Chondroblastoma with Secondary Aneurysmal Bone Cyst of the Capitate

Total Page:16

File Type:pdf, Size:1020Kb

Chondroblastoma with Secondary Aneurysmal Bone Cyst of the Capitate n Case Report Chondroblastoma With Secondary Aneurysmal Bone Cyst of the Capitate EIICHI SATO, MD, PHD; JIRO ICHIKAWA, MD, PHD; TAKASHI ANDO, MD, PHD; NOBUTAKA SATO, MD; TOMONORI KAWASAKI, MD, PHD; HIROTAKA HARO, MD, PHD abstract Full article available online at Healio.com/Orthopedics Chondroblastoma is a benign tumor that typically arises in the epiphysis of a long bone. There have been only 2 reported cases of chondroblastoma involving the cap- itate. This is the first report of chondroblastoma with secondary aneurysmal bone cyst involving the capitate. A 33-year-old man presented with a 3-year history of pain and swelling of the right wrist. Radiography as well as computed tomography Figure: Radiograph showing a lytic lesion in the showed a radiolucent area and no matrix calcification within the capitate. Magnetic capitate. resonance imaging revealed a homogeneous signal that was low on T1-weighted images and high on T2-weighted images and showed only slight enhancement. On the basis of imaging findings, the authors chose excisional biopsy. The bone tumor in the capitate was explored through a dorsal approach by dividing the extensor tendons. After repeated curettages, bone graft substitute using allograft bone was packed into the capitate. Histologically, the authors diagnosed this tumor as a chon- droblastoma with a secondary aneurysmal bone cyst. At the final 2-year follow-up, there was evidence of bone union, full range of motion, and recovery and no evi- dence of recurrence. Although the recurrence of chondroblastoma is occasionally reported, the principal treatment is intralesional curettage and bone graft. High- speed burring, phenol, bone cement, and cryosurgery have been reported to reduce local recurrence. Complete excision of the carpal bone seems to be overtreatment. The authors are from the Department of Orthopaedic Surgery (ES, JI, TA, NS, HH) and the Department of Pathology (TK), Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan. The authors have no relevant financial relationships to disclose. Correspondence should be addressed to: Jiro Ichikawa, MD, PhD, Department of Orthopaedic Surgery, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan ([email protected]). Received: June 21, 2013; Accepted: October 9, 2013; Posted: May 14, 2014. doi: 10.3928/01477447-20140430-63 e500 ORTHOPEDICS | Healio.com/Orthopedics n Case Report hondroblastoma is a benign tumor that accounts for approximately C1% of all primary bone tumors and typically arises in the epiphysis of a long bone.1 Only 2 cases of chondroblastoma of the capitate have been published. One report showed the frequency of primary bone tumors, including chondroblastoma, in carpal bones.2 Another report showed sus- pected tuberculosis of the capitate, and the A B resultant histopathologic findings altered Figure 1: Radiograph showing a lytic lesion in the capitate (A). Coronal computed tomography image the diagnosis to chondroblastoma without showing a lytic lesion in the entire capitate with pathological fracture (B). secondary aneurysmal bone cyst (ABC) formation.3 This report describes the first case of chondroblastoma with secondary ABC change of the capitate that was treated successfully with curettage (intralesional resection) and bone graft substitute. A B C CASE REPORT Figure 2: Magnetic resonance imaging of the lesion. T1-weighted (A), T2-weighted (B), and enhanced T1- A 33-year-old man had a 3-year history weighted (C) images. Magnetic resonance imaging showed low signal intensity on enhanced T1-weighted of pain and swelling of the right wrist. The images and high signal intensity on T2-weighted images, as well as rim enhancement on enhanced T1- weighted images. patient had no history of trauma. Physical examination of the wrist showed swell- ing, local heat and tenderness, and range of sal cortex of the capitate was easily cut by ically, tumor cells were positive for S-100 motion (ROM) that was 60° of flexion and scalpel, and the discharge of fluid inside of protein. Based on these pathologic findings, 30° of extension. Neurologic findings were bone was seen after removal of the cortex. the tumor was identified as a chondroblas- normal. Radiographs showed a radiolucent High-speed burr was not used because of toma with secondary ABC change. Two area within the capitate (Figure 1A). Chest the pathological fracture. Instead, many cu- years after surgery, there was evidence of radiograph showed no evidence of metasta- rettages by curettes and washes by water jet bone union, full ROM, and recovery, and no sis. Computed tomography showed similar were radically repeated. Finally, bone graft evidence of recurrence (Figure 4). findings as the radiograph and no matrix cal- substitute using allograft bone was packed cification inside of bone. The cortex showed into the capitate. Histologically, the curet- DISCUSSION discontinuity that suggested pathological ted specimen from the capitate bone of the Chondroblastoma is a benign tumor fracture (Figure 1B). Magnetic resonance right hand showed mononuclear tumor cells commonly located in long bones, in- imaging showed a homogeneous signal with (chondroblasts) in a solid growth pattern, cluding the humerus, tibia, and femur. low intensity on T1-weighted images (Fig- with polygonal, somewhat eosinophilic cy- Chondroblastoma involving the hands is ure 2A) and high intensity on T2-weighted toplasm and round to ovoid, indented, or very rare. In a review of 26,800 primary images (Figure 2B) without fluid-fluid lev- lobulated nuclei and evenly distributed chro- bone tumors, Murray et al2 reported pri- els. Enhanced T1-weighted images (Figure matin (Figures 3A-3C). Nucleoli were not mary bone tumors of the carpus in only 2C) showed only slight enhancement at prominent, and mitotic figures were uncom- 44 cases (0.16%). Among these 44 cases, the edge of the capitate, with surrounding mon. Production of a cartilaginous matrix there were 11 patients with osteoid os- inflammation. Based on these findings, the that showed ossification and focal calcifica- teoma (25%), 6 patients with osteoblas- differential diagnosis included benign cystic tion was also identified (Figure 3B). The toma (13.6%), and 6 patients with chon- tumors such as aneurysmal bone cyst, chon- tumor cells were accompanied by randomly droblastoma (13.6%). Of the 6 cases of droblastoma, and giant cell tumor. Based on distributed osteoclastic-type multinucleated chondroblastoma, 3 were located in the the differential diagnosis, excisional biopsy giant cells (Figures 3A-3B). Hemorrhagic scaphoid, with 1 each in the capitate, lu- was performed. The bone tumor in the capi- findings with hemosiderin pigmentation nate, and triquetrum.2 No details about tate was explored through a dorsal approach (Figure 3A) and cystic formation (Figure histopathology, treatment, or recurrence by dividing the extensor tendons. The dor- 3D) were also observed. Immunohistochem- rate were given. Mangini3 reported 1 case MAY 2014 | Volume 37 • Number 5 e501 n Case Report Figure 4: Radiograph taken at the final 2-year follow-up. is the preferred treatment for chondro- blastoma in the hands or wrist. However, Daly et al15 reported that chondroblastoma of the hamate was treated with complete excision. Although 1 treatment option is complete excision of the carpal bone, this approach seems to be overtreatment because chondroblastoma is believed to be less aggressive in the carpal bones. In Figure 3: Histology of the lesion. Hematoxylin and eosin staining showing round or polygonal cells with addition, considering the young age at an oval to round nucleus with eosinophilic cytoplasm (A [original magnification, ×100], B [original magni- presentation (10-20 years),1 resulting os- fication, ×100], C [original magnification, ×400]). The aneurysmal bone cyst component (D [hematoxylin teoarthritis in the carpometacarpal joint and eosin, original magnification, ×40]). must be considered in the treatment deci- sion. Furthermore, surgery of the midcar- of chondroblastoma of the capitate associ- ABC change was a risk factor for recur- pal and radiocarpal joints may result in ated with suspicion of tuberculosis. This rence. Some cases of metastasis have been loss of grip power and hand function. The case was treated successfully with only reported,8,10 and because of its aggressive authors suggest that the first treatment op- curettage without bone graft, and the his- biologic behavior, care should be taken in tion for chondroblastoma in all locations topathologic findings showed no evidence the treatment of chondroblastoma around should be only curettage and allograft or of secondary ABC change. To the authors’ the hip and pelvis. In contrast, to the au- artificial bone graft. knowledge, there has not been a previous thors’ knowledge, unlike chondroblas- report of chondroblastoma with second- toma around the hip, there have been no REFERENCES ary ABC change of the capitate treated by reports of metastases from chondroblas- 1. Kurt AM, Unni KK, Sim FH, McLeod RA. curettage and bone graft substitute. tomas originating in the hands or wrists. Chondroblastoma of bone. Hum Pathol. 1989; 20(10):965-976. The recurrence rate for chondroblas- The principal treatment of chondro- 4,5 2. Murray PM, Berger RA, Inwards CY. Primary toma is reported to be 10% to 32%, and blastoma is intralesional curettage and neoplasms of the carpal bones. J Hand Surg secondary ABC change is believed to be a bone graft. Suneja et al10 reported that Am. 1999; 24(5):1008-1013. risk factor for local recurrence.6,7 On the of 52 patients treated with only intral- 3. Mangini U. Benign chondroblastoma local- other hand, Sailhan et al5 reported that esional curettage, 7 (13.2%) patients had ized in the capitate bone: a case report. Bull Hosp Joint Dis. 1964; 25:50-56. epiphyseal location, not secondary ABC a local recurrence. High-speed burring, 4. Springfield DS, Capanna R, Gherlinzoni F, change, was a risk factor for recurrence. phenol, bone cement, and cryosurgery Picci P, Campanacci M. Chondroblastoma: a In addition, various authors have suggest- were recommended to reduce local re- review of seventy cases.
Recommended publications
  • Capitate Metastases in Adenocarcinoma Lung: a Rare
    Case Report Capitate Metastases in Adenocarcinoma PROVISIONAL PDF Lung: A Rare Occurrence Jaspreet KAUR1, Renu MADAN1, Maneesh Kumar VIJAY2, Pramod Kumar JULKA1, Goura Kishore RATH1 Submitted: 21 May 2014 1 Department of Radiation Oncology, DR BRA Institute Rotary Cancer Accepted: 19 Nov 2014 Hospital, All India Institute of Medical Sciences, New Delhi 110029, India 2 Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India Abstract Metastatic carcinoma is the most common malignancy of the bone. Metastases to the upper limbs of the skeleton are extremely uncommon, with only 10–15% occurring in this region. Metastases to the hand and wrist comprise about 0.15% of all hand tumours, and only 0.1% of all metastases. Carpal bone metastases are much rarer than those to the metacarpal and phalangeal bones. They usually masquerade as more common hand pathology such as arthritis or osteomyelitis. Given the bleak prognosis of carpal metastatic disease in lung cancer, treatment of a metastasis to the hand is usually palliative. Contrary to earlier beliefs, palliative radiotherapy plays a significant role in pain relief and improving hand mobility in patients diagnosed with metastatic disease of the hand. We report a case of adenocarcinoma of the lung with metastases to the capitate bone of the carpus treated with palliative radiotherapy. Keywords: carpal bone, metastases, lung cancer, palliative, radiotherapy Introduction Case report Metastatic carcinoma is the most common A 52-year-old male presented with fever, left- malignancy of the bone. The skeleton is the sided chest pain and pain in the right wrist for two third most common site of metastases after months.
    [Show full text]
  • The Cobbler's Shoes: Techniques for the Wrist and Carpal Bones
    The Cobbler’s Shoes: Techniques for the Wrist and Carpal Bones. © 2008 Til Luchau, Advanced­Trainings.com (This article originally appeared in Massage and Bodywork magazine.) Just like the cobbler’s shoeless rists are amazing structures. They mediate the children, as hands‐on body therapists W relationship between our stable larger‐boned arms, we can tend to neglect our own hand and the highly mobile, sensitive dexterity of our hands. and wrist mobility. Since we use our Additionally, key structures pass through the wrists from hands so much in our work, we are arms to hands: tendons, nerves, and vessels. In this issue’s particularly prone to loosing article, I’ll talk about two effective techniques for working adaptability in our own carpal joints. with the wrist, drawing on the myofascial work as taught in Advanced‐Trainings.com’s “Advanced Myofascial Receiving the kind of work described Techniques” workshop and DVD series. As always, you here is great preventative can see video related to these techniques by visiting maintenance, and it can even increase Massage and Bodywork’s digital edition, which features a the quality of your work. Although lost clip from Advanced‐Trainings.com’s “Advanced mobility may or may not cause overt Myofascial Techniques for the Arm, Wrist, and Shoulder” symptoms, it will cause your touch to DVD set. Link available on ABMP.com and feel harder, more rigid, and less Massageandbodywork.com comfortable to your clients. It can also take a toll on your sensitivity and The carpus is the name of the boney structure formed by dexterity.
    [Show full text]
  • Aneurysmal Bone Cyst of the Capitate: a Rare Case Report
    )1DMG0D]KDU=0RJKLPL+<DK\D]DGHKHWDO Case Report Aneurysmal Bone Cyst of the Capitate: A rare case report )DULG1DMG0D]KDU0'1, Zahra Moghimi MD2, HoomanYahyazadeh MD2, Sareh Shahverdi MD2 Abstract Primary aneurysmal bone cyst (ABC) in the hands is rare. It occurs more commonly in metacarpal bones and involvement of carpal bones is very uncommon. We report the third case of ABC in the capitate, its clinical presentation, LPDJLQJ¿QGLQJVDQGWUHDWPHQW Keywords: Aneurysmal bone cyst, capitate, carpal bone, hand Cite this article as: Najd Mazhar F, Moghimi Z, Yahyazadeh H, Shahverdi S. Aneurysmal Bone Cyst of the Capitate: A rare case report. Arch Iran Med. 2014; 17(3): 211 – 214. Introduction measuring 15x 8x 9 mm in the capitate, without soft tissue inva- sion. Signal of the lesion was high-intensity on T2-weighted and neurysmal bone cyst (ABC) known as a benign bony le- low- intensity on T1-weighted (Figure 4 a – b). VLRQ ZDV ¿UVW LQWURGXFHG E\ Jaffe and Lichtenstein in $FFRUGLQJWRWKHLPDJLQJ¿QGLQJVa cystic lesion like aneurys- A 1942.1 ABCs may affect any part of the skeleton, but most mal bone cyst was at the top of the differential diagnosis list. We commonly involve the metaphysis RIORQJERQHVÀDWERQHVDQG approached to the lesion through a dorsal longitudinal incision. vertebral column.2 The occurrence of ABC in the hand are not Dorsal cortex was very thin and the capitate was occupied by a common, accounting for nearly 3 % to 5 % of all ABCs and are EORRG¿OOHGcystic lesion (Figure 5). The lesion was completely often occurred in the metacarpal bones.3 ABC rarely involves car- evacuated by thorough curettage and specimen sent to the histo- pal bones and only 2 cases of this tumor have been reported in the logic examination (Figure :H¿OOHGDQGLPSDFWHGWKHYRLGDUHD capitate.3 We report the third case of this tumor in the capitate with cancellous bone graft which was harvested from the ipsilat- along with its FOLQLFDO SUHVHQWDWLRQ LPDJLQJ ¿QGLQJV DQG WUHDW- eral iliac crest.
    [Show full text]
  • The Appendicular Skeleton the Appendicular Skeleton
    The Appendicular Skeleton Figure 8–1 The Appendicular Skeleton • Allows us to move and manipulate objects • Includes all bones besides axial skeleton: – the limbs – the supportive girdles 1 The Pectoral Girdle Figure 8–2a The Pectoral Girdle • Also called the shoulder girdle • Connects the arms to the body • Positions the shoulders • Provides a base for arm movement 2 The Clavicles Figure 8–2b, c The Clavicles • Also called collarbones • Long, S-shaped bones • Originate at the manubrium (sternal end) • Articulate with the scapulae (acromial end) The Scapulae Also called shoulder blades Broad, flat triangles Articulate with arm and collarbone 3 The Scapula • Anterior surface: the subscapular fossa Body has 3 sides: – superior border – medial border (vertebral border) – lateral border (axillary border) Figure 8–3a Structures of the Scapula Figure 8–3b 4 Processes of the Glenoid Cavity • Coracoid process: – anterior, smaller •Acromion: – posterior, larger – articulates with clavicle – at the acromioclavicular joint Structures of the Scapula • Posterior surface Figure 8–3c 5 Posterior Features of the Scapula • Scapular spine: – ridge across posterior surface of body • Separates 2 regions: – supraspinous fossa – infraspinous fossa The Humerus Figure 8–4 6 Humerus • Separated by the intertubercular groove: – greater tubercle: • lateral • forms tip of shoulder – lesser tubercle: • anterior, medial •Head: – rounded, articulating surface – contained within joint capsule • Anatomical neck: – margin of joint capsule • Surgical neck: – the narrow
    [Show full text]
  • Section 1 Upper Limb Anatomy 1) with Regard to the Pectoral Girdle
    Section 1 Upper Limb Anatomy 1) With regard to the pectoral girdle: a) contains three joints, the sternoclavicular, the acromioclavicular and the glenohumeral b) serratus anterior, the rhomboids and subclavius attach the scapula to the axial skeleton c) pectoralis major and deltoid are the only muscular attachments between the clavicle and the upper limb d) teres major provides attachment between the axial skeleton and the girdle 2) Choose the odd muscle out as regards insertion/origin: a) supraspinatus b) subscapularis c) biceps d) teres minor e) deltoid 3) Which muscle does not insert in or next to the intertubecular groove of the upper humerus? a) pectoralis major b) pectoralis minor c) latissimus dorsi d) teres major 4) Identify the incorrect pairing for testing muscles: a) latissimus dorsi – abduct to 60° and adduct against resistance b) trapezius – shrug shoulders against resistance c) rhomboids – place hands on hips and draw elbows back and scapulae together d) serratus anterior – push with arms outstretched against a wall 5) Identify the incorrect innervation: a) subclavius – own nerve from the brachial plexus b) serratus anterior – long thoracic nerve c) clavicular head of pectoralis major – medial pectoral nerve d) latissimus dorsi – dorsal scapular nerve e) trapezius – accessory nerve 6) Which muscle does not extend from the posterior surface of the scapula to the greater tubercle of the humerus? a) teres major b) infraspinatus c) supraspinatus d) teres minor 7) With regard to action, which muscle is the odd one out? a) teres
    [Show full text]
  • Carpal Boss in Chronic Wrist Pain and Its Association with Partial Osseous
    MUSCULOSKELETAL RADIOLOGY Carpal boss in chronic wrist pain and its association with partial osseous coalition and osteoarthritis ‑ A case report with focus on MRI findings Feng Poh Department of Diagnostic Radiology, Singapore General Hospital, Singapore Address for correspondence: Dr. Feng Poh, Department of Diagnostic Radiology, Singapore General Hospital, Outram Road ‑ 168 751, Singapore. E‑mail: [email protected] ABSTRACT The carpal boss is a bony prominence at the dorsal aspect of the 2nd and/or 3rd carpometacarpal joint, which has been linked to various etiologies, including trauma, os styloideum, osteophyte formation, and partial osseous coalition. It may result in symptoms through secondary degeneration, ganglion formation, bursitis, or extensor tendon abnormalities by altered biomechanics of wrist motion. We present a case of symptomatic carpal boss with the finding of a partial osseous coalition at the 2nd carpometacarpal (metacarpal– trapezoid) joint and highlight the magnetic resonance imaging (MRI) findings of carpal boss impingement and secondary osteoarthritis. To the best of our knowledge, there is no report in the literature describing the imaging findings of partial osseous coalition and degenerative osteoarthritis in relation to carpal boss. Key words: Carpal boss; carpal coalition; chronic wrist pain; os styloideum; osteoarthritis Introduction A persistent os styloideum is the widely accepted theory behind the carpal boss and has been described as the ninth Carpal boss, also known as “carpe bossu,” is a bony carpal bone.[4,5] It represents an un‑united ossicle over prominence at the dorsal aspect of the 2nd and/or the dorsal aspect of the wrist at the base of the 2nd and 3rd carpometacarpal joint and was first described by Fiolle.[1] 3rd metacarpals.
    [Show full text]
  • Fracture of the Body's Hamate Bone
    THIEME 126 Case Report | Caso Cínico Fracture of the Body’sHamateBone:Open Reduction Internal Fixation by Double Approach—ACaseReport Fractura del cuerpo del ganchoso: Reducción abierta y fijación interna mediante doble abordaje—Apropósito de un caso. Jorge Salvador Marín1 Antonia Brotons Baile1 Nuria Cardona Vives1 Jaime Francisco Vargas Prieto1 José Manuel Pérez Alba1 José Fernando Martínez López1 1 Orthopedic Surgery and Trauma Service, Hospital Universitari de Address for correspondence Jorge Salvador Marín, MD, MSc, Hospital Sant Joan d’Alacant, Alicante, Spain Universitari de Sant Joan d’Alacant Ctra. Nnal. 332, Alacant-Valencia, s/n, 03550 Sant Joan d’Alacant, Alicante, Spain Rev Iberam Cir Mano 2018;46:126–130. (e-mail: [email protected]). Abstract Hamate fractures are rare. Their treatment depends on the displacement and type of fracture. We present the case and surgical technique of a 33-year-old male patient, who is a manual worker, with a displaced fracture of the body of the hamate bone associated with dislocation of the fourth and fifth metacarpal (MC) bones. The patient was Keywords operated on with a double palmar and dorsal approach directly over the hamate and ► carpal fracture the body hook, respectively, which was performed to improve the control reduction ► carpometacarpal and avoid damaging the neighboring vascular and nerve structures. The open dislocation reduction internal fixation (ORIF) was performed by inserting mini-screws in a dorsal ► double dorsal and to palmar direction. Later, the dislocations were reduced and fixed with Kirschner wires palmar approach between the fourth and fifth MC bases, and between the fourth MC base and the ► hamate fracture capitate bone.
    [Show full text]
  • Secondary Abutment Syndromes of the Wrist in Trauma: a Pictorial Essay
    Mespreuve, M, et al. Secondary Abutment Syndromes of the Wrist in Trauma: A Pictorial Essay. Journal of the Belgian Society of Radiology. 2018; 102(1): 54, 1–8. DOI: https://doi.org/10.5334/jbsr.1558 PICTORIAL ESSAY Secondary Abutment Syndromes of the Wrist in Trauma: A Pictorial Essay Marc Mespreuve*,†, Karl Waked‡ and Koenraad Verstraete† Traumatic lesions of the wrist occur frequently and may give rise to underdiagnosed secondary abutment syndromes. The latter are a common cause of incapacitating pain and limited range of motion, despite minimal or even absent alterations on radiographs. Moreover, the complex wrist anatomy often results in ignorance or underappreciation of these syndromes. This paper presents a pictorial review of frequent and rare secondary abutment syndromes at the wrist joint, which – in contrast to primary abutment syndromes – are not based on anatomical variants or ­congenital­deformations.­The­merit­of­each­imaging­modality­is­briefly­mentioned. Keywords: wrist; abutment; trauma; radiographs; MRI Introduction surfaces chondromalacia, subchondral cyst formation, and Traumatic wrist lesions occur frequently. Subsequently, surrounding synovitis. secondary abutment syndromes (SAS), a common cause of incapacitating pain and limited range of motion in spite Clinical manifestation of minimal or absent alterations on radiographs, may SAS may give rise to complaints, sometimes appearing years arise. They are often underappreciated due to the complex after trauma. The predominant symptoms are restricted wrist anatomy and call for a thorough analysis of all wrist motion and incapacitating pain, exacerbated by activity. components. SAS may have a negative impact on the three-dimensional The aim of this pictorial review is to present an overview hand positioning during daily activities [5].
    [Show full text]
  • Appendicular Muscles 355
    MUSCULAR SYSTEM OUTLINE 12.1 Muscles That Move the Pectoral Girdle and Upper Limb 355 12.1a Muscles That Move the Pectoral Girdle 355 12 12.1b Muscles That Move the Glenohumeral Joint/Arm 360 12.1c Arm and Forearm Muscles That Move the Elbow Joint/Forearm 363 12.1d Forearm Muscles That Move the Wrist Joint, Appendicular Hand, and Fingers 366 12.1e Intrinsic Muscles of the Hand 374 12.2 Muscles That Move the Pelvic Girdle and Lower Limb 377 Muscles 12.2a Muscles That Move the Hip Joint/Thigh 377 12.2b Thigh Muscles That Move the Knee Joint/Leg 381 12.2c Leg Muscles 385 12.2d Intrinsic Muscles of the Foot 391 MODULE 6: MUSCULAR SYSTEM mck78097_ch12_354-396.indd 354 2/14/11 3:25 PM Chapter Twelve Appendicular Muscles 355 he appendicular muscles control the movements of the upper 2. Identify the muscles that move the scapula and their actions. T and lower limbs, and stabilize and control the movements 3. Name the muscles of the glenohumeral joint, and explain of the pectoral and pelvic girdles. These muscles are organized how each moves the humerus. into groups based on their location in the body or the part of 4. Locate and name the muscles that move the elbow joint. the skeleton they move. Beyond their individual activities, these 5. Identify the muscles of the forearm, wrist joint, fingers, muscles also work in groups that are either synergistic or antago- and thumb. nistic. Refer to figure 10.14 to review how muscles are named, and Muscles that move the pectoral girdle and upper limbs are recall the first Study Tip! from chapter 11 that gives suggestions organized into specific groups: (1) muscles that move the pectoral for learning the muscles.
    [Show full text]
  • Homologies of the Carpal Bones in Flying Squirrels (Pteromyinae): a Review
    Mammal Study 26: 61-68 (2001) •. R . © the Mammalogical Society of Japan ' ,u" •XCTrc" Homologies of the carpal bones in flying squirrels (Pteromyinae): a review Richard W. Thorington, Jr.1 and Brian J. Stafford2 1 ^Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0108 USA 2Department of Anatomy, Howard University College of Medicine, 520 W Street, N.W., Washington, DC 20059 USA Abstract. The homologies of the carpal bones of flying squirrels, presented by Oshida et al. (2000a, b), are reviewed, together with the evidence supporting traditional homology assessments. Evidence for the homology of the styliform cartilage of flying squirrels with the hypothenar cartilage of other squirrels is also reviewed. Development, articulations, topography, and muscle insertions favor both the traditional hypothesis of homology assess- ments of the carpal bones and also the hypothesis that the styliform cartilage is homologous with the hypothenar cartilage. Key words: carpal homologies, flying squirrels, Pteromyinae, styliform cartilage. In two papers, Oshida et al. (2000a, b) described the styliform cartilage of flying squirrels and suggested that it is homologous with the pisiform bone of other mammals. This is a revolutionary interpretation of the homology of the carpus. It contrasts with the hypothe- sis of Thorington et al. (1998) that the styliform cartilage of flying squirrels is homologous with the hypothenar cartilage of other squirrels. In addition, the homology assessments of Oshida et al. (2000a, b) for all the proximal carpal bones differ fundamentally from the more traditional hypothesis followed by many authors, e.g. Hill (1937), Bryant (1945), Holmgren (1952), Grasse and Dekeyser (1955), Thorington (1984), Thorington et al.
    [Show full text]
  • Isolated Displaced Capitate Fracture: a Case Report
    Trauma Mon. 2018 May; 23(3):e59236. doi: 10.5812/traumamon.59236. Published online 2017 August 9. Case Report Isolated Displaced Capitate Fracture: A Case Report Mohammad Zarei,1 Arvin Najafi,1,* Pejman Mansouri,1 and Mahmoud Farzan1 1Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran *Corresponding author: Arvin Najafi, Joint Reconstruction Research Center, Imam Khomeini hospital, Bagherkhan st, Tehran, Iran. Tel: +98-9128576268, Fax: +98-2161192767, E-mail: [email protected] Received 2016 October 15; Revised 2017 February 15; Accepted 2017 April 24. Abstract Introduction: Isolated fractures of the capitate account for only 0.3% of carpal bones fractures. Case Presentation: We report a motorbike rider, aged 27 years, who was involved in a motorcycle accident. He complained of right wrist pain, and wrist motion was considerably impaired. In the right wrist radiograph and CT scan, we diagnosed an isolated displaced capitate fracture. Open reduction was done under regional anaesthesia. After confirming the guide-wire’s position and reduction of the fracture by imaging, we applied a headless compression screw (HCS, Synthes, Paoli, USA). After 24 months, the patient regained pain-free activity level with 90% of grip strength (in comparison with the contralateral wrist), with extension, flexion, radial deviation, ulnar deviation, supination, and pronation of 75°, 75°, 15°, 30°, 80°, and 80°, respectively. Conclusions: This study suggested that an early diagnosis and open reduction of the displaced fragment in the treatment of such difficult fractures can lead to a successful outcome. Keywords: Capitate Bone, Fracture, Wrist Injuries 1. Introduction found isolated displaced capitate fracture (Figures 1-3).
    [Show full text]
  • A Simple Method for Bone Age Assessment: the Capitohamate Planimetry
    European Radiology https://doi.org/10.1007/s00330-017-5255-4 PAEDIATRIC A simple method for bone age assessment: the capitohamate planimetry Jung-Ah Choi1 & Young Chul Kim1 & Seon Jeong Min1 & Eun Kyung Khil1 Received: 28 September 2017 /Revised: 4 December 2017 /Accepted: 18 December 2017 # The Author(s) 2018. This article is an open access publication Abstract Objectives To determine if the capitohamate (CH) planimetry could be a reliable indicator of bone age, and to compare it with Greulich-Pyle (GP) method. Methods This retrospective study included 391 children (age, 1–180 months). Two reviewers manually measured the areas of the capitate and hamate on plain radiographs. CH planimetry was defined as the measurement of the sum of areas of the capitate and hamate. Two reviewers independently applied the CH planimetry and GP methods in 109 children whose heights were at the 50th percentile of the growth chart. Results There was a strong positive correlation between chronological age and CH planimetry measurement (right, r = 0.9702; left, r = 0.9709). There was no significant difference in accuracy between CH planimetry (84.39–84.46 %) and the GP method (85.15–87.66 %) (p ≥ 0.0867). The interobserver reproducibility of CH planimetry (precision, 4.42 %; 95 % limits of agreement [LOA], −10.5 to 13.4 months) was greater than that of the GP method (precision, 8.45 %; LOA, −29.5 to 21.1 months). Conclusions CH planimetry may be a reliable method for bone age assessment. Key Points • Bone age assessment is important in the work-up of paediatric endocrine disorders.
    [Show full text]