Ast 443 / Phy 517

Ast 443 / Phy 517

<p>AST 443 / PHY 517 </p><p>Astronomical Observing Techniques <br>Prof. F.M. Walter </p><p>I. The Basics </p><p>The 3 basic measurements: </p><p>• <strong>WHERE </strong>something is • <strong>WHEN </strong>something happened • <strong>HOW BRIGHT </strong>something is </p><p>Since this is science, let’s be quantitative! </p><p>Where </p><p>• Positions: </p><p>– 2-dimensional projections on celestial sphere (q,f) </p><p>• q,f are angular measures: radians, or degrees, minutes, arcsec </p><p>– 3-dimensional position in space (x,y,z) or (q, f, r). </p><p>• (x,y,z) are linear positions within a right-handed rectilinear coordinate system. </p><p>• R is a distance (spherical coordinates) • Galactic positions are sometimes presented in cylindrical coordinates, of galactocentric radius, height above the galactic plane, and azimuth. </p><p>Angles </p><p>There are • 360 degrees (<sup style="top: -0.84em;">o</sup>) in a circle • 60 minutes of arc (‘) in a degree (arcmin) • 60 seconds of arc (“) in an arcmin There are • 24 hours (<sup style="top: -0.84em;">h</sup>) along the equator • 60 minutes of time (<sup style="top: -0.84em;">m</sup>) per hour • 60 seconds of time (<sup style="top: -0.84em;">s</sup>) per minute • 1 second of time = 15”/cos(latitude) </p><p>Coordinate Systems </p><p><em>"What good are Mercator's North Poles and Equators </em><br><em>Tropics, Zones, and Meridian Lines?" So the Bellman would cry, and the crew would reply "They are merely conventional signs" </em></p><p>L. Carroll -- The Hunting of the Snark </p><p>• <strong>Equatorial </strong>(celestial): based on terrestrial longitude &amp; latitude </p><p>• <strong>Ecliptic</strong>: based on the Earth’s orbit </p><p>• <strong>Altitude-Azimuth </strong>(alt-az): local • <strong>Galactic</strong>: based on Milky Way </p><p>• <strong>Supergalactic</strong>: based on supergalactic plane </p><p>Reference points </p><p><strong>Celestial coordinates </strong>(Right Ascension α, </p><p>Declination δ) <br>• δ = 0: projection of terrestrial equator • (α, δ) = (0,0): where ascending node of the ecliptic intersects the celestial equator (the first point of Aries = γ) </p><p>Reference points </p><p><strong>Ecliptic coordinates </strong>(λ,β) </p><p>• β = 0: plane of the Earth’s orbit around the <br>Sun </p><p>• (λ,β) = (0,0) at γ • ε: inclination of the ecliptic to the celestial </p><p>equator, ε=23<sup style="top: -0.5em;">o</sup>26'21".448 - 46".82T - 0".0006T<sup style="top: -0.5em;">2 </sup>+ 0".0018T<sup style="top: -0.5em;">3</sup>, (T in Julian Centuries from 2000AD) </p><p>• north ecliptic pole: 18<sup style="top: -0.84em;">h </sup>+66<sup style="top: -0.84em;">o</sup>33' (J2000) </p><p>Reference points </p><p><strong>Altitude-Azimuth </strong>(q,f) </p><p>• Azimuth q measured east of north • Altitude f measured from horizon to zenith </p><p>Reference points </p><p><strong>Galactic </strong>(<em>l</em><sup style="top: -0.84em;">II</sup>, <em>b</em><sup style="top: -0.84em;">II</sup>) </p><p>• (<em>l</em><sup style="top: -0.82em;">II</sup>, <em>b</em><sup style="top: -0.82em;">II</sup>) = (0,0) is at α=17<sup style="top: -0.82em;">h</sup>42<sup style="top: -0.82em;">m</sup>24<sup style="top: -0.82em;">s</sup>, δ=-28<sup style="top: -0.82em;">o</sup>55'. • North galactic pole: (α,δ) =12<sup style="top: -0.82em;">h</sup>49<sup style="top: -0.82em;">m</sup>, +27<sup style="top: -0.82em;">o</sup>24' <br>(B1950.0). </p><p>• The galactic equator is inclined to the celestial equator by 62.6<sup style="top: -0.82em;">o</sup>. </p><p>When </p><p>• <strong>Solar </strong>time • <strong>Terrestrial </strong>time • <strong>Sidereal </strong>time </p><p>The Second </p><p>• The <strong>atomic second </strong>is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of cesium 133. </p><p>• The <strong>solar second </strong>is 1/86,400 of the length of one solar day, <br>This second is variable in duration, a consequence of the irregular and unpredictable rotation rate of the Earth. </p><p>• The <strong>ephemeris second </strong>is one/31,556,925.9749 of the length of the tropical year 1900 (vernal equinox to vernal equinox). </p><p>The atomic second is the same length as the ephemeris second. The mean solar second equalled the atomic second in 1820. </p><p>Solar time </p><p>• Local time. • The Sun transits (crosses the meridian) at noon, local time. </p><p>• The length of the day varies throughout the year. </p><p>Civil Time </p><p>• the mean angular velocity of the Sun is 15<sup style="top: -0.74em;">o </sup>per hour. • Civil time consists of 24 time zones, each nominally 15<sup style="top: -0.76em;">o </sup>wide, centered on lines of longitude which are multiples of 15<sup style="top: -0.74em;">o </sup>(there are local variations). </p><p>– The Eastern time zone is centered on 75<sup style="top: -0.66em;">o </sup>west longitude. <br>Noon EST occurs when the fictitious mean Sun crosses the 75<sup style="top: -0.66em;">th </sup>degree of longitude. </p><p>• The fictitious mean Sun differs from the true Sun in that it has a constant angular velocity across the sky. The difference (in time) between the true Sun and the fictitious mean Sun, the Equation of Time, reaches nearly +/-15 minutes. </p><p></p><ul style="display: flex;"><li style="flex:1">The Equation of Time </li><li style="flex:1">Universal Time </li></ul><p></p><p>• UT is the civil time at 0<sup style="top: -0.58em;">o </sup>longitude (the standard meridian), which passes through Greenwich, England. </p><p>• UT is also known as Greenwich mean time (GMT), and is military time Zulu (Z). </p><p>• UT is based on the <em>fictitious mean Sun</em>. UT = 12<sup style="top: -0.58em;">h </sup>+ the Greenwhich hour angle (GHA) or Right Ascension of the fictitious mean Sun. </p><p>• <strong>UT1 </strong>is UT corrected for the motion of the geographic poles (the <br>Chandler wobble and similar phenomena). </p><p>• <strong>UT2 </strong>is UT1 with an extrapolated correction for the spindown of the <br>Earth. </p><p>• <strong>UTC </strong>(Coordinated Universal time) is basically UT1, rounded off. Leap seconds are added to keep UTC within 0.9 sec of UT1. UTC is broadcast by WWV radio. You can see this time on the seismograph in the ESS lobby. </p><p>Atomic Time </p><p>• TAI • Kept by atomic clocks since 1958 • Stable to 1 part in 10<sup style="top: -0.82em;">15 </sup></p><p>– 0.1 nsec/day </p><p>• Optical lattice clocks: precise to 1 part in 10<sup style="top: -0.84em;">-18 </sup></p><p>– 0.1 sec in the age of the universe </p><p>• Unaffected by the vagaries of the Solar System </p><p>GPS Time </p><p>• = UTC in 1980 • = UTC +18 sec in 2017 • No corrections for leap seconds • = TAI&nbsp;– 17 sec • Accurate to 14 nsec after drift corrections • (=&gt; 4 meter accuracy) </p><p>Ephemeris Time </p><p>• <strong>ET </strong>based on the <em>fictitious mean Sun</em>, with the angular velocity of the Sun on 1900 0.5 January. The RA of the fictitious mean Sun = </p><p>2</p><p>RA=18<sup style="top: -0.5em;">h</sup>38<sup style="top: -0.5em;">m</sup>45.836<sup style="top: -0.5em;">s </sup>+ 8,640,184.542<sup style="top: -0.5em;">s </sup>T<sub style="top: 0.34em;">E </sub>+ 0.0929<sup style="top: -0.5em;">s </sup>T<sub style="top: 0.34em;">E </sub></p><p>• ET-UT = 24.349<sup style="top: -0.66em;">s </sup>+ 72.318<sup style="top: -0.66em;">s</sup>T<sub style="top: 0.5em;">E </sub>+ 29.950<sup style="top: -0.66em;">s</sup>T<sub style="top: 0.5em;">E</sub><sup style="top: -0.66em;">2 </sup>• Ephemeris time was formally abolished in 1984, and replaced with </p><p>– Terrestrial Time (<strong>TT</strong>; formerly Terrestrial Dynamical Time <strong>TDT</strong>) – Terrestrial Barycentric Time (<strong>TBT</strong>). </p><p>• For all practical purposes, TT = UT1. • TT - TAI = 32<sup style="top: -0.66em;">s</sup>.184 </p><p>• <strong>T</strong><sub style="top: 0.5em;"><strong>E </strong></sub>= (JD-2415020.0)/36525, the number of Julian Centuries since 1900 January 0.5 </p><p>Heliocentric Time </p><p>• Time at the center of the Sun </p><p>• UT corrected for the light travel time (up to 8.3 minutes on the ecliptic) </p><p>Terrestrial Barycentric Time </p><p>• <strong>TDB </strong>= TT + 0.001658 sin(g) + 0.000014 sin(2g) seconds, where </p><p>– g = 357<sup style="top: -0.58em;">o</sup>.531 + 0<sup style="top: -0.58em;">o</sup>.9856003 (JD - 2451545.0) – g: mean anomaly of the Earth in its orbit around the Sun. </p><p>• TBD is referred to the barycenter of the Solar System. It is an ideal time calculated for an ideal Earth in a circular orbit around the Sun. </p><p>• The 1.7 ms periodic deviation is a GR effect due to the variation in the gravitational potential around the Earth's orbit. </p><p>• <strong>TCB: </strong>ideal time corrected for GR effects in a flat space-time frame far from the Solar System. Due to gravitational time dilation, TCB is 49 sec/century faster than TDB. </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us