Newborn Blood Spot Screening.Pdf (Download)

Total Page:16

File Type:pdf, Size:1020Kb

Newborn Blood Spot Screening.Pdf (Download) Alberta STE Report Newborn blood spot screening for galactosemia, tyrosinemia type I, homocystinuria, sickle cell anemia, sickle cell/beta-thalassemia, sickle cell/hemoglobin C disease, and severe combined immunodeficiency March 2016 INSTITUTE OF HEALTH ECONOMICS The Institute of Health Economics (IHE) is an independent, not-for-profit organization that performs research in health economics and synthesizes evidence in health technology assessment to assist health policy making and best medical practices. IHE BOARD OF DIRECTORS Chair Dr. Lorne Tyrrell – Professor & Director, Li Ka Shing Institute of Virology, University of Alberta Government and Public Authorities Dr. Carl Amrhein – Deputy Minister, Alberta Health Mr. Jason Krips – Deputy Minister, Economic Development and Trade Dr. Pamela Valentine – CEO (Interim), Alberta Innovates – Health Solutions Dr. Kathryn Todd – VP Research, Innovation & Analytics, Alberta Health Services Academia Dr. Walter Dixon – Associate VP Research, University of Alberta Dr. Jon Meddings – Dean of Medicine, University of Calgary Dr. Richard Fedorak – Dean of Medicine & Dentistry, University of Alberta Dr. Ed McCauley – VP Research, University of Calgary Dr. James Kehrer – Dean of Pharmacy & Pharmaceutical Sciences, University of Alberta Dr. Braden Manns – Svare Chair in Health Economics and Professor, Departments of Medicine and Community Health Sciences, University of Calgary Dr. Constance Smith – Chair, Department of Economics, University of Alberta Industry Ms. Lisa Marsden –VP, Cornerstone & Market Access, AstraZeneca Ms. Jennifer Chan – VP, Policy & Communications, Merck Canada Ms. Tanya Lederer – Director, External Relations, GlaxoSmithKline Inc. IHE Mr. Doug Gilpin – Chair, Audit & Finance Committee Dr. Egon Jonsson – Executive Director & CEO, Institute of Health Economics Ms. Allison Hagen – Director of Finance, Operations & Administration, Institute of Health Economics Alberta STE Report Newborn blood spot screening for galactosemia, tyrosinemia type I, homocystinuria, sickle cell anemia, sickle cell/beta-thalassemia, sickle cell/hemoglobin C disease, and severe combined immunodeficiency Alberta STE Report: Policy-driven Health Technology Assessment reports that include an analysis of the social and system demographics, technological effectiveness, and economic implications of a health technology. The reports are written under contract with the Alberta Health Technologies Decision Process and contextualized for use in Alberta. Acknowledgements The Institute of Health Economics is grateful to: • The Expert Advisory Group • The Health Technologies and Services Policy Unit, Alberta Health • The Health Protection Branch, Alberta Health • Laboratory Services, Alberta Health Services • Health Technology Assessment and Innovation, Alberta Health Services • Clinical Genetic Services, Alberta Health Services • Inherited Metabolic Disorders Clinic, Alberta Health Services • BC Children’s Hospital, British Columbia The views expressed in this report are of the Institute of Health Economics. Corresponding Author Please direct any inquiries about this report to Dr. Anderson Chuck, [email protected]. Funding This report was supported by a financial contribution from Alberta Health (AH) through the Alberta Health Technologies Decision Process, the Alberta model for health technology assessment and policy analysis. The views expressed herein do not necessarily represent the official policy of Alberta Health. Declared Competing Interest of Authors Competing interest is considered to be financial interest or non-financial interest, either direct or indirect, that would affect the research contained in this report or create a situation in which a person’s judgement could be unduly influenced by a secondary interest, such as personal advancement. The authors of this publication claim no competing interest. Suggested Citation (ICMJE or Vancouver Style) Institute of Health Economics. Newborn blood spot screening for galactosemia, tyrosinemia type I, homocystinuria, sickle cell anemia, sickle cell/beta-thalassemia, sickle cell/hemoglobin C disease, and severe combined immunodeficiency. Edmonton (AB): Institute of Health Economics; 2016. Web Address This publication is available for free download from the IHE website at http://www.ihe.ca. Reproduction, redistribution, or modification of the information for any purposes is prohibited without the express written permission of the Institute of Health Economics. Institute of Health Economics, 2016 www.ihe.ca Newborn blood spot screening for GALT, TYRI, HCY, SCD, and SCID i EXECUTIVE SUMMARY Background Existing evidence reviews on newborn blood spot screening (for example, health technology assessments, systematic reviews, literature synthesis) are outdated and/or have not assessed the long-term health consequences or health economic impact on the health system. Further, the transferability of the evidence base to the Alberta setting is uncertain, as the value in terms of both health outcomes and costs are ultimately dependent on local epidemiology, clinical practice, system capacity, and costs. Accordingly, there was a need to conduct an updated evidence assessment contextualized to the Alberta setting. There are seven conditions that are not currently primary targets for screening or secondary conditions identified via screening in Alberta that are widely represented in or being considered for screening programs in many jurisdictions across North America: galactosemia (GALT); tyrosinemia type I (TYRI); homocystinuria (HCY); sickle cell anemia (Hb SS), sickle cell/beta-thalassemia (Hb S/β-thal), and sickle cell/hemoglobin C disease (Hb SC) (hemoglobinopathies collectively referred to here as sickle cell disease [SCD]); and severe combined immunodeficiency (SCID). As such, this evidence assessment focuses on these seven conditions and the associated tests used to identify them, to assess the potential health economic impact of adding any or all of these conditions to the Alberta Newborn Metabolic Screening (NMS) Program. Alberta STE Evidence Assessment This evidence assessment was conducted under the auspices of the Alberta Health Technologies Decision Process (http://www.health.alberta.ca/initiatives/AHTDP.html). This process involves the use of appropriate evidence and information for decision-making regarding the public provision of health technologies and services. These assessments consider existing evidence and other information relevant to three areas: social and system demographics (S section), technology effects and effectiveness (T section), and economic analysis (E section). The Alberta NMS Program uses a population-based screening approach to reduce the burden of disease in the community through early detection and treatment of select treatable conditions. As such, this STE review was guided by the generally accepted principles for decision-making for the introduction of population-based screening programs outlined by the Australian Population Health Development Principal Committee’s Screening Subcommittee, in its document “Population Based Screening Framework” (Australian Framework). It is important to note that the scope of this review is to assess the impact of adding the seven aforementioned conditions to an already existing population-based screening program. There are criteria outlined in the Australian Framework which are oriented towards the requisite characteristics of a screening program; these were not considered in this review, given that evaluation of the existing screening program is outside the scope of this review. The criteria outlined in the Australian Framework that were considered in this evidence review are summarized below. According to the framework, for a condition to be included in a population- based screening program: • The condition must be an important health problem and have a recognizable latent or early symptomatic stage. Newborn blood spot screening for GALT, TYRI, HCY, SCD, and SCID ii • The test for each condition must be highly sensitive and specific, be validated and safe, have a relatively high positive and negative predictive value, and be acceptable to the target population, including important subgroups. • The treatment for each condition must be effective, available, easily accessible, and acceptable to all patients with the recognized disease or condition. • There should be clear evidence that screening and treatment leads to better outcomes than finding and treating the disease at a later stage. • Systems should be in place for evidence-based follow-up assessment of all people with a positive screen, regardless of rurality, ethnicity, socioeconomic status, or disadvantage status. • Ongoing management referral protocols must be established for individuals who have the condition detected through the screening program. • The overall benefits of screening outweigh the harm. Social and System Demographics Objective The objective of the S section of this STE report is to provide information describing the patterns of care associated with early and late diagnosis of each of the seven conditions, as well as related health outcomes. The health system capacity in Alberta and general acceptability of screening and condition diagnostic testing will also be described. Key Findings Table ES.1: Canadian jurisdictions screening for GALT, TYRI, HCY, SCD, and/or SCID (as of April 2015) SCD (Hb SS, Province GALT TYRI HCY SCID Hb S/β-thal, Hb SC) British Columbia + + + + R Alberta Under review Under review Under review Under
Recommended publications
  • Constructing an Efficient Bacillus Subtilis Spore Display by Using
    molecules Article Constructing an Efficient Bacillus subtilis Spore Display by Using Cohesin−Dockerin Interactions He Wang 1,*,†, Xiaomin Jiang 2,†, Yongchang Qian 3 and Lianghong Yin 3 1 School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China 2 School of Agricultural and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; [email protected] 3 School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; [email protected] (Y.Q.); [email protected] (L.Y.) * Correspondence: [email protected]; Tel.: +86-511-84423559 † These authors contributed equally to this work. Abstract: Bacillus subtilis spore display has become a field of increasing interest in the past two decades. To improve the efficiency of B. subtilis spore display, its directed modification was performed based on the cellulosome architecture by introducing onto them divergent cohesin (Coh) modules that can specifically bind to the target enzyme bearing the matching dockerins (Doc). In this study, five different pairs of cohesins and dockerins, selected from four cellulolytic microbes, were examined for their capabilities in displaying a tetrameric enzyme β-galactosidase from Bacillus stearothermophilus IAM11001 on the surface of B. subtilis WB600 spores. Immunofluorescence microscopy, western blotting, dot blotting, and enzyme assay was applied to confirm its surface expression. All the resultant five Coh–Doc based spore display can hydrolyze o-nitrophenyl-β-D-galactopyranoside. Citation: Wang, H.; Jiang, X.; Qian, Further, the optimized Coh–Doc based spore display exhibited the highest display efficiency. Overall, Y.; Yin, L. Constructing an Efficient the results of current study may open new perspectives on the use of Coh–Doc interaction, which Bacillus subtilis Spore Display by will find application in improving the efficiency of B.
    [Show full text]
  • Hyperammonemia in Review: Pathophysiology, Diagnosis, and Treatment
    Pediatr Nephrol DOI 10.1007/s00467-011-1838-5 EDUCATIONAL REVIEW Hyperammonemia in review: pathophysiology, diagnosis, and treatment Ari Auron & Patrick D. Brophy Received: 23 September 2010 /Revised: 9 January 2011 /Accepted: 12 January 2011 # IPNA 2011 Abstract Ammonia is an important source of nitrogen and is the breakdown and catabolism of dietary and bodily proteins, required for amino acid synthesis. It is also necessary for respectively. In healthy individuals, amino acids that are not normal acid-base balance. When present in high concentra- needed for protein synthesis are metabolized in various tions, ammonia is toxic. Endogenous ammonia intoxication chemical pathways, with the rest of the nitrogen waste being can occur when there is impaired capacity of the body to converted to urea. Ammonia is important for normal animal excrete nitrogenous waste, as seen with congenital enzymatic acid-base balance. During exercise, ammonia is produced in deficiencies. A variety of environmental causes and medica- skeletal muscle from deamination of adenosine monophos- tions may also lead to ammonia toxicity. Hyperammonemia phate and amino acid catabolism. In the brain, the latter refers to a clinical condition associated with elevated processes plus the activity of glutamate dehydrogenase ammonia levels manifested by a variety of symptoms and mediate ammonia production. After formation of ammonium signs, including significant central nervous system (CNS) from glutamine, α-ketoglutarate, a byproduct, may be abnormalities. Appropriate and timely management requires a degraded to produce two molecules of bicarbonate, which solid understanding of the fundamental pathophysiology, are then available to buffer acids produced by dietary sources. differential diagnosis, and treatment approaches available.
    [Show full text]
  • Ovulation-Selective Genes: the Generation and Characterization of an Ovulatory-Selective Cdna Library
    531 Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library A Hourvitz1,2*, E Gershon2*, J D Hennebold1, S Elizur2, E Maman2, C Brendle1, E Y Adashi1 and N Dekel2 1Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA 2Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (Requests for offprints should be addressed to N Dekel; Email: [email protected]) *(A Hourvitz and E Gershon contributed equally to this paper) (J D Hennebold is now at Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA) Abstract Ovulation-selective/specific genes, that is, genes prefer- (FAE-1) homolog, found to be localized to the inner entially or exclusively expressed during the ovulatory periantral granulosa and to the cumulus granulosa cells of process, have been the subject of growing interest. We antral follicles. The FAE-1 gene is a -ketoacyl-CoA report herein studies on the use of suppression subtractive synthase belonging to the fatty acid elongase (ELO) hybridization (SSH) to construct a ‘forward’ ovulation- family, which catalyzes the initial step of very long-chain selective/specific cDNA library. In toto, 485 clones were fatty acid synthesis. All in all, the present study accom- sequenced and analyzed for homology to known genes plished systematic identification of those hormonally with the basic local alignment tool (BLAST). Of those, regulated genes that are expressed in the ovary in an 252 were determined to be nonredundant.
    [Show full text]
  • Mapping Influenza-Induced Posttranslational Modifications On
    viruses Article Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells Svetlana Rezinciuc 1, Zhixin Tian 2, Si Wu 2, Shawna Hengel 2, Ljiljana Pasa-Tolic 2 and Heather S. Smallwood 1,3,* 1 Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] 2 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; [email protected] (Z.T.); [email protected] (S.W.); [email protected] (S.H.); [email protected] (L.P.-T.) 3 Children’s Foundation Research Institute, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-(901)-448–3068 Academic Editor: Italo Tempera Received: 10 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection.
    [Show full text]
  • Epidemiology of Mucopolysaccharidoses Update
    diagnostics Review Epidemiology of Mucopolysaccharidoses Update Betul Celik 1,2 , Saori C. Tomatsu 2 , Shunji Tomatsu 1 and Shaukat A. Khan 1,* 1 Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; [email protected] (B.C.); [email protected] (S.T.) 2 Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel.: +302-298-7335; Fax: +302-651-6888 Abstract: Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a lysosomal enzyme deficiency or malfunction, which leads to the accumulation of glycosaminoglycans in tissues and organs. If not treated at an early stage, patients have various health problems, affecting their quality of life and life-span. Two therapeutic options for MPS are widely used in practice: enzyme replacement therapy and hematopoietic stem cell transplantation. However, early diagnosis of MPS is crucial, as treatment may be too late to reverse or ameliorate the disease progress. It has been noted that the prevalence of MPS and each subtype varies based on geographic regions and/or ethnic background. Each type of MPS is caused by a wide range of the mutational spectrum, mainly missense mutations. Some mutations were derived from the common founder effect. In the previous study, Khan et al. 2018 have reported the epidemiology of MPS from 22 countries and 16 regions. In this study, we aimed to update the prevalence of MPS across the world. We have collected and investigated 189 publications related to the prevalence of MPS via PubMed as of December 2020. In total, data from 33 countries and 23 regions were compiled and analyzed.
    [Show full text]
  • Pharmacological Analysis of Cyclooxygenase-1 in Inflammation
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13313–13318, October 1998 Pharmacology Pharmacological analysis of cyclooxygenase-1 in inflammation CHRISTOPHER J. SMITH,YAN ZHANG,CAROL M. KOBOLDT,JERRY MUHAMMAD,BEN S. ZWEIFEL,ALEX SHAFFER, JOHN J. TALLEY,JAIME L. MASFERRER,KAREN SEIBERT, AND PETER C. ISAKSON* Searle Research and Development, 700 Chesterfield Parkway North, St. Louis, MO 63198 Communicated by Philip Needleman, Monsanto Company, St. Louis, MO, August 25, 1998 (received for review May 11, 1998) ABSTRACT The enzymes cyclooxygenase-1 and cycloox- and is expressed constitutively in most tissues and cells (17), ygenase-2 (COX-1 and COX-2) catalyze the conversion of although it can be induced in some cell lines under certain arachidonic acid to prostaglandin (PG) H2, the precursor of conditions (18). A second, inducible, form of COX was PGs and thromboxane. These lipid mediators play important hypothesized to exist on the basis of the finding of a glucocor- roles in inflammation and pain and in normal physiological ticoid-regulated increase in COX activity observed in vitro and functions. While there are abundant data indicating that the in vivo in response to inflammatory stimuli (19, 20). The inducible isoform, COX-2, is important in inflammation and isolation of a distinct gene and enzyme for COX-2 confirmed pain, the constitutively expressed isoform, COX-1, has also this hypothesis and led to the supposition that selective inhi- been suggested to play a role in inflammatory processes. To bition of inducible COX-2 would be anti-inflammatory, while address the latter question pharmacologically, we used a preserving the physiological functions of COX-1 derived PGs.
    [Show full text]
  • Supplement 1 Overview of Dystonia Genes
    Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase
    [Show full text]
  • Newborn Screening Laboratory Manual of Services
    Newborn Screening Laboratory Manual of Services Test Panel: Please see the following links for a detailed description of testing in the Newborn Screening section. Information about the Newborn Screening program is available here. Endocrine Disorders Congenital adrenal hyperplasia (CAH) Congenital hypothyroidism (TSH) Hemoglobinopathies Sickle cell disease (FS) Alpha (Barts) Sickle βeta Thalassemia (FSA) Other sickling hemoglobinopathies such as: FAS FAC FAD FAE Homozygous conditions such as: FC FD FE Metabolic Disorders Biotinidase deficiency Galactosemia Cystic fibrosis (CF) first tier screening for elevated immunoreactive trypsinogen (IRT) Cystic fibrosis second tier genetic mutation analysis on the top 4% IRT concentrations. Current alleles detected : F508del, I507del, G542X, G85E, R117H, 621+1G->T, 711+1G->T, R334W, R347P, A455E, 1717-1G->A, R560T, R553X, G551D, 1898+1G->A, 2184delA, 2789+5G->A, 3120+1G->A, R1162X, 3659delC, 3849+10kbC->T, W1282X, N1303K, IVS polyT T5/T7/T9 *Currently validating a mutation panel that includes the above alleles in addition to the following: 1078delT, Y122X, 394delTT, R347H, M1101K, S1255X, 1898+5G->T, 2183AA->G, 2307insA, Y1092X, 3876delA, 3905insT, S549N, S549R_1645A->C, S549R-1647T->G, S549R-1647T->G, V520F, A559T, 1677delTA, 2055del9->A, 2143delT, 3199del6, 406-1G->A, 935delA, D1152H, CFTRdele2, E60X, G178R, G330X, K710X, L206W, Q493X, Q890X, R1066C, R1158X, R75X, S1196X, W1089X, G1244E, G1349D, G551S, R560KT, S1251N, S1255P Amino acid disorders Phenylketonuria (PKU) / Hyperphenylalaninemia Maple
    [Show full text]
  • CBS, MET Act Sheet
    Newborn Screening ACT Sheet Increased Methionine Homocystinuria (CBS Deficiency) / Hypermethioninemia (MET) Differential Diagnosis: Classical homocystinuria (cystathionine β-synthase (CBS) deficiency); hypermethioninemia (MET) due to methionine adenosyltransferase I/III MAT I/III deficiency; glycine n-methyltransferase GNMT deficiency; adenosylhomocysteine hydrolase deficiency; liver disease; hyperalimentation. Condition Description: Methionine from ingested protein is normally converted to homocysteine. In classical homocystinuria due to CBS deficiency, homocysteine cannot be converted to cystathionine. As a result, the concentration of homocysteine and its precursor, methionine, will become elevated. In MAT I/III deficiency and the other hypermethioninemias, methionine is increased in the absence of, or only with, a slightly increased level of homocysteine. You Should Take the Following IMMEDIATE Actions • Contact family to inform them of the newborn screening result and ascertain clinical status. • Consult with pediatric metabolic specialist. (See attached list.) • Evaluate the newborn with attention to liver disease and refer as appropriate. • Initiate confirmatory/diagnostic tests in consultation with metabolic specialist. • Initial testing: Plasma quantitative amino acids and plasma total homocysteine. • Repeat newborn screen if second screen has not been done. • Educate family about homocystinuria and its management as appropriate. • Report findings to newborn screening program. Diagnostic Evaluation: Plasma quantitative amino
    [Show full text]
  • Incidence of Inborn Errors of Metabolism by Expanded Newborn
    Original Article Journal of Inborn Errors of Metabolism & Screening 2016, Volume 4: 1–8 Incidence of Inborn Errors of Metabolism ª The Author(s) 2016 DOI: 10.1177/2326409816669027 by Expanded Newborn Screening iem.sagepub.com in a Mexican Hospital Consuelo Cantu´-Reyna, MD1,2, Luis Manuel Zepeda, MD1,2, Rene´ Montemayor, MD3, Santiago Benavides, MD3, Hector´ Javier Gonza´lez, MD3, Mercedes Va´zquez-Cantu´,BS1,4, and Hector´ Cruz-Camino, BS1,5 Abstract Newborn screening for the detection of inborn errors of metabolism (IEM), endocrinopathies, hemoglobinopathies, and other disorders is a public health initiative aimed at identifying specific diseases in a timely manner. Mexico initiated newborn screening in 1973, but the national incidence of this group of diseases is unknown or uncertain due to the lack of large sample sizes of expanded newborn screening (ENS) programs and lack of related publications. The incidence of a specific group of IEM, endocrinopathies, hemoglobinopathies, and other disorders in newborns was obtained from a Mexican hospital. These newborns were part of a comprehensive ENS program at Ginequito (a private hospital in Mexico), from January 2012 to August 2014. The retrospective study included the examination of 10 000 newborns’ results obtained from the ENS program (comprising the possible detection of more than 50 screened disorders). The findings were the following: 34 newborns were confirmed with an IEM, endocrinopathies, hemoglobinopathies, or other disorders and 68 were identified as carriers. Consequently, the estimated global incidence for those disorders was 3.4 in 1000 newborns; and the carrier prevalence was 6.8 in 1000. Moreover, a 0.04% false-positive rate was unveiled as soon as diagnostic testing revealed negative results.
    [Show full text]
  • EXTENDED CARRIER SCREENING Peace of Mind for Planned Pregnancies
    Focusing on Personalised Medicine EXTENDED CARRIER SCREENING Peace of Mind for Planned Pregnancies Extended carrier screening is an important tool for prospective parents to help them determine their risk of having a child affected with a heritable disease. In many cases, parents aren’t aware they are carriers and have no family history due to the rarity of some diseases in the general population. What is covered by the screening? Genomics For Life offers a comprehensive Extended Carrier Screening test, providing prospective parents with the information they require when planning their pregnancy. Extended Carrier Screening has been shown to detect carriers who would not have been considered candidates for traditional risk- based screening. With a simple mouth swab collection, we are able to test for over 419 genes associated with inherited diseases, including Fragile X Syndrome, Cystic Fibrosis and Spinal Muscular Atrophy. The assay has been developed in conjunction with clinical molecular geneticists, and includes genes listed in the NIH Genetic Test Registry. For a list of genes and disorders covered, please see the reverse of this brochure. If your gene of interest is not covered on our Extended Carrier Screening panel, please contact our friendly team to assist you in finding a gene test panel that suits your needs. Why have Extended Carrier Screening? Extended Carrier Screening prior to pregnancy enables couples to learn about their reproductive risk and consider a complete range of reproductive options, including whether or not to become pregnant, whether to use advanced reproductive technologies, such as preimplantation genetic diagnosis, or to use donor gametes.
    [Show full text]
  • The Counsyl Foresight™ Carrier Screen
    The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia.............................................................................................................................................................................................................................................................
    [Show full text]