<<

AST 443 / PHY 517

Astronomical Observing Techniques

Prof. F.M. Walter I. The Basics

The 3 basic measurements: • WHERE something is • WHEN something happened • HOW BRIGHT something is

Since this is , let’s be quantitative! Where • Positions: – 2-dimensional projections on celestial sphere (q,f) • q,f are angular measures: radians, or degrees, , arcsec

– 3-dimensional position in (x,y,z) or (q, f, r). • (x,y,z) are linear positions within a right-handed rectilinear coordinate system. • R is a distance (spherical coordinates) • Galactic positions are sometimes presented in cylindrical coordinates, of galactocentric radius, height above the galactic plane, and azimuth. Angles

There are • 360 degrees (o) in a circle • 60 minutes of arc (‘) in a degree (arcmin) • 60 of arc (“) in an arcmin There are • 24 (h) along the equator • 60 minutes of (m) per • 60 seconds of time (s) per • 1 of time = 15”/cos(latitude) Coordinate Systems

"What good are Mercator's North Poles and Equators Tropics, Zones, and Lines?" So the Bellman would cry, and the crew would reply "They are merely conventional signs" L. Carroll -- The Hunting of the Snark

• Equatorial (celestial): based on terrestrial & latitude • : based on the ’s orbit • Altitude-Azimuth (alt-az): local • Galactic: based on Milky Way • Supergalactic: based on supergalactic plane Reference points

Celestial coordinates ( α, δ) • δ = 0: projection of terrestrial equator • (α, δ) = (0,0): where ascending node of the ecliptic intersects the (the first point of Aries = γ) Reference points

Ecliptic coordinates (λ,β) • β = 0: plane of the Earth’s orbit around the • (λ,β) = (0,0) at γ • ε: inclination of the ecliptic to the celestial equator, ε=23o26'21".448 - 46".82T - 0".0006T2 + 0".0018T3, (T in Julian from 2000AD) • north ecliptic pole: 18h +66o33' (J2000) Reference points

Altitude-Azimuth (q,f) • Azimuth q measured east of north • Altitude f measured from horizon to zenith Reference points

Galactic (lII, bII) • (lII, bII) = (0,0) is at α=17h42m24s, δ=-28o55'. • North galactic pole: (α,δ) =12h49m, +27o24' (B1950.0). • The galactic equator is inclined to the celestial equator by 62.6o. When

The Second

• The atomic second is the of 9,192,631,770 periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of cesium 133. • The solar second is 1/86,400 of the length of one solar , This second is variable in duration, a consequence of the irregular and unpredictable rotation rate of the Earth. • The second is one/31,556,925.9749 of the length of the tropical 1900 (vernal to vernal equinox). The atomic second is the same length as the ephemeris second. The mean solar second equalled the atomic second in 1820. Solar time

• Local time. • The Sun transits (crosses the meridian) at noon, local time. • The length of the day varies throughout the year.

• the mean angular velocity of the Sun is 15o per hour. • Civil time consists of 24 time zones, each nominally 15o wide, centered on lines of longitude which are multiples of 15o (there are local variations). – The Eastern is centered on 75o west longitude. Noon EST occurs when the fictitious mean Sun crosses the 75th degree of longitude. • The fictitious mean Sun differs from the true Sun in that it has a constant angular velocity across the sky. The difference (in time) between the true Sun and the fictitious mean Sun, the , reaches nearly +/-15 minutes. The Equation of Time

• UT is the civil time at 0o longitude (the standard meridian), which passes through Greenwich, England. • UT is also known as (GMT), and is military time Zulu (Z). • UT is based on the fictitious mean Sun. UT = 12h + the Greenwhich (GHA) or Right Ascension of the fictitious mean Sun. • UT1 is UT corrected for the motion of the geographic poles (the Chandler wobble and similar phenomena). • UT2 is UT1 with an extrapolated correction for the spindown of the Earth. • UTC (Coordinated Universal time) is basically UT1, rounded off. Leap seconds are added to keep UTC within 0.9 sec of UT1. UTC is broadcast by WWV radio. You can see this time on the seismograph in the ESS lobby. Atomic Time

• TAI • Kept by atomic since 1958 • Stable to 1 part in 1015 – 0.1 nsec/day • Optical lattice clocks: precise to 1 part in 10-18 – 0.1 sec in the of the universe • Unaffected by the vagaries of the GPS Time

• = UTC in 1980 • = UTC +18 sec in 2017 • No corrections for leap seconds • = TAI – 17 sec • Accurate to 14 nsec after drift corrections • (=> 4 meter accuracy)

• ET based on the fictitious mean Sun, with the angular velocity of the Sun on 1900 0.5 January. The RA of the fictitious mean Sun = h m s s s 2 RA=18 38 45.836 + 8,640,184.542 TE + 0.0929 TE s s s 2 • ET-UT = 24.349 + 72.318 TE + 29.950 TE • Ephemeris time was formally abolished in 1984, and replaced with – Terrestrial Time (TT; formerly Terrestrial Dynamical Time TDT) – Terrestrial Barycentric Time (TBT). • For all practical purposes, TT = UT1. • TT - TAI = 32s.184 • TE = (JD-2415020.0)/36525, the number of Julian Centuries since 1900 January 0.5 Heliocentric Time

• Time at the center of the Sun • UT corrected for the light travel time (up to 8.3 minutes on the ecliptic) Terrestrial Barycentric Time

• TDB = TT + 0.001658 sin(g) + 0.000014 sin(2g) seconds, where – g = 357o.531 + 0o.9856003 (JD - 2451545.0) – g: mean anomaly of the Earth in its orbit around the Sun. • TBD is referred to the barycenter of the Solar System. It is an ideal time calculated for an ideal Earth in a circular orbit around the Sun. • The 1.7 ms periodic deviation is a GR effect due to the variation in the gravitational potential around the Earth's orbit. • TCB: ideal time corrected for GR effects in a flat space-time frame far from the Solar System. Due to gravitational , TCB is 49 sec/ faster than TDB. Keeping it all lined up

On 1 January 1958:

• 0:00:00 TAI = 0:00:00 UT2 = 0:00:32.15 ET The Year • : The interval between two transits of the mean Sun through the mean . 365.24219879 - 6.14x10-6T days. The length of the Tropical Year decreases by 5.36 sec/century due to precession of the equinoxes. (now considered obsolete) • : The interval for the Sun to return to the same point on the ecliptic. 365.25636042 + 1.11x10-7T days • Anomalistic Year: The time between successive perihelia. 365.25964134 + 3.04x10-6T days The Anomalistic Year is 4.5 minutes longer than the sidereal year because the perihelion advances. • 365.25 days. • Gregorian Year 365.2425 days. (accurate to 1 day in 3000 ) T : number of Julian centuries since 1900 January 0.5 (12h UT). A Julian Century is 36525 ephemeris days. Julian Days • the number of ephemeris days elapsed since 12h UT on 1 January, 4713 BC (-4712 AD). • 1 ephemeris day = 86400 sec • Modified (MJD) = JD -2450000.5 – Integer JD does not change overnight in the western hemisphere • 1 January 2021, 0:00 UT: JD=2459215.5 • The algorithm: – JD = int(365.25*f) + int(30.6001*(g+1)) + d + A + 1,720,994.5 where y is the year, m is the , d is the day of the month, f=y for m>2 and f=y-1 for m<3 g=m for m>2 and g=m+12 for m<3 A=2-int(f/100) + int(f/400). – int means take the integer of – Valid for Gregorian civil dates only. Sidereal Time • based on the Earth's sidereal (with respect to the ). • sidereal day = 24 sidereal hours, or 23h56m4s Solar time. The difference is due to the angular motion of the Earth around the Sun. • The sidereal time is a measured locally. • The local sideral time (LST) is RA of the zenith. • The hour angle HA of an object with right ascension RA is given by HA=LST-RA • GMST (Greenwich Mean Sidereal Time) at 0h UT = 24110.54841 + 2 -6 3 8640184.812866 TU + 0.093104TU - 6.2x10 TU seconds • GAST (Greenwich Apparent Sidereal Time) = GMST + the equation of the equinoxes. The Equation of the Equinoxes is the total nutation in longitude time the cosine of the true obliquity of the ecliptic. It ranges from +0.8 to +1.2 seconds. • LAST (Local Apparent Sidereal Time): HA of the ascending node of the ecliptic. • LMST (Local Mean Sidereal Time) = GMST - geodetic longitude

Note 1: both the sideral and solar days are 86,400 seconds long. The sidereal second -10 is shorter than the solar second by 0.997269566414 - 0.586x10 TE

Note 2: TU = (JD-2451545.0)/36525 is the number of Julian Centuries since J2000.0 The Inconstancy of Time

Ephemeris time, which is referred to the fictitious mean Sun and the mean Equinox is uniform. True local time varies from ephemeris time because of: • Periodic variations in the Sun-Earth distance. • Secular changes, including: – Tidal friction, which causes the length of the day to increase by 0.0016 sec/century. dt/t = 4.5x10-8 sec/day, with an acceleration proportional to t2. – Irregular variations in the Earth's rotation due to small changes in the of inertia I. The effect is cumulative but unpredictable. Relative to 1972, the effect was -.005 seconds in 1871, and +0.002 seconds in 1907. – Seasonal variations in I due to weather. – man-made changes from reservoirs (increasing I) – sea-level changes How Time Affects Position

• Because of – motions of the measurement frame (the precession of the equinoxes) and – intrinsic motions (proper motions), coordinates specified in the Equatorial coordinate system are strictly valid at only one instant of time. • Therefore, it is necessary to supplement the coordinates with two more pieces of information: – the : the time at which the position was measured. If one knows the intrinsic motions of a moving object, one can then extrapolate to predict the position at other epochs. – the equinox of the coordinates, which makes the RA and DEC of a stationary object change with time. One reduces the measured position to a standard equinox (e.g., B1950 or J2000), essentially by adding or subtracting the expected precessional shifts. Equinox B1950 was standard prior to about 1980; now J2000 is the standard epoch. Note that the terms "equinox" and "epoch" are often confused; the correct term can often be discerned from its context. An observation made in 1984 and precessed to J2000 coordinates should be referred to as Epoch 1984, Equinox J2000, but is often simply referred to as "Epoch 2000". If proper motions are negligable, the difference is inconsequential. How Bright

This is Photometry • Later…