Development of Fluidic Device in SIT for Korean Next Generation Reactor ( I )
Total Page:16
File Type:pdf, Size:1020Kb
KAERI/TR-1363/99 KR9900234 SIT Ml Fluidic Device nm I ) Development of Fluidic Device in SIT for Korean Next Generation Reactor ( I ) 31-02 SIT vfl Fluidic Device 7fl^ (I)"ofl 1999. 7. -g- o] o ofc fe LBLOCA*! Sl#^ ^(Safety Injection BOM- =1^3 ^-2^. ^*}7] $M Fluidic Device Fluidic Device^ sl^fl glj }} Q Fluidic Device^] -^-5O^^# ^3-Xf <^^- AEA Technology^ Fluidic Device Fluidic Device^) 1/7 scaled full height, full pressure fe 7171 ^-^.S.^, ^^6fl 4^ Fluidic Device^ ^7j| Ml*l Mf-g-oJ 7}#5|^cf. -y^^^^ 71 71 ^ A^-A^ AlTi^ Cfl^l; ^-3O>( 6V^ 3J ^Cjel ^*1 3t7ll^-AiAS ^ 5l E|S Sii 7HV ^^^1 ^MS. •%•%<>] IL^JLS. ^H^lfe 717151 ^-^^ ^^^^<H1 nj-ef 4-§-^ Fluidic Device-^ 51 ^Aov A^^^-^i ^^1-8- FORTRAN ^ Ufl, £ -§•% ^ si-a- SUMMARY The KNGR uses Fluidic Device to control the flow rate of safety injection coolant from SITOafety Injection Tank) during LBLOCA. This Fluidic Device is a passive safety equipment and it is installed at the bottom of the inner space of the SIT. During the past two years, a scale model test to obtain the required flow characteristics of the device under the KNGR specific conditions has been performed using the experience and existing facility of AEA Technology(UK) with appropriate modifications. The performance verification test is to be performed this year to obtain the optimum characteristics and design data of full size Fluidic Device. This report summarizes the results of the model test. The purpose of the model test was to check the feasibility of developing the device and to produce a generic flow characteristic data. The test was performed in approximately 1/7 scale in terms of flow rate with full height and pressure. This report presents the details of system performance requirements for the device, design procedure for the Fluidic Device to be used, test facility and test method. The time dependent flow, pressure and Euler number are presented as characteristic curves and the most stable and the most effective flow control characteristic parameters were recommended through the evaluation. A method to predict the size of the Fluidic Device is presented. And a sizing algorithm, which can be used to conveniently determine the major geometric data of the device for various operating conditions, and a FORTRAN program to produce the prediction of performance curves have been developed. The conditions of this test are very specific, that is, the fluid is high flow water with a very small pressure difference between supply and control port. Therefore, almost no empirical test data is available. Consequently, the test results will be utilized as reference for the future development of full scale of Fluidic Device. - II - 2 # Fluidic Device*] 7^ 3 *1I 1 1 ^ 2) 3 4 2 ^ Vortex Valve*! ^-^ 3 4 3 ^ Vortex Valve*] ^-^^-^ 5 *11 4 ^ Vortex Valve*! -§~§-W 7 3 ^ Fluidic Device 71^2 16 4 l ^ ^^-fi-^i 16 4 2 ^ SIT Tank ^-^ ^^ 2.*i 18 *\] 3 ^ S^M^ ^«1*] ^-fi- ^4^^ 19 4 # S.<i -y^-g- Fluidic Device ^Tfl 20 ^1 1 ^ Fluidic Device Insert #1 21 fl 2 ^ Fluidic Device Insert #2 31 37 1 ^ Test Loop 37 2 ^ #*1 ^-^ 7171 gl 7fl^7l7l 42 y 6^ ^^ o^ 51 4 1 ^ Reference Parameters ^ ^^^.^i 51 ^1 2 ^ ^^ ^*> 53 7 # ^^^^ 55 4 11 ^^2:^ 55 ^1 2 ^ Processing of Data 56 - iii - 3 ^ -iM^f 3g7} 61 8 # Fluidic Device 'gTfl*!^ 67 ff 1 1 Fluidic Device^] -g^l 67 69 71 73 - iv - s. i s.^. ^^-ini^ ^g. -g^tH* 19 .5. 2 Pressure-Flow Characteristics for Oil Choke Valve 1 22 S 3 Pressure-Flow Characteristics for Oil Choke Valve 2 22 I£ 4 Pressure-Flow Characteristics for Oil Choke Valve 3 23 3£ 5 Pressure-Flow Characteristics for Oil Choke Valve 4 23 i£ 6 Reference Valve Designs 24 S 7 Supply Flow at Valve Open Versus Control Port Size 24 S 8 Summary of Data from Oil Choke Valve Work 25 -S 9 Comparison of Valve Dimension Ratios 26 S 10 Insert #2 W*l Vortex Valve^I tj|*> ^ Z%O}B\ 33 S 11 Valve Opening(%) vs Flow Resistance 52 S 12 i^^i H]JSL ^ 55 S 13 ^olW <*^ ^JSL »§a-^^ ^4^ &.<$ 63 S 14 il^otf A}-g4l |H«] j*& ^^]^ 65 S 15 ^«.5] ^A ^-^^^ ^.^ 66 - v - en 1 Vortex Valves ^ (7fl\|.£) 4 2 Vortex ValveSj -^3-^d 5 3 Vortex Diode^I *HHiel 7 4 Vortex Diode ^S^l *}-%• ^} 8 5 4U*}.3.6fl-M Diode7} Reverse Flow Restrictor^. -§--§-S <Hl 9 6 Vortex Amplifier-^ 4^-tls] 10 7 Globe-box Ventilation Control 10 8 ^^^ Vortex Amplifier^} ^%-^-^d 11 9 SIR Primary Circuit Flow Paths 12 10 Principles of Mitsubishi Advanced Accumulator 13 11 Schematic of Fluid Flow in PIUS-BWR Reactor Vessel 14 12 aMM^l-S. SIT M Fluidic Device ^*1 7fl^i 15 13 Vortex Chamber Mf -fri?^^ 7JV! 15 14 Optimized SIT Flow Rate Curve 17 15 SIT Tank -8-%* A^<Hl^ 18 16 Vortex Valve ^l^li1^ $$) 20 17 Vortex Chamber & Nozzle Arrangement 28 18 Intermediate PlatesCInsert #1) Details 29 19 Taper Outlet SpooKItem #6) 29 20 Taper Outlet SpooKItem #7) 30 21 Taper Outlet Spool (Item #8) 30 22 Nozzle Insert Details (Insert #1) 31 23 Vortex Chamber & Nozzle Arrangement(II) 34 24 Intermediate PlatesQnsert #2) Details 35 25 Nozzle Insert Detailsdnsert #2) 36 26 Symbols and Descriptions of System Equipment for R&ID 37 27 P&E) for SIT Valve Test Loop 38 28 SIT Valve Test Rig Layout & Arrangement Drawing (I) 39 - vi - 3.U 29 SIT Valve Test Rig Layout & Arrangement Drawing(II) -.40 3.^' 30 SIT Valve Test Rig Layout & Arrangement Drawing(III) -41 3.H 31 3.^7} 7Krt> <H^ Standpipe 42 3.U 32 Fluidic Device ^ Handling-g- Support 43 3.^ 33 Stock Tank 44 O.Q 34 SIT Tank, Fluidic Device ii Stock TankS. g:£S|-b n# ^ 45 ZL^J 35 S#3^r Pneumatic Valve (V2) 45 3^! 36 Data Logging System 46 3^ 37 Panel Display 47 3^ 38 Pressure Trasmitter 47 3^] 39 Differential Pressure Type Tank Level Indicator (DPT 1004) 48 31} 40 Differential Pressure Type Standpipe Level Indicator (DPT 1003) 49 O.U 41 Flow Transducer (FIT 1015) 50 O.Q 42 Flow Rate vs. Time Curve (Test Run # 35) 57 H^ 43 Level vs. Time Curve (Test Run # 35) 58 3.Q 44 Pressure vs. Time Curve (Test Run # 35) 59 3.1! 45 Loss Factor vs. Time Curve (Test Run # 35) 61 3.U 46 Full Scale Flow Rate vs. Time Curve (Prediction) 70 3.U 47 Full Scale Flow Rate vs. Time Curve (Prediction) 70 - vii - M 7)71*1 blowdown, refill ^ 171 reflood(4^:^r) fe down-comer^ ZL Fluidic Devicel- Fluidic Devicefe chamber^. -8-^Slfe -%-S.S] ^M ^} chamber A v d e 1= vortex^l ^tl ^^^>7> 3.711 ^^Slfe ^ o * l-§-*H -^ o * ^Wfe 7) vortex chamber*^ Si^^o* ^-^-^Csupply port), ^^"o^ *fi port) gj -^^^ S-^?(discharge JEEfe exit port)^ ^] 7\x\$) port y d 7r <Uc>. ^^ o^ "E-^S. # l chamber ^BS chamber vortex^l Fluidic Standpipe7> standpipefe chambers - - 1 - Fluidic Device^ 7]7] *}afl uflofl ^^^^o] #^ 3g£. fl^=. ^ti *!•§• 7l7 Mitsubishi^ ZL#o] 7M*§^ APWR^ ^^^]# ^M o] ^Bfl*l Fluidic £fe vortex dampere>3. ^8^)1- ^-g-*>3. $1£L^ 1/5 ^«8*M 717151 Fluidic Device^- ^^*H^fe ttH AEA Technology7l- Vortexl- -§-§-*> Fluidic DeviceS 7l|^*H °lnl 1977\d^l BNFL^ Dounreay 4^ el ^^"^l ^^l^>«}7f alT=>. UKAEA^ <>W ^tyQ*] AEA Technology 7f SiSi-fe-t-)!, ^i*fl7]-*l cyclone separator, fluidic pump, gas scrubber, liquid mixer, vortex flow valve, fluidic diverter, flow controller -%- t} Fluidic Device!- 7H^*M ^ Fluidic Device^ ^^-7B^- 2^7floflA-l-fe. AEA Technology^*} ^^*M Fluidic Device 7^ 7f^^-#- 4J^[^S ^^1*>^L ^^^^1 7l 7]51 ^.^x>s# ^Sferfl ^^*f^c>. Full scaled prototype Fluidic Device 71JWJ: Fluidic Device^ AEA Technology^ ^^3- ^^^fSl1^ Fluidic Device^! 7flwjAj^<^| n.fl*> Fluidic Device^ Fluidic Devices] 1 ^ Vortex device[1][2]-b -R-*fl£| vortex o|-g-*M 5^ 717] ## <§^*Kr 5^S^ 1928^ D. Thoma[317f # *l-g-*I 7)7l# 7H^*M ^3. #W ^61 °>°fl ^^ yJ^*><H ^^}. Vortex device7f cyclone separator, Ranque-Hilsch tube, thrust vector controller, •£•-£. ^ -n-^ 7l]^7l, oscillator, angular rate sensor, vortex diode, vortex valve(3l-fe- vortex triode, vortex ampUfiere>3.S vortex^ ^el^ vortex device7f fe Fluidic Device^ vortex device vortex valvee> <>1^^- n. ^.a.*> ^-^^S. vortex sink* sinkU drain ofl7} Vortex valve^l Vortex l*i-b S-% ^& l^i ^1 37fl^l port ^, ^- ^ -^-g- port 91 ^^ (tangential)^^^ ^H port# short chamber(<H7l<>flA-l short chamberef^L ^fe ^^ ^tf]5] fe6^]- ft, 3. ^ nfl Vrr;7> 10^1 *f*l ^4"# t^K)S -7^5?<H 9X^-1 Main flowfe port -^(control flow)£ port ^ 44 ^ -b chamber chamber-^] •*&'$} end walWl •¥• £r ^-T" main flow-fe- chamber portl- ^f-ajl chamber chamber-^1 o] main flow^l chamber-^ •§•• r vortex vortex strength^] flow amplifiers]- t main flow-^1 chamber^] O.^ 1 Vortex Valve^ - 4 - 3 ^ Vortex valve£| ^^^- Vortex ^Ji U chamber^ «]yg(r0) Reynolds-rCMaximum Flow Reynolds Number), Reynolds chamber^ft^ vortex (transfer characteristics)^: *> Reynolds-r^l AS vortex valve^ exit 3g-°-l- 01 _ 0.2 1.0 1.5 2.0 Non3im«m.onol Conlrol Flow, Hj. « K./Wm NonOlm.niloiKll Control Pr«si»r», Pc H^ 2 Vortex Valve^l - 5 - _o^. normalized & normalized Sit:f. Vortex valvefe bistabletl ^1 # r p5][61[7]. Vortex valve^l 1. -n-l^ZE^Hl (Turn-down ratio) TR= WJWCC= ifWc, (1) 2.