4i a^a-a^-i- -HRst^ ^-na^fe -a ^a^i s]^ Fluidic Device -T-^ ^,$] •^•^•S: ^Mlc-D-xi-»fS.»lI ^-b Fluidic DeviceSl 7fl^- 7V^-^-§- -^^.° ? ^}-6l*>3. 7(| ^•^y 7i7i£i -8-=y= -T'^^S-a- ^'vt^lfe1''!! Ssijd'^l' "^^^& #$71$ ^T* 1/7 scaled. full height, full pressure 2^-2.3. ^*|Sl5d^K •& fi.J2.-M*f|fe Tfl^ofl-M £--TL*1~C- 7] 71 ^^Aa. ^^"Hl^V-§-^ Fluidic DeviceSl ^7)1^*}, 'U^^^l ^J 's^!koVl£l(>ll ^Q ^|*> ^*o Qty. 'U^^^te 7]7li| ^-^T-^-S- ^l^tofl tfl^V -^-^=,

S. ^H^lfe 7l7l£l -1= ,^^ ^oW ^ flSitf. £*>,

l*\S-, Fluidic Device, ^i?i^1

Project Manager Bong Hyun Cho and Department (Power Reactor Technology Development Team) Researcher and Joon Lee. Yoon Young Bae, Jong Kyun Park Department (Power Reactor Technology Development Team)

Publication Publication Taejon Publisher KAERI 1999. Place Date Page 83 pg 111. & Tab. Yes(V), No ( ) Size 21 cm x 30 cm Note Korean Next Generation Reactor Development Classified Open( V ), Restricted( Report Type Technical Report Class Document Sponsoring Org. Contract No. Abstract (15-20 Lines)

The KNGR is to install a Fluidic Device at the bottom of the inner space of the SIT(Safety Injection Tank) to control the flow rate of safety injection coolant from SIT during LBLOCA. During the past two years, a scale model test to obtain the required flow characteristics of the device under the KNGR specific conditions has been performed using the experience and existing facility of AEA Technology(UK) with appropriate modifications. The performance verification test is to be performed this year to obtain optimum characteristics and design data of full size Fluidic Device. The purpose of the model test was to check the feasibility of developing the device and to produce a generic flow characteristic data. The test was performed in approximately 1/7 scale in terms of flow rate with full height and pressure. This report presents the details of system performance requirements for the device, design procedure for the Fluidic Device to be used, test facility and test method. The time dependent flow, pressure and Euler number are presented as characteristic curves and the most stable and the most effective flow control characteristic parameters were recommended through the evaluation. A method to predict the size of the Fluidic Device is presented. And a sizing algorithm, which can be used to conveniently determine the major geocetric data of the device for various operating conditions, and a FORTRAN program to produce the prediction of performance curves have been developed.

Korean Next Generation Reactor, Fluidic Device, Safety Subject Keywords Injection Tank, Model Test, Full Scale Test, AEA Technology, (About 10 words) Flow Turn-down, Euler Number