Companion Plants for Better Yields

Total Page:16

File Type:pdf, Size:1020Kb

Companion Plants for Better Yields Companion Plants for Better Yields PLANT COMPATIBLE INCOMPATIBLE Angelica Dill Anise Coriander Carrot Black Walnut Tree, Apple Hawthorn Basil, Carrot, Parsley, Asparagus Tomato Azalea Black Walnut Tree Barberry Rye Barley Lettuce Beans, Broccoli, Brussels Sprouts, Cabbage, Basil Cauliflower, Collard, Kale, Rue Marigold, Pepper, Tomato Borage, Broccoli, Cabbage, Carrot, Celery, Chinese Cabbage, Corn, Collard, Cucumber, Eggplant, Irish Potato, Beet, Chive, Garlic, Onion, Beans, Bush Larkspur, Lettuce, Pepper Marigold, Mint, Pea, Radish, Rosemary, Savory, Strawberry, Sunflower, Tansy Basil, Borage, Broccoli, Carrot, Chinese Cabbage, Corn, Collard, Cucumber, Eggplant, Beet, Garlic, Onion, Beans, Pole Lettuce, Marigold, Mint, Kohlrabi Pea, Radish, Rosemary, Savory, Strawberry, Sunflower, Tansy Bush Beans, Cabbage, Beets Delphinium, Onion, Pole Beans Larkspur, Lettuce, Sage PLANT COMPATIBLE INCOMPATIBLE Beans, Squash, Borage Strawberry, Tomato Blackberry Tansy Basil, Beans, Cucumber, Dill, Garlic, Hyssop, Lettuce, Marigold, Mint, Broccoli Nasturtium, Onion, Grapes, Lettuce, Rue Potato, Radish, Rosemary, Sage, Thyme, Tomato Basil, Beans, Dill, Garlic, Hyssop, Lettuce, Mint, Brussels Sprouts Grapes, Rue Onion, Rosemary, Sage, Thyme Basil, Beets, Bush Beans, Chamomile, Celery, Chard, Dill, Garlic, Grapes, Hyssop, Larkspur, Lettuce, Cabbage Grapes, Rue Marigold, Mint, Nasturtium, Onion, Rosemary, Rue, Sage, Southernwood, Spinach, Thyme, Tomato Plant throughout garden Caraway Carrot, Dill to loosen soil Beans, Chive, Delphinium, Pea, Larkspur, Lettuce, Carrots Caraway, Dill Pepper, Radish, Rosemary, Onion, Pea, Sage, Tomato Catnip Eggplant Basil, Bean, Dill, Garlic, Hyssop, Lettuce, Cauliflower Grapes, Rue Marigold, Mint, Onion, Rosemary, Sage, Thyme PLANT COMPATIBLE INCOMPATIBLE Bush Beans, Cabbage, Chinese Cabbage, Celery Nasturtium, Onion, Spinach, Tomato, Basil, Beans, Celery, Dill, Garlic, Hyssop, Mint, Chinese Cabbage Nasturtium, Onion, Grapes Potato, Rosemary, Thyme Chive Apple, Carrot, Rose Bean, Pea Coriander Anise, Potato Fennel Cabbage, Cucumber, Chamomile Onion Chervil Radish Carrot, Grapes, Rose, Chives Bean, Pea Potato Chrysanthemum Chrysanthemum Basil, Bean, Cucumber, Dill, Garlic, Hyssop, Lettuce, Marigold, Mint, Collard Grapes, Rue, Tansy Nasturtium, Onion, Potato, Radish, Rosemary, Sage, Thyme Beans, Cucumber, Dill, Pea, Potato, Melons, Corn Pumpkin, Squash, Sunflower Beans, Broccoli, Cabbage, Carrot, Cauliflower, Chamomile, Collard, Corn, Kale, Aromatic Herbs, Irish Cucumber Lettuce, Marigold, Potato, Sage Nasturtium Onion, Pea, Radish, Savory, Sunflowers, Tomato Currants White Pine Dead Nettle Potato PLANT COMPATIBLE INCOMPATIBLE Beet, Carrot, Chard, Delphinium Bean, Cabbage, Oats Parsnip, Turnip Broccoli, Cabbage, Chinese Cabbage, Angelica, Caraway, Dill Collard, Cauliflower, Carrot, Lavender, Tomato Lettuce, Onion Beans, Garlic, Marigold, Eggplant Pea, Spinach, Tarragon, Apricot Thyme Fava Bean Lettuce Bean, Coriander, Pepper, Fennel Basil, Dill Tomato Feverfew Rose Flax Carrot, Potato Garlic Collard, Raspberry, Rose Bean, Pea Geranium Rose Black Locust Tree, Sugar Goldenrod Maple Gooseberry White Pine Cabbage, Beans, Brussels Sprouts, Broccoli, Grapes Cauliflower, Chives, Collard, Kale, Radish, Peas, Blackberry, Peach Horehound Tomato Horseradish Potato Broccoli, Brussels Sprouts, Cabbage, Hyssop Cauliflower, Chinese Radish Cabbage, Collard, Grape, Kale Basil, Beans, Dill, Garlic, Hyssop, Lettuce, Kale Marigold, Mint, Onion, Grapes, Rue Radish, Rosemary, Sage, Thyme, Tomato Kohlrabi Beet Pepper PLANT COMPATIBLE INCOMPATIBLE Beans, Beets, Cabbage, Beets, Carrot, Parsnips, Larkspur Oats Turnips Leek Carrot Beans, Carrot, Cauliflower, Broccoli, Barley, Fava Lettuce Chrysanthemum, Collard, Bean, Rye, Wheat, Cucumber, Onion, Radish, Strawberry Lilac Black Walnut Tree Marjoram Pepper, Sage Beans, Broccoli, Cabbage, Cauliflower, Marigold Collards, Cucumber, Kale, Pepper, Rose, Tomato Melons Corn, Nasturtium, Radish Beans, Broccoli, Cabbage, Cauliflower, Mint Chinese Cabbage, Collards, Tomato Morning Glory Apricot Mustard Turnip Beans, Broccoli, Cabbage, Cauliflower, Nasturtium Chinese Cabbage, Collard, Radish, Fruit Trees Nicotania Apricot Oat Larkspur Beets, Broccoli, Brussels Sprouts, Cabbage, Carrot, Cauliflower, Celery, Cabbage, Chamomile, Collard, Bush Beans, Pole Beans, Onion Cucumber, Dill, Kale, English Pea, Rue, Sage Lettuce, Pepper, Potato, Radish, Rose, Savory, Squash, Strawberry, Tomato PLANT COMPATIBLE INCOMPATIBLE Oregano Pepper Asparagus, Tomato, Parsley Rose Parsnip Delphinium, Larkspur Beans, Carrot, Chives, Black Walnut Tree, Corn, Cucumber, Chives, Garlic, Grapes, Pea Eggplant, Lettuce, Onion, Gladiolus, Irish Radish, Spinach, Tomato, Potato Turnip Grape, Garlic, Onion, Potato, Tomato, Peach Asparagus Raspberry Pear Potato Pennyroyal Rose Peony Black Walnut Tree Bean, Carrot, Pepper Horehound, Marigold, Black Walnut Tree Marjoram, Onion, Tansy Petunia Beans, Potato Apricot Plum Apricot Beans, Broccoli, Cabbage, Cauliflower, Chinese Cabbage, Apple, Apricot, Black Collard, Coriander, Dead Potato Walnut Tree, Pear, Nettle, Horehound, Sunflower Horseradish, Lettuce, Marigold, Onion, Petunia, Tansy Beans, Broccoli, Cabbage, Carrot, Cauliflower, Chervil, Radish Hyssop Collard Cucumber, Grapes, Lettuce, Melon, Onion, Pea, Squash Raspberry Tansy Rhododendron Black Walnut Tree Chive, Feverfew, Garlic, Rose Geranium, Marigold, Onion, Parsley PLANT COMPATIBLE INCOMPATIBLE Beans, Broccoli, Cabbage, Carrot, Rosemary Cauliflower, Chinese Cabbage, Collard, Sage Broccoli, Rose, Basil, Cabbage, Rue Raspberry Cauliflower, Sage Rye Barberry, Lettuce Broccoli, Cabbage, Carrot, Cauliflower, Sage Chinese Cabbage, Onion, Rue Collards, Marjoram, Rosemary, Strawberry Savory Beans, Onion Southernwood Cabbage Sowthistle Corn, Onion, Tomato Celery, Cauliflower, Spinach Eggplant, Pea, Strawberry Beans, Corn, Mint, Squash Nasturtium, Onion, Potato Radish, Sunflower, Tansy Borage, Beans, Lettuce, Strawberry Cabbage Onion, Sage, Spinach Sunflower Beans, Corn, Squash Potato Fruit Trees, Pepper, Tansy Collard Raspberry, Rose Tarragon is said to enhance most vegetables Tarragon when planted among them Broccoli, Cabbage, Cauliflower, Chinese Thyme Cabbage, Collard PLANT COMPATIBLE INCOMPATIBLE Borage, Broccoli, Cabbage, Calendula, Carrot, Cauliflower, Celery, Chive, Apricot, Dill, Black Walnut Tomato Horehound, Marigold, Tree, Corn, Fennel Onion, Parsley, Pea, Petunia, Mint, Sage Delphinium, Larkspur, Turnip Mustard Wheat Barberry, Lettuce Wormwood Most Vegetables Plant near aromatic herbs Yarrow to enhance production of essential oils .
Recommended publications
  • Calendula (English Marigold, Pot Marigold, Calendula Officinalis L.)
    Calendula (English marigold, pot marigold, Calendula officinalis L.) Nancy W. Callan, Mal P. Westcott, Susan Wall-MacLane, and James B. Miller Western Agricultural Research Center Montana State University Calendula (Calendula officinalis L.) is an annual with bright yellow or orange daisy-like flowers. The flowers are harvested while in full bloom and dried for use as a medicinal or culinary herb. The entire flower heads or the petals alone are used. An industrial oil may be expressed from the seeds and an absolute oil is obtained from the flowers. Laying chickens may be fed orange calendula flowers to give the egg yolks a deep yellow color. Calendula is a fast-growing annual that is easy to cultivate. It may be direct-seeded in the field and begins to flower in about two months. Harvest of calendula is time-consuming because the flowers form over a long period of time and individual flowers mature quickly. Overmature flowers are undesirable in a herbal product. Frequent hand harvest is necessary to obtain the highest quality product, but some mechanization of harvest may be possible for a lower- grade product or for seed for industrial use. Western Agricultural Research Center Two cultivars of calendula, 'Resina' and 'Erfurter Orangefarbige,' were direct-seeded on May 15, 1998, and May 18, 1999, at 5 lb/a in six-row plots 8 ft long, with rows 18" apart and four replications. Final stand of Resina was 3.3 (1998) and 4.6 (1999) plants/ft and of Erfurter Orangefarbige was 5.5 and 3.9 plants/ft. Flower heads were plucked from the plants by hand and air-dried out of direct sunlight.
    [Show full text]
  • Acute, Sub-Chronic and Chronic Toxicity) of Industrial Taif Rose Water By-Product in Mice
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2015, 7 (2):251-259 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 Total phenolic, in vitro antioxidant activity and safety assessment (Acute, sub-chronic and chronic toxicity) of industrial Taif rose water by-product in mice El-Sayed S. Abdel-Hameed 1-3*, Salih A. Bazaid 1 and Abdel Nasser A. Sabra 4 1Natural Products Analysis Laboratory, Faculty of Science, Taif University, Saudi Arabia 2Chemistry Department, Faculty of Science, Taif University, Saudi Arabia 3Laboratory of Medicinal Chemistry, Theodor Bilharz Research Institute, Giza, Egypt 4Laboratory of Pharmacology, Theodor Bilharz Research Institute, Giza, Egypt _____________________________________________________________________________________________ ABSTRACT The by-products or residues of agriculture industries have been taken more attention for their valuable source of natural antioxidants in recent decades. In this work, the Taif rose water by-product obtained after hydro-distillation of Taif rose (Rosa damascena trigintipetala Dieck) was investigated for its biological and phytochemical properties. The results showed that the Taif rose water byproduct had free radical scavenging activity toward artificial 1,1- • diphenyl picrylhydrazyl (DPPH ) radical with SC 50 = 23.72±0.36 µg/ml and also had high antioxidant capacity (329.53±18.75 mg ascorbic acid equivalent/g dry extract) and reducing power activity (211.31±2.79 mg ascorbic acid equivalent/g dry extract). Phenolic compounds are the major components and the antioxidant properties were attributed to them. The direct infusion ESI(-ve)-MS analyses of Taif rose water by-product showed the presence of phenolic compounds belonging to hydrolysable tannins and flavonoids.
    [Show full text]
  • Optimization of Microwave Assisted Process for Extraction of Celery Seed Essential Oil Gopika Talwari1 and B.S
    Gopika Talwari and B.S. Ghuman JAE : 51 (2) Journal of Agricultural Engineering Vol. 51 (2): April-June, 2014 Optimization of Microwave Assisted Process for Extraction of Celery Seed Essential Oil Gopika Talwari1 and B.S. Ghuman2 Manuscript received: March, 2013 Revised manuscript accepted: April, 2014 ABSTRACT Microwave assisted extraction (MAE) method was developed for extraction of essential oil from celery seeds. A domestic microwave oven was modified and Clevenger apparatus attached to it to make it an extraction unit. Effect of various parameters such as soaking time, temperature and power density during MAE was studied. A multivariate study based on a Box-Behnken design was used to evaluate the influence of three major variables (soaking time, temperature and power density) affecting the performance of MAE on celery seed. Oil yield, time of extraction and energy consumption (MJ.kg-1 oil) by MAE were determined and compared with those obtained by the traditional hydro-distillation (HD). It was found that microwave assisted process gave approximately same oil yield (1.90%) in less time ( 93.5 min) and with low energy consumption (58191.78 MJ.kg-1 oil). Results revealed that the selected parameters had significant effect on the responses. Key words: Celery seed, essential oil, microwave assisted extraction, hydro distillation Essential oils are the volatile oils distilled from aromatic an average contains 2.5% volatile oil containing 60-70% plant material. Essential oils are contained in the glands, d-limonene and 1-20% beta selinene and 15%–17% fixed sacs and veins concentrated in different parts of the plant. oil.
    [Show full text]
  • Ruta Graveolens L. Essential Oil Composition Under Different Nutritional Treatments
    American-Eurasian J. Agric. & Environ. Sci., 13 (10): 1390-1395, 2013 ISSN 1818-6769 © IDOSI Publications, 2013 DOI: 10.5829/idosi.aejaes.2013.13.10.11248 Ruta graveolens L. Essential Oil Composition under Different Nutritional Treatments 12Afaq Ahmad Malik, Showkat R. Mir and 1Javed Ahmad 1Department of Botany, Jamia Hamdard, New Delhi 110062, India 2Department of Pharmacognosy and Phytochemistry, Jamia Hamdard, New Delhi 110 062, India Abstract: The use of un-exploited organic industrial by-products and municipal wastes as soil organic amendment has an economic value and environmental interest. However, little is known about their effectiveness on medicinal plants cultivation. An experiment was conducted in this regard to assess the impact of farmyard manure (FYM), composted sugarcane pressmud (CPM) and sewage sludge biosolid (SSB) on volatile oil composition of Ruta graveolens L., an important aromatic medicinal herb used frequently in Unani system of medicine in India. Volatile oil in the aerial parts of the plant was isolated by hydro-distillation and analyzed by GC-MS. Hydro-distillation of untreated (control) plants yielded 0.32% essential oil on fresh weight basis. The predominant components in the essential oil were n-Hex-4-en-3-one (55.06%), n-Pent-3-one (28.17%), n-Hex-3-en-2-one (14.07%) and n-Hex-5-en-3-one (0.67%). Essential oil obtained from plants treated with FYM amounted to 0.36% of fresh weight and consisted mainly of n-Hex-4-en-3-one (53.64%), n-Pent-3-one (37.82%) and n-Hex-3-en-2-one (7.22%).
    [Show full text]
  • Carrot Butter–Poached Halibut, Anchovy-Roasted Carrots, Fennel
    Carrot Butter–Poached Halibut, Anchovy-Roasted Carrots, Fennel 2 pounds (900 g) small carrots, with tops 31⁄2 cups (875 g) unsalted butter 3 anchovy fillets, minced 3 lemons Kosher salt 2 cups (500 ml) fresh carrot juice 3 cloves garlic, crushed, plus 1 whole clove garlic 1 bay leaf Zest of 1 orange 1⁄4 cup (60 ml) extra-virgin olive oil 4 halibut fillets, each about 6 ounces (185 g) Maldon flake salt Fennel Salad 1 fennel bulb, sliced 1⁄8 inch (3 mm) thick using a mandoline 2 tablespoons extra-virgin olive oil 2 tablespoons chopped chives 1 tablespoon chopped white anchovies (boquerones) Kosher salt and freshly ground black Pepper 1. Preheat the oven to 350°F (180°C). 2. Remove the carrot tops, wash, and set aside. Peel the carrots and halve them lengthwise. In a saute pan over medium heat, melt . cup (125 g) of the butter with the anchovies and the grated zest from two of the lemons. Add the carrots and season with kosher salt. Transfer to a baking sheet, spread in a single layer, and roast in the oven until slightly softened but still a little crunchy, about 12 minutes. Remove from oven and toss with the juice of one lemon. 3. In a shallow saute pan over medium heat, combine the carrot juice, the crushed garlic, bay leaf, and orange zest. Cook until reduced by threequarters, about 10 minutes. Add the remaining 3 cups (750 g) butter and stir until melted, then reduce the heat to very low and keep warm.
    [Show full text]
  • Carrots, Celery, Dehydration & Osmosis
    CARROTS, CELERY, DEHYDRATION & OSMOSIS OVERVIEW Students will investigate dehydration by soaking carrots and celery in salt and fresh water and observing the effects of osmosis on living organisms. Animals and plants that live in the ocean usually have a high salt level within them in order to avoid dehydration. CONCEPTS • Water molecules move across a membrane to higher levels of salt concentration through a pro- cess called osmosis. • Animals and plants that live in the ocean usually have a high salt content. On the other hand, animals and plants that are not adapted to salt water may have a low salt content, and thus become dehydrated when placed in salt water. MATERIALS For each group: • Salt water • Fresh water • Carrots • Celery • Containers (bowls, glasses, cups) PREPARATION Salt water can be created by simply putting a large quantity of salt into some water and stirring. Warm water will cause the salt to dissolve easier. If you wish to simulate the salt content of the ocean (optional), put 35 milligrams of salt into 965 milliliters of water. This exercise can be done as a class activity/demonstration, or students can be split into small groups. Each group will need a full set of materials. There should be at least one period where the vegetables are left in water for an extended period to get the desired effect. You may therefore wish to extend this activity throughout the day, or for more dramatic and distinctive results, conduct it over two to three days. Alternatively, you can reduce the time needed for this activity if you begin with both crisp and limp vegetables.
    [Show full text]
  • Borage, Calendula, Cosmos, Johnny Jump Up, and Pansy Flowers: Volatiles, Bioactive Compounds, and Sensory Perception
    European Food Research and Technology https://doi.org/10.1007/s00217-018-3183-4 ORIGINAL PAPER Borage, calendula, cosmos, Johnny Jump up, and pansy flowers: volatiles, bioactive compounds, and sensory perception Luana Fernandes1,2,3 · Susana Casal2 · José A. Pereira1 · Ricardo Malheiro1 · Nuno Rodrigues1 · Jorge A. Saraiva3 · Elsa Ramalhosa1 Received: 27 June 2018 / Accepted: 28 October 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The aim of the present work was to study the main volatile and bioactive compounds (monomeric anthocyanins, hydrolys- able tannins, total flavonoids, and total reducing capacity) of five edible flowers: borage (Borage officinalis), calendula (Calendula arvensis), cosmos (Cosmos bipinnatus), Johnny Jump up (Viola tricolor), and pansies (Viola × wittrockiana), together with their sensory attributes. The sensory analysis (10 panelists) indicated different floral, fruity, and herbal odors and taste. From a total of 117 volatile compounds (SPME–GC–MS), esters were most abundant in borage, sesquiterpenes in calendula, and terpenes in cosmos, Johnny Jump up, and pansies. Some bioactive and volatile compounds influence the sensory perception. For example, the highest content of total monomeric anthocyanins (cosmos and pansies) was associ- ated with the highest scores of colors intensity, while the floral and green fragrances detected in borage may be due to the presence of ethyl octanoate and 1-hexanol. Therefore, the presence of some volatiles and bioactive compounds affects the sensory perception of the flowers. Keywords Edible flowers · Volatile compounds · Sensory analysis · Bioactive compounds Introduction and fragrances of flowers are analyzed through their vola- tile essential oils [1]. Currently, there are some studies that Edible flowers are becoming more popular in recent years have applied solid-phase microextraction (SPME) method to due to the interest of consumers and professional chefs.
    [Show full text]
  • Cool Weather Herbs
    www.natureswayresources.com COOL WEATHER HERBS by Susan Gail Wood Herb Society of America/South Texas Unit Plant now in our herb gardens: dill, cilantro, nasturtiums and fennel. I enjoy growing lots of herbs year round to use for fragrance, cooking and beautiful bouquets. My favorite herbs to plant in the fall garden are: cilantro, nasturtiums, borage, fennel and dill. * Harvest basil before it blooms for best flavor. This means taking cuttings several times during the warm growing season to keep blossoms at bay. * Fresh CILANTRO can be used in place of basil for a delightful pesto. Late October and during November are perfect times to start cilantro from seed or plants in your garden. Cilantro has leaves that resemble flat leaf parsley until the plant is ready to flower. Start harvesting beforethe second, thinner set of leaves appear. This is a sign the herb is about to bloom, set seed and die back as is typical of annuals. Cilantro will bolt once the weather warms up next spring. Leave ripe 1 www.natureswayresources.com seed on the plant to fall back in the garden and this herb will be your best volunteer next fall. All the above mentioned favorites will withstand a freeze except for nasturtiums. Water and mulch all your herbs before a hard freeze and cover the nasturtiums. If they don't survive you can always plant more when the danger of frost passes next March. I lovethe cheery flowers they produce which are edible as well as the peppery leaves. * BORAGE is my favorite herb that you might not be growing, but should.
    [Show full text]
  • Hybridizing Collard and Cabbage May Provide a Means to Develop
    HORTSCIENCE 40(6):1686–1689. 2005. of certain OP cultivars, for instance, a tendency of ‘Champion’ to resist bolting under winter conditions (Farnham and Garrett, 1996), have Hybridizing Collard and Cabbage May provided a reason for these older cultivars to persist in spite of the advantages commercial Provide a Means to Develop Collard hybrids provide. Today, the numbers of commercially avail- Cultivars able OP and hybrid collard cultivars are both limited. Nearly all cultivars tend to be sus- Mark W. Farnham1 ceptible to diseases such as fusarium yellows U.S. Department of Agriculture, Agricultural Research Service. U.S. Vegetable (Farnham et al. 2001), whereas most cabbage Laboratory, 2700 Savannah Highway, Charleston, SC 29414 cultivars are highly resistant (Dixon, 1981). Such disease susceptibility makes most collard Glen Ruttencutter2 cultivars vulnerable to severe damage when Seminis Vegetable Seed Co., 37437 State Highway 16, Woodland, CA 95695 grown in infested soil under warm conditions (Farnham et al., 2001). J. Powell Smith3 Previously, it was reported that heading of Clemson Edisto Research and Education Center, 64 Research Road, Blackville, cabbage is partially recessive to the nonheading nature expressed by collard (Dickson and Wal- SC 29817 lace, 1986). Thus, we hypothesized that hybrids Anthony P. Keinath4 between cabbage and collard would look more like collard than cabbage and that hybridizing Clemson Coastal Research and Education Center, 2700 Savannah Highway, between the crop groups might provide a Charleston, SC 29414 means to develop new collard cultivars. Such Additional index words. Brassica oleracea, cytoplasmic male sterility, Acephala Group hybrids could exploit the especially large pool of cabbage germplasm available in the United Abstract.
    [Show full text]
  • Cilantro Dill Rosemary Ginger Mint Basil
    Dill Rosemary Basil Herbs Ginger Cilantro Mint What is an Herb? • Plants that are used as flavoring agents • Leaves, seeds or roots can be used • Usually used in small amounts • Many may be used for medicinal or ornamental purposes Basil Basil • Mint-like annual herb used for cooking, garnish, or medicinal purposes • Readily cross pollinates and several hybrids available • Grown in plots of less than 0.1 acre for local sales • A source of organic insecticide and fungicide • Pests: Japanese beetle; annual weeds • Disease: Botrytis, leaf blight, Sclerotinia blight, Fusarium wilt Mint Mint • Perennial, grown from vegetative material • Multiple harvests from a field, sold fresh • Pests: Loopers and Cutworms • Diseases: Verticillium wilt and Rust • Produced by 15 to 25 commercial growers in Texas • Menthols and esters are distilled from peppermint and spearmint in the Pacific Northwest Cilantro – Soil Preparation • Prefers a light, well-drained, moderately fertile loam or sandy soil • Can tolerate other soil conditions Cilantro - Planting • Will start to bolt when temperatures exceed 85 degrees F • Plant in February for April harvest; September for November harvest • Plant seeds 2 inches apart in rows 12 to 15 inches apart if plan to harvest leaves • Plant seeds 8 inches apart in rows 15 inches apart if plan to harvest seeds Cilantro - Planting • Plant seeds about ¼ to ½ inch deep • About 2,000 seeds per ounce, so don’t purchase a lot of seeds for the season • Weekly planting will ensure continuous crop Cilantro - Fertilizing • Should be fertilized
    [Show full text]
  • Vegetables: Dark-Green Leafy, Deep Yellow, Dry Beans and Peas (Legumes), Starchy Vegetables and Other Vegetables1 Glenda L
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. FCS 1055 Vegetables: Dark-Green Leafy, Deep Yellow, Dry Beans and Peas (legumes), Starchy Vegetables and Other Vegetables1 Glenda L. Warren2 • Deep yellow vegetables provide: Vitamin A. Eat 3 to 5 servings of vegetables each day. Examples: Carrots, pumpkins, sweet potatoes, Include all types of vegetables regularly. winter squash. What counts as one serving? • 1 cup of raw leafy vegetables (such as lettuce or spinach) • ½ cup of chopped raw vegetables • ½ cup of cooked vegetables • ¾ cup of vegetable juice Eat a variety of vegetables • Dry Beans and Peas (legumes) provide: It is important to eat many different vegetables. Thiamin, folic acid, iron, magnesium, All vegetables provide dietary fiber, some provide phosphorus, zinc, potassium, protein, starch, starch and protein, and they are also sources of fiber. Beans and peas can be used as meat many vitamins and minerals. alternatives since they are a source of protein. Examples: Black beans, black-eyed peas, • Dark-green vegetables provide: Vitamins A chickpeas (garbanzos), kidney beans, lentils, and C, riboflavin, folic acid, iron, calcium, lima beans (mature), mung beans, navy beans, magnesium, potassium. Examples: Beet pinto beans, split peas. greens, broccoli, collard greens, endive, • Starchy vegetables provide: Starch and escarole, kale, mustard greens, romaine varying amounts of certain vitamins and lettuce, spinach, turnip greens, watercress. minerals, such as niacin, vitamin B6, zinc, and 1. This document is FCS 1055, one of a series of the Department of Family, Youth and Community Sciences, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
    [Show full text]
  • Brassica Rapa)Ssp
    Li et al. Horticulture Research (2020) 7:212 Horticulture Research https://doi.org/10.1038/s41438-020-00449-z www.nature.com/hortres ARTICLE Open Access A chromosome-level reference genome of non- heading Chinese cabbage [Brassica campestris (syn. Brassica rapa)ssp. chinensis] Ying Li 1,Gao-FengLiu1,Li-MingMa2,Tong-KunLiu 1, Chang-Wei Zhang 1, Dong Xiao1, Hong-Kun Zheng2, Fei Chen1 and Xi-Lin Hou 1 Abstract Non-heading Chinese cabbage (NHCC) is an important leafy vegetable cultivated worldwide. Here, we report the first high-quality, chromosome-level genome of NHCC001 based on PacBio, Hi-C, and Illumina sequencing data. The assembled NHCC001 genome is 405.33 Mb in size with a contig N50 of 2.83 Mb and a scaffold N50 of 38.13 Mb. Approximately 53% of the assembled genome is composed of repetitive sequences, among which long terminal repeats (LTRs, 20.42% of the genome) are the most abundant. Using Hi-C data, 97.9% (396.83 Mb) of the sequences were assigned to 10 pseudochromosomes. Genome assessment showed that this B. rapa NHCC001 genome assembly is of better quality than other currently available B. rapa assemblies and that it contains 48,158 protein-coding genes, 99.56% of which are annotated in at least one functional database. Comparative genomic analysis confirmed that B. rapa NHCC001 underwent a whole-genome triplication (WGT) event shared with other Brassica species that occurred after the WGD events shared with Arabidopsis. Genes related to ascorbic acid metabolism showed little variation among the three B. rapa subspecies. The numbers of genes involved in glucosinolate biosynthesis and catabolism 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; were higher in NHCC001 than in Chiifu and Z1, due primarily to tandem duplication.
    [Show full text]