A Digital Dissection of Two Teleost Fishes: Comparative
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Upper Basin Pallid Sturgeon Recovery Workgroup Annual Report
UPPER BASIN PALLID STURGEON RECOVERY WORKGROUP 2004 ANNUAL REPORT Upper Basin Pallid Sturgeon Workgroup c/o Montana Fish, Wildlife and Parks 1420 East Sixth Helena MT 59620 August 2005 TABLE OF CONTENTS INTRODUCTION WORKGROUP MEETING NOTES 2004 Annual Meeting Notes – December 1-2, 2004 .............................................................5 March 9, 2005 Meeting Notes ...............................................................................................21 WORKGROUP LETTERS AND DOCUMENTS Intake BOR Letter..................................................................................................................29 Garrison Review Team Report Submission Letter to USFWS..............................................31 Review of pallid sturgeon culture at Garrison Dam NFH by the Upper Basin Pallid Sturgeon Review Team, March, 2005 ..............................................................36 RESEARCH AND MONITORING 2004 Pallid Sturgeon Recovery Efforts in the Upper Missouri River, Montana (RPMA #1), Bill Gardner, Montana Fish, Wildlife and Parks, Lewistown, MT...................49 Habitat Use, Diet, and Growth of Hatchery-reared Juvenile Pallid Sturgeon And Indigenous shovelnose sturgeon in the Missouri River avove Fort Peck Reservoir, Montana, Paul C. Gerrity, Christopher S. Guy, and William M. Gardner, Montana Cooperative Fishery Research Unit, Montana State University.............................65 Lower Missouri and Yellowstone Rivers Pallid Sturgeon Study, 2004 Report, Mtthew M. Klungle and Matthew W. Baxter, Montana -
Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr. -
Development of the Muscles Associated with the Mandibular and Hyoid Arches in the Siberian Sturgeon, Acipenser Baerii (Acipenseriformes: Acipenseridae)
Received: 31 May 2017 | Revised: 24 September 2017 | Accepted: 29 September 2017 DOI: 10.1002/jmor.20761 RESEARCH ARTICLE Development of the muscles associated with the mandibular and hyoid arches in the Siberian sturgeon, Acipenser baerii (Acipenseriformes: Acipenseridae) Peter Warth1 | Eric J. Hilton2 | Benjamin Naumann1 | Lennart Olsson1 | Peter Konstantinidis3 1Institut fur€ Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Abstract Museum, Friedrich-Schiller-Universität Jena, The skeleton of the jaws and neurocranium of sturgeons (Acipenseridae) are connected only Germany through the hyoid arch. This arrangement allows considerable protrusion and retraction of the 2 Department of Fisheries Science, Virginia jaws and is highly specialized among ray-finned fishes (Actinopterygii). To better understand the Institute of Marine Science, College of unique morphology and the evolution of the jaw apparatus in Acipenseridae, we investigated the William & Mary, Gloucester Point, Virginia development of the muscles of the mandibular and hyoid arches of the Siberian sturgeon, Aci- 3Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon penser baerii. We used a combination of antibody staining and formalin-induced fluorescence of tissues imaged with confocal microscopy and subsequent three-dimensional reconstruction. These Correspondence data were analyzed to address the identity of previously controversial and newly discovered mus- Peter Warth, Institut fur€ Spezielle Zoologie cle portions. Our results indicate that the anlagen of the muscles in A. baerii develop similarly to und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, those of other actinopterygians, although they differ by not differentiating into distinct muscles. Erbertstr. 1, 07743 Jena, Germany. This is exemplified by the subpartitioning of the m. adductor mandibulae as well as the massive m. -
Multilocus Molecular Phylogeny of the Suckermouth Armored Catfishes
Molecular Phylogenetics and Evolution xxx (2014) xxx–xxx Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae ⇑ Nathan K. Lujan a,b, , Jonathan W. Armbruster c, Nathan R. Lovejoy d, Hernán López-Fernández a,b a Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada b Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada c Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA d Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada article info abstract Article history: The Neotropical catfish family Loricariidae is the fifth most species-rich vertebrate family on Earth, with Received 4 July 2014 over 800 valid species. The Hypostominae is its most species-rich, geographically widespread, and eco- Revised 15 August 2014 morphologically diverse subfamily. Here, we provide a comprehensive molecular phylogenetic reap- Accepted 20 August 2014 praisal of genus-level relationships in the Hypostominae based on our sequencing and analysis of two Available online xxxx mitochondrial and three nuclear loci (4293 bp total). Our most striking large-scale systematic discovery was that the tribe Hypostomini, which has traditionally been recognized as sister to tribe Ancistrini based Keywords: on morphological data, was nested within Ancistrini. This required recognition of seven additional tribe- Neotropics level clades: the Chaetostoma Clade, the Pseudancistrus Clade, the Lithoxus Clade, the ‘Pseudancistrus’ Guiana Shield Andes Mountains Clade, the Acanthicus Clade, the Hemiancistrus Clade, and the Peckoltia Clade. -
Species Composition and Invasion Risks of Alien Ornamental Freshwater
www.nature.com/scientificreports OPEN Species composition and invasion risks of alien ornamental freshwater fshes from pet stores in Klang Valley, Malaysia Abdulwakil Olawale Saba1,2, Ahmad Ismail1, Syaizwan Zahmir Zulkifi1, Muhammad Rasul Abdullah Halim3, Noor Azrizal Abdul Wahid4 & Mohammad Noor Azmai Amal1* The ornamental fsh trade has been considered as one of the most important routes of invasive alien fsh introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fsh species from 60 freshwater fsh pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fshes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fshes was identifed. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fshes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the frst time, revealed the number of high-risk ornamental fsh species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia. As a global hobby, fshkeeping is cherished by both young and old people. -
The Skull O Neurocranium, Form and Function O Dermatocranium, Form
Lesson 15 ◊ Lesson Outline: ♦ The Skull o Neurocranium, Form and Function o Dermatocranium, Form and Function o Splanchnocranium, Form and Function • Evolution and Design of Jaws • Fate of the Splanchnocranium ♦ Trends ◊ Objectives: At the end of this lesson, you should be able to: ♦ Describe the structure and function of the neurocranium ♦ Describe the structure and function of the dermatocranium ♦ Describe the origin of the splanchnocranium and discuss the various structures that have evolved from it. ♦ Describe the structure and function of the various structures that have been derived from the splanchnocranium ♦ Discuss various types of jaw suspension and the significance of the differences in each type ◊ References: ♦ Chapter: 9: 162-198 ◊ Reading for Next Lesson: ♦ Chapter: 9: 162-198 The Skull: From an anatomical perspective, the skull is composed of three parts based on the origins of the various components that make up the final product. These are the: Neurocranium (Chondocranium) Dermatocranium Splanchnocranium Each part is distinguished by its ontogenetic and phylogenetic origins although all three work together to produce the skull. The first two are considered part of the Cranial Skeleton. The latter is considered as a separate Visceral Skeleton in our textbook. Many other morphologists include the visceral skeleton as part of the cranial skeleton. This is a complex group of elements that are derived from the ancestral skeleton of the branchial arches and that ultimately gives rise to the jaws and the skeleton of the gill -
An Evolutionarily Conserved Odontode Gene Regulatory Network Underlies Head Armor
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449322; this version posted June 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An evolutionarily conserved odontode gene regulatory network underlies head armor formation in suckermouth armored catfish Shunsuke Moria,1 and Tetsuya Nakamuraa,1 Authors’ affiliations a Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA 1 Address correspondence to: Shunsuke Mori ([email protected]) and Tetsuya Nakamura ([email protected]) Running title: Odontode development in armored catfish Keywords: odontode, dermal denticle, suckermouth armored catfish Summary statement: Cranial dermal denticles in suckermouth armored catfish develop via an evolutionarily conserved and unique odontode genetic regulatory network. bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449322; this version posted June 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ABSTRACT 2 Odontodes, i.e., teeth and tooth-like structures, consist of a pulp cavity and dentine covered 3 by a mineralized cap. These structures first appeared on the outer surface of vertebrate 4 ancestors and were repeatedly lost and gained across vertebrate clades; yet, the underlying 5 genetic mechanisms and trajectories of this recurrent evolution remain long-standing 6 mysteries. -
A Mesocosm Study of the Impact of Invasive Armored Catfish
A MESOCOSM STUDY OF THE IMPACT OF INVASIVE ARMORED CATFISH (PTERYGOPLICHTHYS SP.) ON ENDANGERED TEXAS WILD RICE (ZIZANIA TEXANA) IN THE SAN MARCOS RIVER by Allison E. Norris, B.S. THESIS Presented to the Faculty of The University of Houston-Clear Lake in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE THE UNIVERSITY OF HOUSTON-CLEAR LAKE May, 2017 A MESOCOSM STUDY OF THE IMPACT OF INVASIVE ARMORED CATFISH (PTERYGOPLICHTHYS SP.) ON ENDANGERED TEXAS WILD RICE (ZIZANIA TEXANA) IN THE SAN MARCOS RIVER By Allison Norris APPROVED BY __________________________________________ George Guillen, Ph.D., Chair __________________________________________ Thom Hardy, Ph.D., Committee Member __________________________________________ Cindy Howard, Ph.D., Committee Member __________________________________________ Dr. Ju H. Kim, Ph.D., Associate Dean __________________________________________ Zbigniew J. Czajkiewicz, Ph.D., Dean ACKNOWLEDGMENTS I am thankful to the Edwards Aquifer Authority for funding my thesis. I am also thankful to the students and staff at Texas State University for watching over my thesis project between my visits. I would also like to thank the students and staff at the Environmental Institute of Houston for their support and time spent helping me complete my thesis project. I am grateful to Dr. Hardy for his aid and guidance while I was at Texas State University working on my thesis. I am also grateful to Dr. Guillen for his guidance throughout the completion of my thesis. I would also like to thank Dr. Howard for her comments and assistance during the completion of my thesis. I would like to thank my family for their continued support of me and encouragement to follow my dreams. -
Kyfishid[1].Pdf
Kentucky Fishes Kentucky Department of Fish and Wildlife Resources Kentucky Fish & Wildlife’s Mission To conserve, protect and enhance Kentucky’s fish and wildlife resources and provide outstanding opportunities for hunting, fishing, trapping, boating, shooting sports, wildlife viewing, and related activities. Federal Aid Project funded by your purchase of fishing equipment and motor boat fuels Kentucky Department of Fish & Wildlife Resources #1 Sportsman’s Lane, Frankfort, KY 40601 1-800-858-1549 • fw.ky.gov Kentucky Fish & Wildlife’s Mission Kentucky Fishes by Matthew R. Thomas Fisheries Program Coordinator 2011 (Third edition, 2021) Kentucky Department of Fish & Wildlife Resources Division of Fisheries Cover paintings by Rick Hill • Publication design by Adrienne Yancy Preface entucky is home to a total of 245 native fish species with an additional 24 that have been introduced either intentionally (i.e., for sport) or accidentally. Within Kthe United States, Kentucky’s native freshwater fish diversity is exceeded only by Alabama and Tennessee. This high diversity of native fishes corresponds to an abun- dance of water bodies and wide variety of aquatic habitats across the state – from swift upland streams to large sluggish rivers, oxbow lakes, and wetlands. Approximately 25 species are most frequently caught by anglers either for sport or food. Many of these species occur in streams and rivers statewide, while several are routinely stocked in public and private water bodies across the state, especially ponds and reservoirs. The largest proportion of Kentucky’s fish fauna (80%) includes darters, minnows, suckers, madtoms, smaller sunfishes, and other groups (e.g., lam- preys) that are rarely seen by most people. -
Holocephalan Embryos Provide Evidence for Gill Arch Appendage Reduction and Opercular Evolution in Cartilaginous fishes
Holocephalan embryos provide evidence for gill arch appendage reduction and opercular evolution in cartilaginous fishes J. Andrew Gillisa,1, Kate A. Rawlinsonb, Justin Bellc, Warrick S. Lyond, Clare V. H. Bakera, and Neil H. Shubine,1 aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom; bDepartment of Genetics, Evolution and Environment, University College London, London, WC1E 6BT United Kingdom; cDepartment of Primary Industries, Marine and Freshwater Fisheries Resource Institute, Queenscliff, Victoria 3225, Australia; dNational Institute of Water and Atmospheric Research, Hataitai, Wellington 6021, New Zealand; and eDepartment of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637 Edited by Sean B. Carroll, University of Wisconsin, Madison, WI, and approved December 15, 2010 (received for review August 31, 2010) Chondrichthyans possess endoskeletal appendages called branchial extensive analyses, including exceptionally complete material of the rays that extend laterally from their hyoid and gill-bearing (bran- stethacanthid Akmonistion zangerli (11), however, suggest an al- chial) arches. Branchial ray outgrowth, like tetrapod limb out- ternative placement of key ray-bearing taxa. These analyses resolve growth, is maintained by Sonic hedgehog (Shh) signaling. In limbs, Cladoselache and the symmoriids (including the hyoid plus gill arch distal endoskeletal elements fail to form in the absence of normal ray-bearing Akmonistion) as paraphyletic stem-group -
Teleostei, Osteoglossiformes) in the Continental Lower Cretaceous of the Democratic Republic of Congo (Central Africa
Geo-Eco-Trop., 2015, 39, 2 : 247-254 On the presence of a second osteoglossid fish (Teleostei, Osteoglossiformes) in the continental Lower Cretaceous of the Democratic Republic of Congo (Central Africa) Sur la présence d’un second poisson ostéoglossidé (Teleostei, Osteoglossiformes) dans le Crétacé inférieur continental de la République Démocratique du Congo (Afrique centrale) Louis TAVERNE 1 Résumé: Un hyomandibulaire de téléostéen découvert dans les couches de la Formation de la Loia (Aptien- Albien continental) à Yakoko, sur la rivière Lomami, Province Centrale, République Démocratique du Congo, est décrit et ses relations phylogénétiques sont discutées. L’os est grand et porte un processus operculaire très allongé. Des comparaisons avec d’autres téléostéens du Crétacé inférieur continental indiquent que cet hyomandibulaire appartient à un ostéoglossidé qui semble proche de Paralycoptera. Mots-clés: Teleostei, Osteoglossidae, hyomandibulaire, Formation de la Loia, Crétacé inférieur continental, Yakoko, République Démocratique du Congo Abstract: A teleost hyomandibula discovered in the deposits of the Loia Formation (continental Aptian- Albian) at Yakoko, on the Lomami River, Central Province, Democratic Republic of Congo, is described and its phylogenetic relationships are discussed. The bone is rather large and bears an extremely long opercular process. Comparisons with other freshwater Early Cretaceous teleosts indicate that this hyomandibula belongs to an osteoglossid fish that seems close to Paralycoptera. Key words: Teleostei, Osteoglossidae, hyomandibula, Loia Formation, continental Early Cretaceous, Yakoko, Democratic Republic of Congo. INTRODUCTION The Loia and the Bokungu Formations are respectively the lower and the upper strata within the continental Early Cretaceous deposits of the Congolese Cuvette and the surrounding zones, in the Democratic Republic of Congo (CAHEN et al., 1959, 1960; CASIER, 1961). -
Climbing Behavior of Cordylancistrussp. in The
Univ. Sci. 2015, Vol. 20 (2): 209-215 doi: 10.11144/Javeriana.SC20-2.cbcc Freely available on line SHORT COMMUNICATION Climbing behavior of Cordylancistrus sp. in the Colombian Andes JD Carvajal-Quintero1, 2, JA Maldonado-Ocampo3 , A. Urbano-Bonilla1 Abstract The climbing behavior in a suckermouth Loricariidae catfish species is reported for the first time. A group of eight specimens of Cordylancistrus sp. were observed in situ climbing a waterfall in a mountain stream of the Colombian Andes. This study describes how this species overcame the vertical barrier, and then discusses and hypothesizes how the development of "key morphological and behavioral innovations" could play an important role in the occupation of a new niche and in the diversification of the Loricariidae family. Keywords: Loricariidae, key innovations, Colombian Andes Edited by Alberto Acosta & Juan Carlos Salcedo-Reyes Introduction 1. Laboratorio de Ictiología, Departamento de Biología, Tropical montane streams are aquatic ecosystems Facultad de Ciencias, Pontificia Universidad Javeriana, that present diverse challenges to the organisms that Laboratorio 108B Edf. 53, Bogotá D.C., Colombia. inhabit them. Water quality, substrate type, drainage 2 Red de Ecoetología, Instituto de Ecología, A. C., Xalapa, area, diversity in the volume and velocity of the flow, Veracruz, México. waterfalls, steep gradients, and other movement 3 Laboratorio de Ictiología, Unidad de Ecología y Sistemática barriers are some of the factors that determine the (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Laboratorio 108B Edf. 53, composition and structure of the communities in Bogotá D.C., Colombia. these environments (Jaramillo-Villa et al. 2010, Scatena & Gutpa 2012, Blanco et al.