Highly Conserved Gene and Its Use to Generate Species-Specific, Genus-Specific, Family- Specific, Group-Specific and Universal Nucleic Acid Probes for Microorganisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Relationship Between KRAS Gene Mutation and Intestinal Flora in Tumor Tissues of Colorectal Cancer Patients
1085 Original Article Page 1 of 9 The relationship between KRAS gene mutation and intestinal flora in tumor tissues of colorectal cancer patients Xinke Sui1#, Yan Chen1#, Baojun Liu2, Lianyong Li1, Xin Huang1, Min Wang1, Guodong Wang1, Xiaopei Gao1, Lu Zhang1, Xinwei Bao1, Dengfeng Yang3, Xiaoying Wang1, Changqing Zhong1 1Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China; 2Department of Medical Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China; 3Laboratory department, Mian County Hospital, Mian, China Contributions: (I) Conception and design: X Sui, Y Chen, C Zhong, X Wang; (II) Administrative support: L Li; (III) Provision of study materials or patients: B Liu, D Yang; (IV) Collection and assembly of data: X Gao, L Zhang, X Bao; (V) Data analysis and interpretation: X Sui, Y Chen, C Zhong, X Wang, X Huang, M Wang, G Wang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Changqing Zhong; Xiaoying Wang. Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China. Email: [email protected]; [email protected]. Background: Colorectal cancer is among the most prominent malignant tumors endangering human health, with affected populations exhibiting an increasingly younger trend. The Kirsten ras (KRAS) gene acts as a crucial regulator in this disease and influences multiple signaling pathways. In the present study, the KRAS gene mutation-induced alteration of intestinal flora in colorectal cancer patients was explored, and the intestinal microbes that may be affected by the KRAS gene were examined to provide new insights into the diagnosis and treatment of colorectal cancer. -
In Cyanobacteria
International Journal of Environmental Research and Public Health Article Molecular Probes to Evaluate the Synthesis and Production Potential of an Odorous Compound (2-methylisoborneol) in Cyanobacteria Keonhee Kim 1, Youngdae Yoon 1,2, Hyukjin Cho 3 and Soon-Jin Hwang 1,2,* 1 Human and Eco-Care Center, Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; [email protected] (K.K.); [email protected] (Y.Y.) 2 Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea 3 Hangang River Regional Division, Department of Water Resources Management, K-Water, Gwacheon 13841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-450-3748 Received: 30 January 2020; Accepted: 14 March 2020; Published: 16 March 2020 Abstract: The volatile metabolite, 2-Methylisoborneol (2-MIB) produced by cyanobacterial species, causes odor and taste problems in freshwater systems. However, simple identification of cyanobacteria that produce such off-flavors may be insufficient to establish the causal agent of off-flavor-related problems as the production-related genes are often strain-specific. Here, we designed a set of primers for detecting and quantifying 2-MIB-synthesizing cyanobacteria based on mibC gene sequences (encoding 2-MIB synthesis-catalyzing monoterpene cyclase) from various Oscillatoriales and Synechococcales cyanobacterial strains deposited in GenBank. Cyanobacterial cells and environmental DNA and RNA were collected from both the water column and sediment of a eutrophic stream (the Gong-ji Stream, Chuncheon, South Korea), which has a high 2-MIB concentration. Primer sets mibC196 and mibC300 showed universality to mibC in the Synechococcales and Oscillatoriales strains; the mibC132 primer showed high specificity for Pseudanabaena and Planktothricoides mibC. -
Oral Microbiome in Four Female Centenarians
Appl. Sci. 2020, 10, 5312; doi:10.3390/app10155312 S1 of S1 5 Supplementary Materials: Oral Microbiome in Four Female Centenarians Yoshiaki Nomura, Erika Kakuta, Ayako Okada, Ryoko Otsuka, Mieko Shimada, Yasuko Tomizawa, Chieko Taguchi, Kazumune Arikawa, Hideki Daikoku, Tamotsu Sato and Nobuhiro Hanada 1. Supplementary Information Figure S1. Heatmap of all species detected. Appl. Sci. 2020, 10, 5312; doi:10.3390/app10155312 S2 of S1 5 Figure S2. Rarefaction curve. Figure S3. Core heatmap. Appl. Sci. 2020, 10, 5312; doi:10.3390/app10155312 S3 of S1 5 Table S1: Alpha diversity indices of different groups. Sample Plaque Tongue p-value Valid reads 50398 ± 5648 52221 +/- 5433 0.658 OTUs 264 +/- 112 205 +/- 33 0.356 Ace 272 +/- 112 215 +/- 34 0.367 Chao1 266 +/- 111 209 +/- 33 0.363 Jack Knife 281 +/- 115 224 +/- 36 0.385 Shannon 3.18 +/- 0.33 2.45 +/- 0.44 0.039 Simpson 0.085 +/- 0.038 0.164 +/- 0.057 0.058 The alpha diversity indices of Ace, Chao1, Jack Knife, Shannon, and Simpson were calculated to analyze the diversity and richness of all the samples. By comparing samples of dental plaque and tongue, the indices of Ace, Chao1, Jack Knife, And Shannon were not significantly different (P > 0.05), proving that bacterial diversity and richness were similar in samples collected from dental plaque had higher than tongue. Data was normally distributed. P-values were calculated by t tests. Appl. Sci. 2020, 10, 5312; doi:10.3390/app10155312 S4 of S1 5 Table S2: Statistics of taxonomic assignment. Sample Sample ID Rank Similarity range No. -
Metabolic Network Percolation Quantifies Biosynthetic Capabilities
RESEARCH ARTICLE Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome David B Bernstein1,2, Floyd E Dewhirst3,4, Daniel Segre` 1,2,5,6,7* 1Department of Biomedical Engineering, Boston University, Boston, United States; 2Biological Design Center, Boston University, Boston, United States; 3The Forsyth Institute, Cambridge, United States; 4Harvard School of Dental Medicine, Boston, United States; 5Bioinformatics Program, Boston University, Boston, United States; 6Department of Biology, Boston University, Boston, United States; 7Department of Physics, Boston University, Boston, United States Abstract The biosynthetic capabilities of microbes underlie their growth and interactions, playing a prominent role in microbial community structure. For large, diverse microbial communities, prediction of these capabilities is limited by uncertainty about metabolic functions and environmental conditions. To address this challenge, we propose a probabilistic method, inspired by percolation theory, to computationally quantify how robustly a genome-derived metabolic network produces a given set of metabolites under an ensemble of variable environments. We used this method to compile an atlas of predicted biosynthetic capabilities for 97 metabolites across 456 human oral microbes. This atlas captures taxonomically-related trends in biomass composition, and makes it possible to estimate inter-microbial metabolic distances that correlate with microbial co-occurrences. We also found a distinct cluster of fastidious/uncultivated taxa, including several Saccharibacteria (TM7) species, characterized by their abundant metabolic deficiencies. By embracing uncertainty, our approach can be broadly applied to understanding metabolic interactions in complex microbial ecosystems. *For correspondence: DOI: https://doi.org/10.7554/eLife.39733.001 [email protected] Competing interests: The authors declare that no Introduction competing interests exist. -
Ureaplasma Urealyticum and Ureaplasma Parvum
The Journal of Molecular Diagnostics, Vol. 13, No. 2, March 2011 Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved. DOI: 10.1016/j.jmoldx.2010.10.007 Modified Real-Time PCR for Detecting, Differentiating, and Quantifying Ureaplasma urealyticum and Ureaplasma parvum Ellen Vancutsem,* Oriane Soetens,* microbiological methods and are, therefore, usually re- Maria Breugelmans,† Walter Foulon,† ferred to as Ureaplasma species. They are found in the and Anne Naessens* lower genital tract of nearly 50% of pregnant women as part of the normal vaginal flora. However, in some cases, From the Departments of Microbiology and Infection Control* Ureaplasma species have interfered with normal fetal de- and Obstetrics,† Universitair Ziekenhuis Brussel, Brussels, velopment by causing an ascending infection.2–7 The Belgium reason for this infection is not fully understood but may be associated with the virulence of the microorganism, the host immune system, or local factors present in the lower We evaluated a previously described quantitative real- genital tract. Species differentiation might be important time PCR (qPCR) for quantifying and differentiating because previous studies2,8,9 suggest that nongonococ- Ureaplasma parvum and U. urealyticum. Because of cal urethritis and an adverse pregnancy outcome with nonspecific reactions with Staphylococcus aureus respect to birth weight, gestational age, and preterm DNA in the U. parvum PCR, we developed a modified delivery are implicated with the presence of U. urealyti- qPCR and designed new primers. These oligonucleo- cum and not with U. parvum. tides eradicated cross-reactions, indicating higher Because strains can only be differentiated with la- specificity. -
Mycoplasma Pirum Sp. Nov. a Terminal Structured Mollicute from Cell Cultures
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1985, p. 285-291 Vol. 35, No. 3 0020-7713/85/030285-07$02.00/0 Copyright 0 1985, International Union of Microbiological Societies Mycoplasma pirum sp. nov. a Terminal Structured Mollicute from Cell Cultures RICHARD A. DEL GIUDICE,'" JOSEPH G. TULLY,* DAVID L. ROSE,2 AND ROGER M. COLE3? Diagnostic Microbiology Laboratory, National Cancer Institute-Frederick Cancer Research Facility,' and Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases,2 Frederick, Maryland 21 701 and Laboratory of Streptococcal Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 202053 More than 200 mycoplasma isolates recovered from a variety of contaminated cell cultures from 1968 to the present were found to belong to a distinct serological group (serogroup 38). An analysis of representative strains of this collection showed that they possessed all of the characteristics of organisms belonging to the genus Mycoplasma. These organisms were capable of fermenting glucose and of hydrolyzing arginine, and they required cholesterol or serum for growth. These organisms were unusual in that they possessed an organized terminal structure or tip, a morphological structure which has been found in at least six other species in the genus Mycoplasma. These organisms were also serologically distinct from all previously established species in the genus Mycoplasma and the genus Acholeplasma. On the basis of these findings and other morphological, biological, and serological characteristics of the strains recovered, we propose that mycoplasmas with these properties belong to a new species, Mycoplasma pirum sp. nov. Strain HRC 70-159 (= ATCC 25960) is the type strain of this species. -
Invivogen Insight Newsletter: Mycoplasma
November/December 2005 An Insightful Look At InvivoGen’s Innovative Products Mycoplasma contamination remains a significant problem to Mycoplasma: The Insidious Invader of Cell Cultures the culture of mammalian cells. Mycoplasmas are the smallest and simplest and enzymatic procedures. However, none of these self-replicating organisms. Due to their seriously methods is 100% reliable. Direct growth methods are The detection of mycoplasma degraded genome they cannot perform many relatively sensitive to most species but the overall contamination is an important metabolic functions, such as cell wall production or procedure is lengthy (3 weeks), costly and less synthesis of nucleotides and amino acids. sensitive to noncultivable species. The PCR method, part of mycoplasma control and Mycoplasmas are strictly parasites. They parasitize a although rather fast and inexpensive, is limited by its should be an established wide range of organisms including humans, animals, sensitivity and the risk of positive and false negative method in every cell culture insects, and plants. results. Mycoplasma and Acholeplasma are Mollicutes, that InvivoGen has developed a new mycoplasma detection laboratory. InvivoGen is pleased comprise together more than 100 recognized species. method that promises to resolve these issues. This to introduce PlasmoTest™, a Among them, about 20 species have been described as method is based on the detection of mycoplasmas by contaminants of eukaryotic cell cultures. However engineered cells that express Toll-like receptor 2, a Mycoplasma detection kit based 5 species (Mycoplasma (M.) arginini, M. fermentans, pathogen recognition receptor that detects mycoplasmas. on a brand new technology. M. orale, M. hyorhinis and Acholeplasma laidlawii) PlasmoTest™, InvivoGen’s new mycoplasma detection are isolated in 90-95% of contaminated cell cultures1. -
APUTS) Reporting Terminology and Codes Microbiology (V1.0
AUSTRALIAN PATHOLOGY UNITS AND TERMINOLOGY (APUTS) Reporting Terminology and Codes Microbiology (v1.0) 1 12/02/2013 APUTS Report Information Model - Urine Microbiology Page 1 of 1 Specimen Type Specimen Macro Time Glucose Bilirubin Ketones Specific Gravity pH Chemistry Protein Urobilinogen Nitrites Haemoglobin Leucocyte Esterases White blood cell count Red blood cells Cells Epithelial cells Bacteria Microscopy Parasites Microorganisms Yeasts Casts Crystals Other elements Antibacterial Activity No growth Mixed growth Urine MCS No significant growth Klebsiella sp. Bacteria ESBL Klebsiella pneumoniae Identification Virus Fungi Growth of >10^8 org/L 10^7 to 10^8 organism/L of mixed Range or number Colony Count growth of 3 organisms 19090-0 Culture Organism 1 630-4 LOINC >10^8 organisms/L LOINC Significant growth e.g. Ampicillin 18864-9 LOINC Antibiotics Susceptibility Method Released/suppressed None Organism 2 Organism 3 Organism 4 None Consistent with UTI Probable contamination Growth unlikely to be significant Comment Please submit a repeat specimen for testing if clinically indicated Catheter comments Sterile pyuria Notification to infection control and public health departments PUTS Urine Microbiology Information Model v1.mmap - 12/02/2013 - Mindjet 12/02/2013 APUTS Report Terminology and Codes - Microbiology - Urine Page 1 of 3 RCPA Pathology Units and Terminology Standardisation Project - Terminology for Reporting Pathology: Microbiology : Urine Microbiology Report v1 LOINC LOINC LOINC LOINC LOINC LOINC LOINC Urine Microbiology Report -
Microbiological and Clinical Aspects of Actinomyces Infections: What Have We Learned?
antibiotics Editorial Microbiological and Clinical Aspects of Actinomyces Infections: What Have We Learned? Edit Urbán 1,2 and Márió Gajdács 3,4,* 1 Department of Medical Microbiology and Immunology, University of Pécs Medical School, Szigeti út 12., 7624 Pécs, Hungary; [email protected] 2 Institute of Translational Medicine, University of Pécs Medical School, Szigeti út 12., 7624 Pécs, Hungary 3 Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., 6720 Szeged, Hungary 4 Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary * Correspondence: [email protected] or [email protected]; Tel.: +36-62-341-330 Obligate anaerobic bacteria are important members of the normal human microbiota, present in high numbers on mucosal surfaces (e.g., the oral cavity, female genital tract, and colon), outnumbering other bacteria 10–1000-fold [1]. Anaerobic bacteria have been implicated in a wide range of infectious processes from almost all anatomical sites, by bacteria from both exogenous (e.g., toxin-mediated pathologies by Clostridia) and endoge- nous (displacement of the bacterial flora to other anatomical regions) sources [2]. These pathogens may be important etiological agents in life-threatening, invasive infections [3,4]. The cultivation and identification of strict anaerobes is labor-intensive and requires ex- pertise and special laboratory conditions and equipment; therefore, for many years, only several anaerobes were considered clinically relevant [5]. With the emergence and spread Citation: Urbán, E.; Gajdács, M. of modern identification technologies—such as polymerase chain reaction (PCR), matrix- Microbiological and Clinical Aspects assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), of Actinomyces Infections: What Have and 16S RNA gene sequencing—in clinical microbiology laboratories, the pathogenic role We Learned? Antibiotics 2021, 10, 151. -
Moving Beyond Serovars
ABSTRACT Title of Document: MOLECULAR AND BIOINFORMATICS APPROACHES TO REDEFINE OUR UNDERSTANDING OF UREAPLASMAS: MOVING BEYOND SEROVARS Vanya Paralanov, Doctor of Philosophy, 2014 Directed By: Prof. Jonathan Dinman, Cell Biology and Molecular Genetics, University of Maryland College Park Prof. John I. Glass, Synthetic Biology, J. Craig Venter Institute Ureaplasma parvum and Ureaplasma urealyticum are sexually transmitted, opportunistic pathogens of the human urogenital tract. There are 14 known serovars of the two species. For decades, it has been postulated that virulence is related to serotype specificity. Understanding of the role of ureaplasmas in human diseases has been thwarted due to two major barriers: (1) lack of suitable diagnostic tests and (2) lack of genetic manipulation tools for the creation of mutants to study the role of potential pathogenicity factors. To address the first barrier we developed real-time quantitative PCRs (RT-qPCR) for the reliable differentiation of the two species and 14 serovars. We typed 1,061 ureaplasma clinical isolates and observed about 40% of isolates to be genetic mosaics, arising from the recombination of multiple serovars. Furthermore, comparative genome analysis of the 14 serovars and 5 clinical isolates showed that the mba gene, used for serotyping ureaplasmas was part of a large, phase variable gene system, and some serovars shown to express different MBA proteins also encode mba genes associated with other serovars. Together these data suggests that differential pathogenicity and clinical outcome of an ureaplasmal infection is most likely due to the presence or absence of potential pathogenicity factors in individual ureaplasma clinical isolates and/or patient to patient differences in terms of autoimmunity and microbiome. -
Rapid, Sensitive PCR-Based Detection of Mycoplasmas In
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 1994, p. 953-959 Vol. 60, No. 3 0099-2240/94/$04.00 +0 Copyright © 1994, American Society for Microbiology Rapid, Sensitive PCR-Based Detection of Mycoplasmas in Simulated Samples of Animal Sera OLIVIER DUSSURGET AND DAISY ROULLAND-DUSSOIX* Laboratoire des Mycoplasnes, Institut Pasteur, 75724 Paris Cedex 15, Franice Received 2 August 1993/Accepted 17 December 1993 A fast and simple method to detect mycoplasmal contamination in simulated samples of animal sera by using a PCR was developed. The following five mycoplasma species that are major cell culture contaminants belonging to the class Mollicutes were investigated: Mycoplasma arginini, Acholeplasma laidlawii, Mycoplasma hyorhinis, Mycoplasma orale, and Mycoplasma fermentans. After a concentration step involving seeded sera, genus-specific primers were used to amplify a 717-bp DNA fragment within the 16S rRNA gene of mycoplasmas. In a second step, the universal PCR was followed by amplification of variable regions of the 16S rRNA gene by using species-specific primers, which allowed identification of contaminant mycoplasmas. With this method, 10 fg of purified DNA and 1 to 10 color-changing units of mycoplasmas could be detected. Since the sensitivity of the assay was increased 10-fold when the amplification products were hybridized with an internal mycoplasma-specific 32P-labelled oligonucleotide probe, a detection limit of 1 to 10 genome copies per PCR sample was obtained. This highly sensitive, specific, and simple assay may be a useful alternative to methods currently used to detect mycoplasmas in animal sera. Mycoplasmas (the trivial name for microorganisms belong- Like most cell cultures infected by mycoplasmas, serum infec- ing to the class Molliclutes) are the smallest self-replicating tions are rarely detected by visual inspection or light micros- bacteria. -
Lumpy Jaw" in Cattle
THE NOMENCLATURE AND CLASSIFICATION OF THE ACTINOMYCETES1 SELMAN A. WAKSMAN AND ARTHUR T. HENRICI' New Jersey Agricultural Experiment Station, Rutgers University, and the Department of Bacteriology, University of Minnesota Received for publication April 10, 1943 Since the publication by one of us (Waksman, 1940) of a system of classifica- tion of actinomycetes, considerable criticism was expressed in regard to the designation and position of the anaerobic pathogenic species, the cause of com- mon actinomycosis in man and "lumpy jaw" in cattle. This type of organism was placed in the genus Cohnistreptothrix Pinoy, the generic name Actinomyces being reserved for the aerobic species forming aerial mycelium-bearing spores. This could be justified on the ground that the organism seen by Harz was so poorly described and illustrated that it is unrecognizable by present day stand- ards, and that therefore a new name could well be applied to the organism of actinomycosis in cattle; that further the name Actinomyces was the first one ap- plied to cultivated, aerobic, spore-forming species which can be recognized by present day standards. This has been the attitude of a number of recent medical mycologists, especially the Italian workers (Ciferri and RedaeUi, 1929; Baldacci, 1939). Critics of Waksman's classification have, however, maintained that while Harz' description of his organism is perhaps vague, there is no question concern- ing the nature of the disease he studied, and that the chances are overwhelmingly in favor of his having actually observed the anaerobic pathogenic filamentous organism first described by Israel. Further, under the Botanical Code, the name Actinomyces must be applied either to the organism of "lumpy jaw" or not used at all.