Esculent Brassicas by Anne-Marie Walker
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brassica Rapa Domestication: Untangling Wild and Feral Forms and Convergence of Crop Morphotypes Alex C
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.05.438488; this version posted April 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Brassica rapa domestication: untangling wild and feral forms and convergence of crop morphotypes Alex C. McAlvay, Aaron P. Ragsdale, Makenzie E. Mabry, Xinshuai Qi, Kevin A. Bird, Pablo Velasco, Hong An, J. Chris Pires, Eve Emshwiller Abstract The study of domestication contributes to our knowledge of evolution and crop genetic resources. Human selection has shaped wild Brassica rapa into diverse turnip, leafy, and oilseed crops. Despite its worldwide economic importance and potential as a model for understanding diversification under domestication, insights into the number of domestication events and initial crop(s) domesticated in B. rapa have been limited due to a lack of clarity about the wild or feral status of conspecific non-crop relatives. To address this gap and reconstruct the domestication history of B. rapa, we analyzed 68,468 genotyping-by-sequencing-derived SNPs for 416 samples in the largest diversity panel of domesticated and weedy B. rapa to date. To further understand the center of origin, we modeled the potential range of wild B. rapa during the mid-Holocene. Our analyses of genetic diversity across B. rapa morphotypes suggest that non-crop samples from the Caucasus, Siberia, and Italy may be truly wild, while those occurring in the Americas and much of Europe are feral. -
Effect of Feeding Brassica Juncea Seeds on Experimentally Induced Hyperlipidemia
EMAD-UD-DIN ET AL (2014), FUUAST J. BIOL., 4(1): 61-64 EFFECT OF FEEDING BRASSICA JUNCEA SEEDS ON EXPERIMENTALLY INDUCED HYPERLIPIDEMIA MUHAMMAD EMAD-UD-DIN, GHAZALA YASMEEN, NAZISH IQBAL KHAN AND LUBNA NAZ Pathophysiology Unit, Department of Physiology, University of Karachi, Karachi, Pakistan. Corresponding Authors e-mail: [email protected] Abstract Cardiovascular Disease (CVD) is major cause of death worldwide. Atherosclerosis is principal underlying mechanism, stimulated by hyperlipidemia. Substantial evidences suggest that atherosclerosis can be prevented or at least retarded by controlling serum lipids, especially cholesterol, at initial stages. The study was aimed to investigate the antihyperlipidemic potential of Brassica juncea seeds in cholesterol-fed rabbits owing to expected lipid lowering effect of B. juncea seeds. Age matched 18 rabbits were randomly divided into three equal groups control, hyperlipidemic and treated. Following one week acclimatization, control group kept on normal animal chow, 5% atherogenic diet was administered to hyperlipidemic group while treated were fed 10% dried Brassica juncea seeds along with atherogenic diet for eight weeks. Blood specimens were obtained and assayed for lipid profile (TC, HDL-C, LDL-C, TG, vLDL, TC/HDL-C). Data was analyzed using t-test at 0.05. High cholesterol diet significantly increased plasma TC (p<0.01, 60.25%), LDL-C (p<0.05, 10.8%), TG (p<0.05, 19.9%) while rise in HDL-C (23.1%) and vLDL (18.4%) remained non-significant as compared with control. Brassica juncea seeds consumption showed significant lipid lowering activity TC (p<0.05, -24.7%), HDL-C (p<0.05, 36.7%), LDL-C (p<0.05, -34%), TG (p<0.01, -41%) and vLDL (p<0.05, -40.7%) in comparison to hyperlipidemic counterparts. -
Rhubarb Asheville
RHUBARB TAKE-AWAY MENU SNACKS Asparagus, English Peas 7 Comeback Sauce 5 Blue Cheese, BBQ Salt 7.5 House-Made Saltines, Bread & Butter Pickles 7 Chapata Toast, Red Onion Jam, Strawberry-Green Peppercorn Compote, Crispy Shallots 12 E Y V Benton’s Bacon 6.5 Mimosa Egg, Sauce Gribiche, Ramp Breadcrumbs, Pickled Red Onion 10 LG Feta, Pecans, Shaved Vegetables, Strawberry-Banyuls Vinaigrette 12 Flageolet Beans, Local Mushrooms, Tuscan Kale, Fennel Tops, Breadcrumbs 17 SANDWICHES Seared Double Beef & Bacon Patty, B&B Pickles, French Fries 11.5 - Add House Pimiento Cheese, Ashe County Cheddar or Ashe County Gouda 2 Gouda, Spiced Green Tomatoes, Radicchio, Sweet Potato Brioche, French Fries 11.5 Pepper-Vinegar BBQ Sauce, Chow-Chow, Brioche Bun, French Fries 13.5 ENTREES Dandelion Greens, Fennel Confit, Hoppin’ John, Fennel Pesto, Pickled Fennel 24 Pea and Carrot Potage, Asparagus, Herb Salad 23 20 Spring Risotto, Asparagus, Peas, Ramps, Parsley Root, Sorrel Pistou 23 Farm & Sparrow Grits, Garlic Confit, Hearty Greens, Breadcrumbs 18 Roasted Red Bliss Potatoes, Green Garlic, Spinach, Wild Ramps, GG Parsley Chermoula 23 Roasted Rutabaga, Rapini, House Steak Sauce, Pickled Radish 24 Dessert CHILDREN’s MENU Whipped Cream 6 5 Streusel Topping 6 5 5 NON-ALCOHOLIC (1L) 6 3 2 Beer WINE Jean-Luc Joillot, Crémant De Bourgogne Brut, Burgundy, France NV 20 375ml Clara Vie, Brut, Crémant de Limoux, Languedoc-Roussillon, France NV 22 Miner, Simpson Vineyard, Viognier, Napa Valley, California 2017 16 375ml Mayu, Huanta Vineyard, Pedro Ximenez, Valle De Elqui, -
S41598-018-21689-Z.Pdf
www.nature.com/scientificreports OPEN Demographic analysis of arrhenotokous parthenogenesis and bisexual reproduction Received: 10 October 2017 Accepted: 8 February 2018 of Frankliniella occidentalis Published: xx xx xxxx (Pergande) (Thysanoptera: Thripidae) Tianbo Ding1, Hsin Chi2, Ayhan Gökçe2, Yulin Gao3 & Bin Zhang 1 Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is a serious pest that is capable of bisexual and arrhenotokous reproduction. In arrhenotokous reproduction, virgin females initially produce male ofspring; later, when their sons are sexually mature, the mothers begin bisexual reproduction by carrying out oedipal mating with their sons. Because a virgin female produces many male ofspring before oedipal mating occurs, multiple oedipal mating is common. In this study, we investigated the efect of multiple oedipal mating on the population growth of F. occidentalis by using the age-stage, two-sex life table theory. In the arrhenotokous cohorts, all unfertilized eggs developed into males. In the bisexual cohorts, the ofspring sex ratio was signifcantly female biased with the mean number of female ofspring and male ofspring being 72.68 and 29.00, respectively. These were the same as the net reproductive rate of female ofspring and male ofspring. In arrhenotokous cohorts, the number of males available for oedipal mating signifcantly afected the production of female ofspring. The number of female ofspring increased as the number of sons available for oedipal mating increased. Correctly characterizing this unique type of reproduction will provide important information for predicting the timing of future outbreaks of F. occidentalis, as well as aiding in formulating successful management strategies against the species. Te western fower thrips (WFT), Frankliniella occidentalis (Pergande) (Tysanoptera: Tripidae), is one of the most economically important insect pests of many horticultural crops especially in greenhouses1,2. -
Summer CSA Week #18, 2019
SS oo ll aaA mi nisGGtry of Strr. Maatthetwt Liuithaaeran CFhFurch aa rr mm John and I arrived at the farm at 5am Saturday morning to pack up for market and found our first frost. Our av - erage first frost date here is October 16, but I don’t think in all six years that I’ve been with the farm that we’ve actually had a frost even within two weeks of this date, let alone BEFORE it. What a swing…nearly 80 degrees earlier in the week down to freezing! But then a few October 15, 2019 things are different this time of year than others. For one we have Brussel sprouts almost ready to harvest. LAST MARKETS Every year we’ve grown these, they have matured (and OF THE SEASON! sweetened) close to the first week of December…just after our CSA season ends. But this year, John added a new heat-tolerant variety to the mix so we should have an extended sprout season URBANA this year! We’re also growing parsnips for the first time. I can’t tell you how many people ask MARKET for parsnips at the November markets. Nobody else in town grows them so we finally suc - AT THE cumbed to the pressure. They are a very long season crop (which means a long weeding season and tying up the field), so we really SQUARE hope all of the parsnip enthusiasts show up! Both of these Fall treats ENDS OCTOBER 26 should hit your box before the end of October. Saturdays - 7am-12pm Each year, we listen to our customers and try to respond for improved Lincoln Square variety, quality, etc (and Brussel sprouts and parsnips!). -
Brassicaceae Biofumigation for Weeds and Soil-Borne Diseases In
Brassicaceae Biofumigation for Weeds and Soil-Borne Diseases in Chile Pepper: On-Farm Evaluations of a Mustard Cover Crop Asmita Nagila, MS student in Agricultural Biology; Brian Schutte & Soum Sanogo, NMSU Dept. Entomology, Plant Pathology and Weed Science John Idowu, NMSU Dept. Extension Plant Sciences STUDY SITES COVER CROP BIOMASS AT MUSTARD TERMINATION Cover Crop Mustard Cover Crop Average First Cover Crop Study Site Termination Site-Specific Alternative Frost Date Seeding Date 600 Date Figure 1. Aboveground biomass for mustard cover crop and site-specific alternative cover crops grown at Columbus, NM Nov. 1 – Nov. 10 Nov. 10, 2018 Feb. 14, 2019 commercial farms (Columbus, 400 Deming and Las Uvas) and a Deming, NM Oct. 21 – Oct. 31 Sept. 29, 2018 Feb. 22, 2019 -2 university research farm (Leyendecker) in southern New g m g Las Uvas, NM Oct. 21 – Oct. 31 Oct. 29, 2018 March 5, 2019 Mexico. Bars are means with 200 NMSU standard errors (N = 18). Nov. 1 – Nov. 10 Oct. 11, 2018 March 15, 2019 Leyendecker Aboveground biomass 0 TREATMENTS Columbus Deming Las Uvas Leyendecker • Mustard Cover Crop • Site-Specific Alternative • No Cover Crop Columbus Las Uvas Mustard Cover Crop: Mixture of caliente ‘rojo’ (Brassica juncea cv ‘rojo’) and arugula (Eruca sativa) Site-Specific Alternatives: o Columbus: Barley o Deming: Mustard with wheat Barley Mustard Barley Mustard o Las Uvas: Barley COVER CROP MEASUREMENTS CARRYOVER EFFECTS ON WEED SEEDBANK • Biomass at mustard termination • Weed biomass at mustard termination Mustard Cover Crop 100 No Cover Crop 60 • Glucosinolate content (pesticidal component of A B mustard cover crop) 80 40 CARRYOVER EFFECTS ON WEED SEEDBANKS 60 • Palmer amaranth seed persistence in buried packets 40 • Germination of persistent Palmer amaranth seeds 20 (laboratory) Germination Seed persistence 20 (% of seeds (% of buried) (% of persistent(% seeds) 0 0 Columbus Deming Leyendecker Columbus Deming Leyendecker Figure 2. -
Rutabagas Michigan-Grown Rutabagas Are Available Late September Through November
Extension Bulletin HNI52 • October 2012 msue.anr.msu.edu/program/info/mi_fresh Using, Storing and Preserving Rutabagas Michigan-grown rutabagas are available late September through November. Written by: Katherine E. Hale MSU Extension educator Recommended • Use rutabagas in soups or stew, or bake, boil or steam and slice or varieties mash as a side dish. Lightly stir- American Purple Top, Thomson fry or eat raw in salads. Rutabaga Laurentian and Joan is traditional in Michigan pasties, along with potatoes, carrots and Interesting facts beef. • Harvest when they reach the size • Rutabaga belongs to the of a softball. You may harvest Cruciferae or mustard family and rutabagas as they reach edible size the genus Brassica, classified as and throughout the season since Brassica napobrassica. they will keep in the ground. • Developed during the Middle Ages, rutabagas are thought to be a cross between Storage and food safety the turnip and the cabbage. • Wash hands before and after handling fresh fruits and • The rutabaga is an excellent source of vitamin C and vegetables. potassium, and a good source for fiber, thiamin, vitamin B6, calcium, magnesium, vitamin A and manganese. • Rutabagas will keep for months in a cool storage place. They store well in plastic bags in a refrigerator or cold cellar. • Similar to the turnip but sweeter, rutabagas are inexpensive and low in calories. • Keep rutabagas away from raw meat and meat juices to prevent cross contamination. Tips for buying, preparing • Before peeling, wash rutabagas using cool or slightly warm and harvesting water and a vegetable brush. • Look for smooth, firm vegetables with a round shape. -
Cilantro Dill Rosemary Ginger Mint Basil
Dill Rosemary Basil Herbs Ginger Cilantro Mint What is an Herb? • Plants that are used as flavoring agents • Leaves, seeds or roots can be used • Usually used in small amounts • Many may be used for medicinal or ornamental purposes Basil Basil • Mint-like annual herb used for cooking, garnish, or medicinal purposes • Readily cross pollinates and several hybrids available • Grown in plots of less than 0.1 acre for local sales • A source of organic insecticide and fungicide • Pests: Japanese beetle; annual weeds • Disease: Botrytis, leaf blight, Sclerotinia blight, Fusarium wilt Mint Mint • Perennial, grown from vegetative material • Multiple harvests from a field, sold fresh • Pests: Loopers and Cutworms • Diseases: Verticillium wilt and Rust • Produced by 15 to 25 commercial growers in Texas • Menthols and esters are distilled from peppermint and spearmint in the Pacific Northwest Cilantro – Soil Preparation • Prefers a light, well-drained, moderately fertile loam or sandy soil • Can tolerate other soil conditions Cilantro - Planting • Will start to bolt when temperatures exceed 85 degrees F • Plant in February for April harvest; September for November harvest • Plant seeds 2 inches apart in rows 12 to 15 inches apart if plan to harvest leaves • Plant seeds 8 inches apart in rows 15 inches apart if plan to harvest seeds Cilantro - Planting • Plant seeds about ¼ to ½ inch deep • About 2,000 seeds per ounce, so don’t purchase a lot of seeds for the season • Weekly planting will ensure continuous crop Cilantro - Fertilizing • Should be fertilized -
Pollination of Rapeseed (Brassica Napus) by Africanized Honeybees (Hymenoptera: Apidae) on Two Sowing Dates
Anais da Academia Brasileira de Ciências (2014) 86(4): 2087-2100 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420140134 www.scielo.br/aabc Pollination of Rapeseed (Brassica napus) by Africanized Honeybees (Hymenoptera: Apidae) on Two Sowing Dates EMERSON D. CHAMBÓ1, NEWTON T.E. DE OLIVEIRA1, REGINA C. GARCIA1, JOSÉ B. DUARTE-JÚNIOR1, MARIA CLAUDIA C. RUVOLO-TAKASUSUKI2 and VAGNER A. TOLEDO3 1Universidade Estadual do Oeste do Paraná, Campus Universitário de Marechal Cândido Rondon, Centro de Ciências Agrárias, Rua Pernambuco, 1777, 85960-000 Marechal Cândido Rondon, PR, Brasil 2Universidade Estadual de Maringá, Centro de Ciências Biológicas, Departamento de Biotecnologia, Genética e Biologia Celular, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brasil 3Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Maringá, Centro de Ciências Agrárias, Av. Colombo, 5790, Bloco J45, Campus Universitário 87020-900 Maringá, PR, Brasil Manuscript received on January 21, 2014; accepted for publication on June 23, 2014 ABSTRACT In this study, performed in the western part of the state of Paraná, Brazil, two self-fertile hybrid commercial rapeseed genotypes were evaluated for yield components and physiological quality using three pollination tests and spanning two sowing dates. The treatments consisted of combinations of two rapeseed genotypes (Hyola 61 and Hyola 433), three pollination tests (uncovered area, covered area without insects and covered area containing a single colony of Africanized Apis mellifera honeybees) and two sowing dates (May 25th, 2011 and June 25th, 2011). The presence of Africanized honeybees during flowering time increased the productivity of the rapeseed. -
The Effect of Plant Development on Thrips Resistance in Capsicum
Arthropod-Plant Interactions https://doi.org/10.1007/s11829-018-9645-6 ORIGINAL PAPER The effect of plant development on thrips resistance in Capsicum Pauline van Haperen1,2 · Roeland E. Voorrips1 · Joop J. A. van Loon2 · Ben Vosman1 Received: 28 March 2018 / Accepted: 25 September 2018 © The Author(s) 2018 Abstract Western flower thrips [Frankliniella occidentalis (Pergande)] is a worldwide pest insect that causes damage in pepper cul- tivation, so growers would benefit from host plant resistance. The objectives of this study were (1) to evaluate the effect of plant age on thrips resistance using nine Capsicum accessions with different levels of thrips resistance at three different plant ages, and (2) to study the effect of leaf age on thrips resistance in a resistant and a susceptible pepper accession. The fraction of first instar larvae that did not develop into second instar was used as a measure for thrips resistance. Our results show that plants start to develop thrips resistance when they are between 4 and 8 weeks old. This transition was most marked on the resistant accession CGN16975, on which about 50% of the L1 larvae developed into the next stage on 4-week-old plants, whereas none of them developed beyond the L1 stage on 8- or 12-week-old plants. Furthermore, it is shown that youngest fully opened leaves of the resistant accession CGN16975 are significantly more resistant to thrips than older leaves; 89% of the L1 larvae did not develop into the next stage on the youngest leaves, whereas 57% did not develop beyond the L1 stage on the oldest leaves. -
Comparative Antimicrobial Activity Study of Brassica Oleceracea †
Proceedings Comparative Antimicrobial Activity Study of Brassica oleceracea † Sandeep Waghulde *, Nilofar Abid Khan *, Nilesh Gorde, Mohan Kale, Pravin Naik and Rupali Prashant Yewale Konkan Gyanpeeth Rahul Dharkar College of Pharmacy and Research Institute, Karjat, Dist-Raigad, Pin code 410201, India; [email protected] (N.G.); [email protected] (M.K.); [email protected] (P.N.); [email protected] (R.P.Y.) * Correspondence: [email protected] (S.W.); [email protected] (N.A.K.) † Presented at the 22nd International Electronic Conference on Synthetic Organic Chemistry, 15 November– 15 December 2018. Available Online: https://sciforum.net/conference/ecsoc-22. Published: 14 November 2018 Abstract: Medicinal plants are in rich source of antimicrobial agents. The present study was carried out to evaluate the antimicrobial effect of plants from the same species as Brassica oleceracea namely, white cabbage and red cabbage. The preliminary phytochemical analysis was tested by using a different extract of these plants for the presence of various secondary metabolites like alkaloids, flavonoids, tannins, saponins, terpenoids, glycosides, steroids, carbohydrates, and amino acids. The in vitro antimicrobial activity was screened against clinical isolates viz gram positive bacteria Staphylococcus aureus, Streptococcus pyogenes, gram negative bacteria Escherichia coli, Pseudomonas aeruginosa. Extracts found significant inhibition against all the pathogens. Keywords: plant extract; phytochemicals; antibacterial activity; antifungal activity 1. Introduction Despite great progress in the development of medicines, infectious diseases caused by bacteria, fungi, viruses and parasites are still a major threat to public health. The impact is mainly observed in developing countries due to relative unavailability of medicines and the emergence of widespread drug resistance [1]. -
Greek White Bean Soup with Feta and Dill © Janet Fletcher / Planet Cheese
Greek White Bean Soup with Feta and Dill © Janet Fletcher / Planet Cheese www.janetfletcher.com Feel free to improvise here. Add chopped fresh fennel, zucchini, sweet red peppers, butternut squash, potatoes or chard. Ingredients • 2 cups dried white beans, chickpeas or cranberry beans • 1 large celery rib, in 3 pieces • ½ yellow onion, halved again through the root end • 2 bay leaves • Sea salt • 3 tablespoons extra virgin olive oil, plus more for garnish • 2 cups sliced leeks, white and pale green part only • 2 medium carrots, diced • 2 to 3 cloves garlic, minced • 1-1/2 to 2 tablespoons chopped fresh dill, plus more for garnish • Freshly ground black pepper • Pickled Greek pepperoncini, sliced • 2 ounces feta Directions Soak the dried beans overnight in cold water to cover generously. Drain and place in a heavy pot with 1-1/2 quarts water. Add celery, onion, bay leaves and 1 teaspoon salt. Bring to a simmer over medium heat. Cover and adjust the heat to maintain a gentle simmer. Cook until the beans are tender, 1 hour or more. Check occasionally to make sure they are still submerged in liquid; add boiling water if necessary to keep them barely covered. When the beans are done, let them cool in their liquid. Discard the celery, onion and bay leaves. Set aside 1 cup of whole beans. In a food processor or blender, puree the remaining beans with enough of the cooking liquid to achieve the texture you like. (I like my soup on the thin side.) Warm the olive oil in a clean pot over medium heat.