Ribociclib (LEE011)

Total Page:16

File Type:pdf, Size:1020Kb

Ribociclib (LEE011) Oncology Clinical Development Ribociclib (LEE011) Protocol CLEE011XUS29 / NCT02732119 TRINITI-1: A Phase I/II, single arm, open-label study of Ribociclib in Combination with Everolimus + Exemestane in the Treatment of Men and Postmenopausal Women with HR+, HER2- Locally Advanced or Metastatic Breast Cancer Following Progression on a CDK 4/6 Inhibitor Triplet with Ribociclib, AfINitor® and AI posT CDK 4/6 Inhibitor Authors Document type Amended Protocol Version Version number 03 (Clean) Development phase I/II Document status Final Release date 15-Feb-2019 Property of Novartis Confidential May not be used, divulged, published, or otherwise disclosed without the consent of Novartis Novartis Confidential Page 2 Amended Protocol v03 (clean) CLEE011XUS29 Table of contents Table of contents..................................................................................................................................... 2 List of tables............................................................................................................................................ 8 List of figures........................................................................................................................................ 10 List of abbreviations ............................................................................................................................. 11 Glossary of terms .................................................................................................................................. 14 Amendment 3........................................................................................................................................ 16 Amendment 2........................................................................................................................................ 18 Amendment 1........................................................................................................................................ 21 Synopsis................................................................................................................................................ 24 1 Background........................................................................................................................................... 35 1.1 Overview of current treatment................................................................................................. 35 1.1.1 Epidemiology of breast cancer ............................................................................. 35 1.1.2 Treatment options for hormone receptor positive advanced breast cancer........... 35 1.2 Introduction to investigational treatment(s) and other study treatment(s)............................... 39 1.2.1 Overview of ribociclib (LEE011)......................................................................... 39 1.2.2 Summary of results from patients treated with the combination of ribociclib 600 mg and letrozole 2.5 mg daily from study CLEE011A2301 (MONALEESA-2)................................................................................................ 45 1.2.3 Overview of everolimus (RAD001/ Afinitor®) .................................................... 49 1.2.4 Overview of exemestane....................................................................................... 52 1.2.5 Ribociclib in combination with everolimus.......................................................... 53 2 Rationale............................................................................................................................................... 59 2.1 Study rationale and purpose .................................................................................................... 59 2.1.1 Rationale for Continuous Dosing- Phase I-Dose Escalation ................................ 60 2.1.2 Rational for stomatitis prevention mouthwash ..................................................... 62 2.2 Risks and benefits.................................................................................................................... 62 2.2.1 Potential benefits to clinical trial participation ..................................................... 63 2.2.2 Potential risks to clinical trial participants............................................................ 63 3 Study objectives and endpoints............................................................................................................. 63 3.1 Objectives and related endpoints-Phase I................................................................................ 63 3.2 Objectives and related endpoints-phase II............................................................................... 64 4 Study design.......................................................................................................................................... 66 4.1 Description of study design..................................................................................................... 66 4.1.1 Screening phase (Phase I and II) .......................................................................... 68 4.1.2 Treatment phase.................................................................................................... 69 4.1.3 Treatment discontinuation .................................................................................... 69 4.1.4 Safety follow-up ................................................................................................... 69 Novartis Confidential Page 3 Amended Protocol v03 (clean) CLEE011XUS29 4.2 Timing of interim analyses...................................................................................................... 69 4.3 Definition of end of study........................................................................................................ 70 4.4 Early study termination ........................................................................................................... 70 5 Population............................................................................................................................................. 70 5.1 Patient population.................................................................................................................... 70 5.1.1 Screening for Hepatitis B...................................................................................... 71 5.1.2 Screening for Hepatitis C...................................................................................... 71 5.2 Inclusion criteria...................................................................................................................... 72 5.3 Exclusion criteria..................................................................................................................... 74 6 Treatment.............................................................................................................................................. 77 6.1 Study treatment........................................................................................................................ 77 6.1.1 Dosing regimen..................................................................................................... 77 6.2 Dose escalation and de-escalation guidelines: Phase I Safety Run-in..................................... 78 6.2.1 Criteria for dose escalation and determination of MTD(s)/RP2D ........................ 79 6.2.2 Definitions of dose limiting toxicities (DLTs) ..................................................... 80 6.2.3 Follow up for dose limiting toxicities................................................................... 81 6.2.4 Doses for Phase II................................................................................................. 82 6.3 Overview of Dexamethasone oral solution ............................................................................. 83 6.4 Dose modification ................................................................................................................... 84 6.4.1 Dose cohort modification ..................................................................................... 84 6.4.2 Anticipated Risks and safety considerations of the study drug combination........ 87 6.4.3 Dose modifications for ribociclib+everolimus+exemestane combination............ 87 6.4.4 Dose modification and management for everolimus specific toxicities ............... 95 6.4.5 Recommended actions to be taken for positive baseline hepatitis B test.............. 99 6.4.6 Guidance for all other adverse reactions............................................................. 100 6.5 Concomitant medications ...................................................................................................... 101 6.5.1 Permitted concomitant therapy for all treatment groups..................................... 101 6.5.2 Prohibited concomitant therapy during combined ribociclib + everolimus + exemestane.......................................................................................................... 102 6.5.3 Permitted concomitant therapy requiring caution and/or action while on study ................................................................................................................... 103 6.5.4 Drugs with QTc prolongation............................................................................. 103 6.6 Patient numbering, treatment assignment or randomization ................................................. 104 6.6.1 Patient numbering..............................................................................................
Recommended publications
  • A Phase I Trial of Tamoxifen with Ribociclib (LEE011) in Adult Patients with Advanced ER+ (HER2 Negative) Breast Cancer
    The TEEL Study: A Phase I Trial of Tamoxifen with Ribociclib (LEE011) in Adult Patients with Advanced ER+ (HER2 Negative) Breast Cancer NCT02586675 Version 12.0 September 14, 2016 TEEL Protocol- Tamoxifen +Ribociclib Page 1 TITLE PAGE The TEEL Study: A Phase I trial of Tamoxifen with Ribociclib (LEE011) in adult patients with advanced ER+ (HER2 negative) breast cancer. Protocol: MCC 18332 Chesapeake IRB Pro00015228 Principal Investigator: Co-Investigators: Statistician: Experimental Therapeutics Program H. Lee Moffitt Cancer Center 12902 Magnolia Drive Tampa, FL 33612 & Comprehensive Breast Program Moffitt McKinley Outpatient Center 10920 N. McKinley Dr. Tampa, FL 33612 Study Site Contact: Protocol Version 12 Date: September 14, 2016 TEEL Protocol- Tamoxifen +Ribociclib Page 2 TITLE PAGE .............................................................................................................................................. 1 SYNOPSIS ................................................................................................................................................... 5 Patient Population ................................................................................................................................. 5 Type of Study ......................................................................................................................................... 5 Prior Therapy......................................................................................................................................... 5
    [Show full text]
  • PD-1/PD-L1 Targeting in Breast Cancer: the First Clinical Evidences Are Emerging
    Supplementary Materials: PD-1/PD-L1 Targeting in Breast Cancer: the First Clinical Evidences are Emerging. A Literature Review Table S1. Interventional studies with anti PD-1 or PDL-1 agents recruiting. Non-intraveinous administrations are indicated between brackets. Estimated Estimated Study Ph. Anti-PD(L)-1 Single (S) or Combination Study title NCT Conditions or disease Enrollement Sponsor Completion Date (n=) Inflammatory and metastatic breast cancer (IBC) 1 Pembrolizumab S MK-3475 for Metastatic Inflammatory Breast Cancer (MIBC) 02411656 35 June 2020 MD Anderson or mTNBC Entinostat, Nivolumab, and Ipilimumab in treating patients Breast carcinoma: HER2 negative, Ipilimumab with solid tumors that are metastatic or cannot be removed by Invasive BC, Metastatic BC 1 Entinostat [PO] 02453620 45 December 2019 NCI Nivolumab surgery or locally advanced or metastatic HER2-NegativeBreast BC stage III, IIIA, IIIB, IIIC, IV Cancer Unresectable solid neoplasm Adjuvant PVX-410 Vaccine and Durvalumab in stage II/III TNBC stage II, III; HLA-A2 positive by Massachusetts 1 Durvalumab PVX-410 [IM] 02826434 20 December 2022 Triple Negative Breast Cancer deoxyribonucleic acid (DNA) sequence analysis General Hospit A Study of changes in PD-L1 expression during preoperative Pembrolizumab 1 Nab-paclitaxel treatment with Nab-Paclitaxel and pembrolizumab in Hormone 02999477 HR positive breast cancer 50 January 2023 Dana-Farber Receptor (HR) Positive BC Cisplatine PD1 Antibody + GP as first line treatment for triple negative Fudan 1 JS001 (anti PD1) Gemcitabine
    [Show full text]
  • PRIOR AUTHORIZATION CRITERIA for APPROVAL Initial Evaluation Target Agent(S) Will Be Approved When ONE of the Following Is Met: 1
    Self-Administered Oncology Agents Through Preferred Prior Authorization Program Summary FDA APPROVED INDICATIONS3-104 Please reference individual agent product labeling. CLINICAL RATIONALE For the purposes of the Self -Administered Oncology Agents criteria, indications deemed appropriate are those approved in FDA labeling and/or supported by NCCN Drugs & Biologics compendia with a category 1 or 2A recommendation, AHFS, or DrugDex with level of evidence of 1 or 2A. SAFETY3-104 Agent(s) Contraindication(s) Afinitor/Afinitor Disperz Hypersensitivity to everolimus, to other rapamycin (everolimus) derivatives None Alecensa (alectinib) Alunbrig (brigatinib) None Ayvakit (avapritinib) None Balversa (erdafitinib) None Hypersensitivity to bosutinib Bosulif (bosutinib) Braftovi (encorafenib) None Brukinsa (zanubrutinib) None Cabometyx None (cabozantinib) Calquence None (acalabrutinib) Caprelsa Congenital long QT syndrome (vandetanib) Cometriq None (cabozantinib) Copiktra (duvelisib) None Cotellic (cobimetinib) None Daurismo (glasdegib) None None Erivedge (vismodegib) Erleada (apalutamide) Pregnancy None Farydak (panobinostat) Fotivda (tivozanib) None Gavreto (pralsetinib) None None Gilotrif (afatinib) Gleevec None (imatinib) Hycamtin Severe hypersensitivity to topotecan (topotecan) None Ibrance (palbociclib) KS_PS_SA_Oncology_PA_ProgSum_AR1020_r0821v2 Page 1 of 19 © Copyright Prime Therapeutics LLC. 08/2021 All Rights Reserved Effective: 10/01/2021 Agent(s) Contraindication(s) None Iclusig (ponatinib) Idhifa (enasidenib) None Imbruvica (ibrutinib)
    [Show full text]
  • BC Cancer Benefit Drug List September 2021
    Page 1 of 65 BC Cancer Benefit Drug List September 2021 DEFINITIONS Class I Reimbursed for active cancer or approved treatment or approved indication only. Reimbursed for approved indications only. Completion of the BC Cancer Compassionate Access Program Application (formerly Undesignated Indication Form) is necessary to Restricted Funding (R) provide the appropriate clinical information for each patient. NOTES 1. BC Cancer will reimburse, to the Communities Oncology Network hospital pharmacy, the actual acquisition cost of a Benefit Drug, up to the maximum price as determined by BC Cancer, based on the current brand and contract price. Please contact the OSCAR Hotline at 1-888-355-0355 if more information is required. 2. Not Otherwise Specified (NOS) code only applicable to Class I drugs where indicated. 3. Intrahepatic use of chemotherapy drugs is not reimbursable unless specified. 4. For queries regarding other indications not specified, please contact the BC Cancer Compassionate Access Program Office at 604.877.6000 x 6277 or [email protected] DOSAGE TUMOUR PROTOCOL DRUG APPROVED INDICATIONS CLASS NOTES FORM SITE CODES Therapy for Metastatic Castration-Sensitive Prostate Cancer using abiraterone tablet Genitourinary UGUMCSPABI* R Abiraterone and Prednisone Palliative Therapy for Metastatic Castration Resistant Prostate Cancer abiraterone tablet Genitourinary UGUPABI R Using Abiraterone and prednisone acitretin capsule Lymphoma reversal of early dysplastic and neoplastic stem changes LYNOS I first-line treatment of epidermal
    [Show full text]
  • CNS Penetration of the CDK4/6 Inhibitor Ribociclib in Non-Tumor
    Cancer Chemotherapy and Pharmacology (2019) 84:447–452 https://doi.org/10.1007/s00280-019-03864-9 SHORT COMMUNICATION CNS penetration of the CDK4/6 inhibitor ribociclib in non‑tumor bearing mice and mice bearing pediatric brain tumors Yogesh T. Patel1,2 · Abigail Davis1 · Suzanne J. Baker3 · Olivia Campagne1 · Clinton F. Stewart1 Received: 22 January 2019 / Accepted: 3 May 2019 / Published online: 11 May 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Purpose Ribociclib, an orally bioavailable small-molecule CDK4/6 inhibitor is currently undergoing evaluation to treat pedi- atric central nervous system (CNS) tumors. However, it is crucial that it penetrates the brain and tumor. Thus, the objectives of the present study were to derive a clinically relevant mouse dosage for cerebral microdialysis studies, and to characterize ribociclib CNS penetration in non-tumor bearing mice and in mice bearing DIPGx7 (glioma) cortical allograft tumors. Methods A plasma pharmacokinetic study of ribociclib (100 mg/kg, orally) was performed in CD1 nude mice bearing glioma cortical allografts to obtain initial plasma pharmacokinetic parameters and to derive D-optimal plasma sampling time-points for microdialysis studies. Using a cerebral microdialysis technique, the extracellular fuid (ECF) disposition of ribociclib was evaluated after a single oral ribociclib dose (100 mg/kg) in non-tumor bearing mice and in mice bearing glioma cortical allografts. A one-compartment plasma model with absorption and ECF compartments were ft to plasma and ECF concentration–time data using a nonlinear mixed efects modeling approach (NONMEM 7.2). Results The mean unbound ribociclib plasma exposure (6812 ng/ml*h) was similar to that observed clinically at recom- mended dosages in adults.
    [Show full text]
  • New Drug Update: the Next Step in Personalized Medicine
    New Drug Update: The Next Step in Personalized Medicine Jordan Hill, PharmD, BCOP Clinical Pharmacy Specialist WVU Medicine Mary Babb Randolph Cancer Center Objectives • Review indications for new FDA approved anti- neoplastic medications in 2017 • Outline place in therapy of new medications • Become familiar with mechanisms of action of new medications • Describe adverse effects associated with new medications • Summarize dosing schemes and appropriate dose reductions for new medications First-in-Class Approvals • FLT3 inhibitor – midostaurin • IDH2 inhibitor – enasidenib • Anti-CD22 antibody drug conjugate – inotuzumab ozogamicin • CAR T-cell therapy - tisagenlecleucel “Me-too” Approvals • CDK 4/6 inhibitor – ribociclib and abemaciclib • PD-L1 inhibitors • Avelumab • Durvalumab • PARP inhibitor – niraparib • ALK inhibitor – brigatinib • Pan-HER inhibitor – neratinib • Liposome-encapsulated combination of daunorubicin and cytarabine • PI3K inhibitor – copanlisib Drugs by Malignancy AML Breast Bladder ALL FL Lung Ovarian 0 1 2 3 Oral versus IV 46% 54% Oral IV FIRST-IN CLASS FLT3 Inhibitor - midostaurin Journal of Hematology & Oncology 2017;10:93 Midostaurin (Rydapt®) • 717 newly diagnosed FLT3+ AML Patients • Induction and consolidation chemotherapy and placebo maintenance versus chemotherapy + midostaurin and Treatment maintenance midostaurin • OS: 74.7 mo versus 25.6 mo (P=0.009) Efficacy • EFS: 8.2 mo versus 3.0 mo (P=0.002) • Higher grade > 3 anemia, rash, and nausea Safety N Engl J Med 2017;377:454-64 Midostaurin (Rydapt®) • Approved indications: FLT3+ AML, mast cell leukemia, systemic mastocytosis • AML dose: 50 mg twice daily with food on days 8-21 • Of each induction cycle (+ daunorubicin and cytarabine) • Of each consolidation cycle (+ high dose cytarabine) • ADEs: nausea, myelosuppression, mucositis, increases in LFTs, amylase/lipase, and electrolyte abnormalities • Pharmacokinetics: hepatic metabolism, substrate of CYP 3A4; < 5% excretion in urine RYDAPT (midostaurin) [package insert].
    [Show full text]
  • A Novel Treatment for Triple-Negative Breast Cancer
    Huateng Pharma https://en.huatengsci.com A Novel Treatment For Triple-negative Breast Cancer Triple-negative breast cancer is a cancer that tests negative for estrogen receptors, progesterone receptors, and excess HER2 protein. These results mean the growth of the cancer is not fueled by the hormones estrogen and progesterone, or by the HER2 protein. So, triple-negative breast cancer does not respond to hormonal therapy medicines or medicines that target HER2 protein receptors. This type of breast cancer accounts for 10-20% of all types of breast cancer. It has special biological behavior and clinicopathological characteristics, and the prognosis is worse than other types. For doctors and researchers, there is intense interest in finding new medications that can treat this kind of breast cancer. Photodynamic therapy is a novel method for the treatment of breast cancer. By combining a photosensitizer with a corresponding light source, reactive oxygen species (ROS) are generated to selectively destroy the diseased tissues, so as to kill the cancer cells. But at the same time it will also lead to the formation of hypoxia in tumor tissues and reduce the therapeutic effect. Recently, the team of Professor Jin Hongjun from the Molecular Imaging Center of Sun Yat-sen University No.5 Hospital and the Tumor Center of Sun Yat-sen University No.5 Hospital explored a novel method to improve hypoxia in photodynamic therapy, and Huateng Pharma https://en.huatengsci.com preliminarily found that oxyphotodynamic therapy combined with metformin has the potential to treat triple-negative breast cancer. The research was published in the Annals of Translational Medicine (ATM,IF:3.297).
    [Show full text]
  • Ribociclib (LEE011)
    Clinical Development Ribociclib (LEE011) Oncology Clinical Protocol CLEE011G2301 (EarLEE-1) / NCT03078751 An open label, multi-center protocol for U.S. patients enrolled in a study of ribociclib with endocrine therapy as an adjuvant treatment in patients with hormone receptor-positive, HER2- negative, high risk early breast cancer Authors Document type Amended Protocol Version EUDRACT number 2014-001795-53 Version number 02 (Clean) Development phase II Document status Final Release date 17-Apr-2018 Property of Novartis Confidential May not be used, divulged, published or otherwise disclosed without the consent of Novartis Template version 22-Jul-2016 Novartis Confidential Page 2 Amended Protocol Version 02 (Clean) Protocol No. CLEE011G2301 Table of contents Table of contents ................................................................................................................. 2 List of tables ........................................................................................................................ 5 List of abbreviations ............................................................................................................ 6 Glossary of terms ................................................................................................................. 9 Protocol summary .............................................................................................................. 10 Amendment 2 (17-Apr-2018) ............................................................................................ 14
    [Show full text]
  • Self Administered Oncology Agents Prior Authorization with Quantity
    Self Administered Oncology Agents Prior Authorization with Quantity Limit Program Summary BCBSAL does not have the preferred product option. This program applies to Commercial, NetResults A series, SourceRx, and Health Insurance Marketplace formularies. OBJECTIVE The intent of the Self Administered Oncology Agents Prior Authorization (PA) program is to ensure appropriate selection of patients for treatment according to product labeling and/or clinical studies and/or clinical guidelines. The criteria considers appropriate indications as those supported in FDA approved labeling, National Comprehensive Cancer Network (NCCN) with level of evidence 1 or 2A recommendation, AHFS, or Drugdex with level of evidence of 1 or IIa. TARGET DRUGS Afinitor® (everolimus) Nerlynx™ (neratinib) Afinitor® Disperz (everolimus) Nexavar® (sorafenib) Alecensa® (alectinib) Ninlaro® (ixazomib) Alunbrig™ (brigatinib) Odomzo® (sonidegib) Bosulif® (bosutinib) Pomalyst® (pomalidomide) Cabometyx™ (cabozantinib) Revlimid® (lenalidomide) Calquence® (acalabrutinib) RubracaTM (rucaparib) Caprelsa® (vandetanib) Rydapt® (midostaurin) Cometriq™ (cabozantinib) Sprycel® (dasatinib) CotellicTM (cobimetinib) Stivarga® (regorafenib) Erivedge™ (vismodegib) Sutent® (sunitinib) Erleada™ (apalutamide) Sylatron® (peginterferon alfa-2b) Farydak® (panobinostat) Tafinlar® (dabrafenib) Gilotrif® (afatinib) TagrissoTM (osimertinib) Gleevec® (imatinib)a Tarceva® (erlotinib) Hexalen® (altretamine) Targretin® (bexarotene)a Hycamtin® (topotecan) Tasigna® (nilotinib) Ibrance® (palbociclib) Temodar®
    [Show full text]
  • Ivy Brain Tumor Center and Sonalasense to Test Novel Drug-Device Combination for Glioblastoma
    Ivy Brain Tumor Center and SonALAsense to Test Novel Drug-Device Combination for Glioblastoma First-in-human clinical trial will determine effectiveness of promising, non-invasive therapy for brain cancer (PHOENIX, Ariz. – Nov. 21, 2019) – The Ivy Brain Tumor Center at the Barrow Neurological Institute, today announced a strategic collaboration with SonALAsense to develop and test a new, non-invasive drug-device combination, sonodynamic therapy (SDT), for recurrent glioblastoma through a Phase 0/2 clinical trial. Details of the study, as well as the results of two other clinical trials will be announced by Dr. Nader Sanai, director of the Ivy Brain Tumor Center, at the 2019 Society of Neuro-Oncology Annual Meeting (SNO) in Phoenix, Ariz. on Nov. 22. SonALAsense Phase 0/2 Clinical Trial SonALAsense, in conjunction with the Ivy Brain Tumor Center, is collaborating with Insightec®, the innovator of Magnetic Resonance-Guided focused ultrasound (MRFUS) to adapt its technology for use at non-thermal energy levels in combination with SonALAsense’s proprietary formulation of 5-aminolevulinic acid (ALA) for glioblastoma. By adapting the Ivy Center’s Phase 0/2 clinical trial model, SonALAsense’s ALA drug will be administered intravenously, metabolized exclusively by glioblastoma cells, and accumulated as a fluorescent metabolite protoporphyrin IX. This tumor metabolite is then stereotactically activated using Insightec’s MR-guided focused ultrasound which results in reactive oxygen species that are lethal to every tumor cell. This combination of metabolic targeting by ALA and activation by non-invasive focused ultrasound represents an innovative potential new therapeutic modality for glioblastoma patients. This novel technology is called ALA sonodynamic therapy.
    [Show full text]
  • Dual Targeting of CDK4/6 and BCL2 Pathways Augments Tumor Response in Estrogen Receptor–Positive Breast Cancer James R
    Published OnlineFirst April 3, 2020; DOI: 10.1158/1078-0432.CCR-19-1872 CLINICAL CANCER RESEARCH | TRANSLATIONAL CANCER MECHANISMS AND THERAPY Dual Targeting of CDK4/6 and BCL2 Pathways Augments Tumor Response in Estrogen Receptor–Positive Breast Cancer James R. Whittle1,2,3, Francois¸ Vaillant1,3, Elliot Surgenor1, Antonia N. Policheni3,4,Goknur€ Giner3,5, Bianca D. Capaldo1,3, Huei-Rong Chen1,HeK.Liu1, Johanna F. Dekkers1,6,7, Norman Sachs6, Hans Clevers6,7, Andrew Fellowes8, Thomas Green8, Huiling Xu8, Stephen B. Fox8,9, Marco J. Herold3,10, Gordon K. Smyth5,11, Daniel H.D. Gray3,4, Jane E. Visvader1,3, and Geoffrey J. Lindeman1,2,12 ABSTRACT ◥ Purpose: Although cyclin-dependent kinase 4 and 6 (CDK4/6) Results: Triple therapy was well tolerated and produced a super- inhibitors significantly extend tumor response in patients with ior and more durable tumor response compared with single or þ metastatic estrogen receptor–positive (ER ) breast cancer, relapse doublet therapy. This was associated with marked apoptosis, includ- is almost inevitable. This may, in part, reflect the failure of CDK4/6 ing of senescent cells, indicative of senolysis. Unexpectedly, ABT- – inhibitors to induce apoptotic cell death. We therefore evaluated 199 resulted in Rb dephosphorylation and reduced G1 S cyclins, combination therapy with ABT-199 (venetoclax), a potent and most notably at high doses, thereby intensifying the fulvestrant/ selective BCL2 inhibitor. palbociclib–induced cell-cycle arrest. Interestingly, a CRISPR/Cas9 Experimental Design: BCL2 family member expression was screen suggested that ABT-199 could mitigate loss of Rb (and assessed following treatment with endocrine therapy and the potentially other mechanisms of acquired resistance) to palbociclib.
    [Show full text]
  • Role of Progression Free Survival in the Approval Process and European HTA Assessments
    Role of progression free survival in the approval process and European HTA assessments Kirchmann T, Deichmann A, Schönermark MP SKC Beratungsgesellschaft mbH, Hannover, Germany Objectives Methods Most cancers are characterized by a progressive course of disease, ultimately leading to the death of the patients. • Guidelines of regulatory and HTA agencies were reviewed in terms of the acceptance and value of PFS within the Thus, in the medical world, prevention of the disease progress, measured by progression free survival (PFS), is approval or reimbursement assessments. considered a core parameter with a clear patient relevant benefit. This is reflected in a large fraction of clinical • Ribociclib and Palbociclib in the indication breast cancer as well as Olaparib and Niraparib for the treatment of studies in cancer in which PFS serves as the primary endpoint, and thus determines the success of the treatment. ovarian cancer were selected for in-depth analysis. While the European Medicines Agency (EMA) considers PFS to be an important factor in assessing the efficacy of a new drug, HTA agencies such as G-BA, NICE and HAS are divided. The aim of this research is to analyze previous and • For all four active substances, published HTA documents of G-BA, HAS and NICE were reviewed for the specific current assessments of PFS by European HTA agencies and to compare them to the assessment by EMA. role of PFS and were compared to the CHMP decisions and EPARs. Results Relevance of PFS in the approval decision Relevance of PFS in the reimbursement decision Europe (EMA)1 USA (FDA) 2 Germany (G-BA) 3 UK (NICE) 4 France (HAS) 5 • Acceptable primary endpoints include • The role of PFS as an endpoint to support • Patient-relevant parameters to determine • The evaluation of effectiveness requires • [The benefit] represents the amount of cure rate, OS and PFS/DFS.
    [Show full text]