An Evolutionarily Conserved Odontode Gene Regulatory Network Underlies Head Armor

Total Page:16

File Type:pdf, Size:1020Kb

An Evolutionarily Conserved Odontode Gene Regulatory Network Underlies Head Armor bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449322; this version posted June 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An evolutionarily conserved odontode gene regulatory network underlies head armor formation in suckermouth armored catfish Shunsuke Moria,1 and Tetsuya Nakamuraa,1 Authors’ affiliations a Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA 1 Address correspondence to: Shunsuke Mori ([email protected]) and Tetsuya Nakamura ([email protected]) Running title: Odontode development in armored catfish Keywords: odontode, dermal denticle, suckermouth armored catfish Summary statement: Cranial dermal denticles in suckermouth armored catfish develop via an evolutionarily conserved and unique odontode genetic regulatory network. bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449322; this version posted June 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ABSTRACT 2 Odontodes, i.e., teeth and tooth-like structures, consist of a pulp cavity and dentine covered 3 by a mineralized cap. These structures first appeared on the outer surface of vertebrate 4 ancestors and were repeatedly lost and gained across vertebrate clades; yet, the underlying 5 genetic mechanisms and trajectories of this recurrent evolution remain long-standing 6 mysteries. Here, we established suckermouth armored catfish (Ancistrus sp.; Loricariidae), 7 which have uniquely evolved dermal odontodes (dermal denticles) all over most of their body 8 surface, as an experimental model animal amenable to genetic manipulation for studying 9 odontode development. Our histological analysis showed that suckermouth armored catfish 10 develop dermal denticles through the previously defined odontode developmental stages. De 11 novo transcriptomic profiling identified the conserved odontode genetic regulatory network 12 (oGRN) as well as unique expression of paired like homeodomain 2 (pitx2), previously 13 characterized as an early regulator of oGRN in teeth, in developing dermal denticles. 14 Knockdown of pitx2 perturbed formation of the epithelial placode of dermal denticles and 15 altered expression oGRN genes. By comprehensively identifying the genetic program for 16 dermal odontode development in suckermouth armored catfish, this work illuminates how 17 dermal odontodes independently evolved and diverged in distinct teleost lineages. 18 19 20 21 22 23 24 25 26 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449322; this version posted June 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 27 28 INTRODUCTION 29 30 Exoskeletal armor is a prime protective adaptation for thriving in a natural environment, and 31 dermal odontodes are the most common exoskeletal feature found across the vertebrate 32 phylogeny of extinct and extant fish. Dermal odontodes are constructed from various types of 33 dentine sometimes covered by enamel/enameloid and primarily function as protectants and 34 ornaments on the vertebrate body (Janvier, 1996). They form body armor in concert with 35 underlying dermal bony plates in odontode-bearing fish, excepting modern cartilaginous fish 36 (Miyake et al., 1999). 37 During vertebrate evolution, the first dermal odontodes shielding the body surface 38 appeared in in Silurian (~460 million years ago) in pteraspidomorphi, extinct jawless fish 39 group including anaspids or heterostracans (Keating and Donoghue, 2016). Thereafter, 40 throughout the evolution of jawless and jawed fish, the architecture of odontodes with 41 underlying dermal bony plates has been continuously modified and displays extraordinary 42 morphological divergence (Keating et al., 2015). Odontodes may have been recruited into the 43 oral cavity and transformed into teeth in the “outside-in” model during the origin of jawed 44 fish (Reif, 1982a). However, due to gaps in the fossil record, the evolutionary origin of teeth 45 continues to be disputed and revisited (Berio and Debiais-Thibaud, 2021; Fraser et al., 2010; 46 Witten et al., 2014). 47 Extant chondrichthyans (cartilaginous fish) and some species of primitive 48 actinopterygians (ray-finned fishes, e.g. gars and bichirs) and sarcopterygians (lobe-finned 49 fish, e.g., coelacanth) retain dermal odontodes on the body surface in the forms of placoid 50 scales or ganoid scales (Huysseune and Sire, 1998; Reif, 1982b; Williamson, 1849; 51 Williamson, 1851). However, dermal odontodes were lost in the early divergence of teleosts 52 (the largest infraclass in actinopterygians) and sarcopterygians; thus, most of them no longer bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449322; this version posted June 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 53 have these structures. Intriguingly, dermal odontodes independently re-emerged as 54 convergent evolution in four living teleost groups: Xiphioidae (swordfish), Denticeps 55 (denticle herring), Atherion (pickleface hardyhead), and Loricarioidae (armored catfish) 56 (Fierstine, 1990; Sire and Allizard, 2001; Sire and Huysseune, 1996; Sire et al., 1998). In 57 these fishes, dermal odontodes on the extraoral skin display the conserved odonotode 58 organization and components, e.g., a pulp cavity surrounded by a dentin cone but without an 59 enamel cap. The exceptional resemblance of dermal odontode architectures among these 60 fishes implies a redeployment of the genetic network for odontode formation from existing 61 teeth or resurrection of the genetic program for lost dermal odontodes in each lineage, yet 62 little is known about the genetic basis underlying odontode convergent evolution in teleosts. 63 The developmental process of odontodes and its core set of regulatory genes were 64 uncovered principally by studying mammalian tooth formation. Tooth development begins 65 with epithelial placode formation; the thickened epithelium with reduced cell proliferation 66 functions as a signaling center, expressing the transcription factor paired like homeodomain 2 67 (pitx2) as well as genes encoding secreted factors, e.g., sonic hedgehog (shh), fibroblast 68 growth factors (fgfs), bone morphogenic proteins (bmps), and wnt (Bei et al., 2000; Bitgood 69 and McMahon, 1995; Chen et al., 2009; Dassule and McMahon, 1998). Via these diffusible 70 molecules, the placode triggers the sequential and reciprocal epithelial-mesenchymal 71 interactions and regulates formation of the tooth primordium, i.e., tooth germ, through the 72 well-defined developmental stages of bud, cap, bell, and eruption (Balic and Thesleff, 2015; 73 Thesleff and Tummers, 2008). 74 Recent comparative studies established histological and genetic links between teeth 75 and various dermal odontodes. For example, placoid scales, the dermal odontodes of 76 cartilaginous fish, form through the strictly conserved bud, cap, bell, and eruption stages 77 (Debiais-Thibaud et al., 2015). Also, shh, wnt, bmp, fgf and other genes indispensable for 78 tooth development are expressed in a comparable manner during both tooth and placoid scale bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449322; this version posted June 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 79 formation (Cooper et al., 2017; Cooper et al., 2018; Debiais-Thibaud et al., 2015; Debiais- 80 Thibaud et al., 2011). These architectural and molecular correspondences between tooth and 81 dermal odontode development supports the classical hypothesis that genetic cascades were 82 co-opted from dermal odontodes to teeth (or vice versa). However, due to the lack of 83 experimental model animals amenable to genetic manipulation, there is little direct 84 experimental evidence for this hypothesis and, more broadly, for how odontodes are recruited 85 into novel tissues. 86 The catfish order (Siluriformes) offers a remarkable and unique opportunity to 87 understand the evolutionary mechanisms of dermal odontodes. The last common ancestor of 88 catfish is thought to have lost all body scales, but some lineages in the superfamily 89 Loricarioidea independently reverted to gain dermal odontodes, i.e., dermal denticles, 90 with/without underlying dermal bony plates (Haspel et al., 2012; Sire and Huysseune, 1996). 91 Although these dermal denticles in catfishes originated via convergent evolution, their 92 structures display the rigorously conserved odontode characteristics albeit lacking surface 93 enamel. The distribution of dermal denticles along the body in these catfish lineages is 94 evolutionarily diverse, occuring on the head, trunk, or both (Rivera-Rivera
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Modifications of the Digestive Tract for Holding Air in Loricariid and Scoloplacid Catfishes
    Copeia, 1998(3), pp. 663-675 Modifications of the Digestive Tract for Holding Air in Loricariid and Scoloplacid Catfishes JONATHAN W. ARMBRUSTER Loricariid catfishes have evolved several modifications of the digestive tract that • appear to fWIction as accessory respiratory organs or hydrostatic organs. Adapta­ tions include an enlarged stomach in Pterygoplichthys, Liposan:us, Glyptoperichthys, Hemiancistrus annectens, Hemiancistrus maracaiboensis, HyposWmus panamensis, and Lithoxus; a U-shaped diverticulum in Rhinelepis, Pseudorinelepis, Pogonopoma, and Po­ gonopomoides; and a ringlike diverticulum in Otocinclus. Scoloplacids, closely related to loricariids, have enlarged, clear, air-filled stomachs similar to that of Lithoxus. The ability to breathe air in Otocinclus was confirmed; the ability of Lithoxus and Scoloplax to breathe air is inferred from morphology. The diverticula of Pogonopomoides and Pogonopoma are similar to swim bladders and may be used as hydrostatic organs. The various modifications of the stomach probably represent characters that define monophyletic clades. The ovaries of Lithoxus were also examined and were sho~ to have very few (15--17) mature eggs that were large (1.6-2.2 mm) for the small size of the fish (38.6-41.4 mm SL). Los bagres loricariid an desarrollado varias modificaciones del canal digestivo que aparentan fWIcionar como organos accesorios de respiracion 0 organos hidrostati­ cos. Las adaptaciones incluyen WI estomago agrandado en Pterygoplichthys, Liposar­ cus, Glyproperichthys, Hemiancistrus annectens, Hemiancistrus maracaiboensis, Hyposto­ mus panamensis, y Lithoxus; WI diverticulum en forma de U en Rhinelepis, Pseudori­ nelepis, Pogonopoma, y Pogonopomoides; y WI diverticulum en forma de circulo en Otocinclus. Scoloplacids, de relacion cercana a los loricariids, tienen estomagos cla­ ros, agrandados, llenos de aire similares a los de Lithoxus.
    [Show full text]
  • Harmful Non-Indigenous Species in the United States
    Harmful Non-Indigenous Species in the United States September 1993 OTA-F-565 NTIS order #PB94-107679 GPO stock #052-003-01347-9 Recommended Citation: U.S. Congress, Office of Technology Assessment, Harmful Non-Indigenous Species in the United States, OTA-F-565 (Washington, DC: U.S. Government Printing Office, September 1993). For Sale by the U.S. Government Printing Office ii Superintendent of Documents, Mail Stop, SSOP. Washington, DC 20402-9328 ISBN O-1 6-042075-X Foreword on-indigenous species (NIS)-----those species found beyond their natural ranges—are part and parcel of the U.S. landscape. Many are highly beneficial. Almost all U.S. crops and domesticated animals, many sport fish and aquiculture species, numerous horticultural plants, and most biologicalN control organisms have origins outside the country. A large number of NIS, however, cause significant economic, environmental, and health damage. These harmful species are the focus of this study. The total number of harmful NIS and their cumulative impacts are creating a growing burden for the country. We cannot completely stop the tide of new harmful introductions. Perfect screening, detection, and control are technically impossible and will remain so for the foreseeable future. Nevertheless, the Federal and State policies designed to protect us from the worst species are not safeguarding our national interests in important areas. These conclusions have a number of policy implications. First, the Nation has no real national policy on harmful introductions; the current system is piecemeal, lacking adequate rigor and comprehensiveness. Second, many Federal and State statutes, regulations, and programs are not keeping pace with new and spreading non-indigenous pests.
    [Show full text]
  • Upper Basin Pallid Sturgeon Recovery Workgroup Annual Report
    UPPER BASIN PALLID STURGEON RECOVERY WORKGROUP 2004 ANNUAL REPORT Upper Basin Pallid Sturgeon Workgroup c/o Montana Fish, Wildlife and Parks 1420 East Sixth Helena MT 59620 August 2005 TABLE OF CONTENTS INTRODUCTION WORKGROUP MEETING NOTES 2004 Annual Meeting Notes – December 1-2, 2004 .............................................................5 March 9, 2005 Meeting Notes ...............................................................................................21 WORKGROUP LETTERS AND DOCUMENTS Intake BOR Letter..................................................................................................................29 Garrison Review Team Report Submission Letter to USFWS..............................................31 Review of pallid sturgeon culture at Garrison Dam NFH by the Upper Basin Pallid Sturgeon Review Team, March, 2005 ..............................................................36 RESEARCH AND MONITORING 2004 Pallid Sturgeon Recovery Efforts in the Upper Missouri River, Montana (RPMA #1), Bill Gardner, Montana Fish, Wildlife and Parks, Lewistown, MT...................49 Habitat Use, Diet, and Growth of Hatchery-reared Juvenile Pallid Sturgeon And Indigenous shovelnose sturgeon in the Missouri River avove Fort Peck Reservoir, Montana, Paul C. Gerrity, Christopher S. Guy, and William M. Gardner, Montana Cooperative Fishery Research Unit, Montana State University.............................65 Lower Missouri and Yellowstone Rivers Pallid Sturgeon Study, 2004 Report, Mtthew M. Klungle and Matthew W. Baxter, Montana
    [Show full text]
  • Ancistrus Dolichopterus) in Aquarium Conditions
    LIMNOFISH-Journal of Limnology and Freshwater Fisheries Research 6(3): 231-237 (2020) A Preliminary Study on Reproduction and Development of Bushymouth Catfish (Ancistrus dolichopterus) in Aquarium Conditions Mustafa DENİZ1* , T. Tansel TANRIKUL2 , Onur KARADAL3 , Ezgi DİNÇTÜRK2 F. Rabia KARADUMAN 1 1Department of Aquaculture, Graduate School of Natural and Applied Sciences, İzmir Kâtip Çelebi University, 35620, Çiğli, İzmir, Turkey 2Department of Fish Diseases, Faculty of Fisheries, İzmir Kâtip Çelebi University, 35620, Çiğli, İzmir, Turkey 3Department of Aquaculture, Faculty of Fisheries, İzmir Kâtip Çelebi University, 35620, Çiğli, İzmir, Turkey ABSTRACT ARTICLE INFO Dwarf suckermouth catfish are preferred especially for small aquariums. They are RESEARCH ARTICLE usually referred to as tank cleaners and commonly traded in the ornamental fish sector. Since these fish are nocturnal, it is difficult to observe their reproductive Received : 28.02.2020 behavior and larval development. This study was carried out to determine the Revised : 05.06.2020 reproductive variables of bushymouth catfish (Ancistrus dolichopterus) under aquarium conditions. Three broodstocks bushymouth catfish with an average Accepted : 09.06.2020 initial weight and a total length of 10.5±0.3 g and 9.5±0.2 cm were stocked in Published : 29.12.2020 three 240-L aquariums with the ratio of 1:2 (male: female). The observations were made in triplicate tanks for six months. Females laid an average of 39.78±0.41 DOI:10.17216/LimnoFish.695413 eggs and fertilization and hatching rates were 75.05% and 62.94%, respectively. It was found that the transition time from egg to apparently larval stage was * CORRESPONDING AUTHOR 105.28 h, and bushymouth catfish showed an indistinguishable development from [email protected] the hatching to juvenile stage without a real larval transition stage.
    [Show full text]
  • Phylogenetic Relationships of the South American Doradoidea (Ostariophysi: Siluriformes)
    Neotropical Ichthyology, 12(3): 451-564, 2014 Copyright © 2014 Sociedade Brasileira de Ictiologia DOI: 10.1590/1982-0224-20120027 Phylogenetic relationships of the South American Doradoidea (Ostariophysi: Siluriformes) José L. O. Birindelli A phylogenetic analysis based on 311 morphological characters is presented for most species of the Doradidae, all genera of the Auchenipteridae, and representatives of 16 other catfish families. The hypothesis that was derived from the six most parsimonious trees support the monophyly of the South American Doradoidea (Doradidae plus Auchenipteridae), as well as the monophyly of the clade Doradoidea plus the African Mochokidae. In addition, the clade with Sisoroidea plus Aspredinidae was considered sister to Doradoidea plus Mochokidae. Within the Auchenipteridae, the results support the monophyly of the Centromochlinae and Auchenipterinae. The latter is composed of Tocantinsia, and four monophyletic units, two small with Asterophysus and Liosomadoras, and Pseudotatia and Pseudauchenipterus, respectively, and two large ones with the remaining genera. Within the Doradidae, parsimony analysis recovered Wertheimeria as sister to Kalyptodoras, composing a clade sister to all remaining doradids, which include Franciscodoras and two monophyletic groups: Astrodoradinae (plus Acanthodoras and Agamyxis) and Doradinae (new arrangement). Wertheimerinae, new subfamily, is described for Kalyptodoras and Wertheimeria. Doradinae is corroborated as monophyletic and composed of four groups, one including Centrochir and Platydoras, the other with the large-size species of doradids (except Oxydoras), another with Orinocodoras, Rhinodoras, and Rhynchodoras, and another with Oxydoras plus all the fimbriate-barbel doradids. Based on the results, the species of Opsodoras are included in Hemidoras; and Tenellus, new genus, is described to include Nemadoras trimaculatus, N.
    [Show full text]
  • Homoplasies, Consistency Index and the Complexity of Morphological Evolution: Catfishes As a Case Study for General Discussions on Phylogeny and Macroevolution
    Int. J. Morphol., 25(4):831-837, 2007. Homoplasies, Consistency Index and the Complexity of Morphological Evolution: Catfishes as a Case Study for General Discussions on Phylogeny and Macroevolution Homoplasias, Índice de Consistencia y la Complejidad de la Evolución Morfológica: Peces Gato como un Estudio de Caso para Discusiones Generales en Filogenia y Macroevolución *,** Rui Diogo DIOGO, R. Homoplasies, consistency index and the complexity of morphological evolution: Catfishes as a case study for general discussions on phylogeny and macroevolution. Int. J. Morphol., 25(4):831-837, 2007. SUMMARY: Catfishes constitute a highly diversified, cosmopolitan group that represents about one third of all freshwater fishes and is one of the most diverse Vertebrate taxa. The detailed study of the Siluriformes can, thus, provide useful data, and illustrative examples, for broader discussions on general phylogeny and macroevolution. In this short note I briefly expose how the study of this remarkably diverse group of fishes reveals an example of highly homoplasic, complex 'mosaic' morphological evolution. KEY WORDS: Catfishes; Homoplasies; Morphological macroevolution; Phylogeny; Siluriformes; Teleostei. INTRODUCTION The catfishes, or Siluriformes, found in North, Cen- and diversity surely resulting from several homoplasic tral and South America, Africa, Europe, Asia and Australia, events. This was precisely the main reason to choose this with fossils inclusively found in Antarctica, constitute a amazing group of fishes as a case study for discussing gene- highly diversified, cosmopolitan group, which, with more ral topics on phylogeny and macroevolution. But the exam than 2700 species, represents about one third of all freshwater of more and more morphological phylogenetic characters in fishes and is one of the most diverse Vertebrate taxa (e.g.
    [Show full text]
  • Multilocus Molecular Phylogeny of the Suckermouth Armored Catfishes
    Molecular Phylogenetics and Evolution xxx (2014) xxx–xxx Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae ⇑ Nathan K. Lujan a,b, , Jonathan W. Armbruster c, Nathan R. Lovejoy d, Hernán López-Fernández a,b a Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada b Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada c Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA d Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada article info abstract Article history: The Neotropical catfish family Loricariidae is the fifth most species-rich vertebrate family on Earth, with Received 4 July 2014 over 800 valid species. The Hypostominae is its most species-rich, geographically widespread, and eco- Revised 15 August 2014 morphologically diverse subfamily. Here, we provide a comprehensive molecular phylogenetic reap- Accepted 20 August 2014 praisal of genus-level relationships in the Hypostominae based on our sequencing and analysis of two Available online xxxx mitochondrial and three nuclear loci (4293 bp total). Our most striking large-scale systematic discovery was that the tribe Hypostomini, which has traditionally been recognized as sister to tribe Ancistrini based Keywords: on morphological data, was nested within Ancistrini. This required recognition of seven additional tribe- Neotropics level clades: the Chaetostoma Clade, the Pseudancistrus Clade, the Lithoxus Clade, the ‘Pseudancistrus’ Guiana Shield Andes Mountains Clade, the Acanthicus Clade, the Hemiancistrus Clade, and the Peckoltia Clade.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Description of Two New Species of the Catfish Genus Trichomycterus (Teleostei: Siluriformes: Trichomycteridae) from the Coastal River Basins, Southeastern Brazil
    63 (3): 269 – 275 © Senckenberg Gesellschaft für Naturforschung, 2013. 20.12.2013 Description of two new species of the catfish genus Trichomycterus (Teleostei: Siluriformes: Trichomycteridae) from the coastal river basins, southeastern Brazil Maria Anaïs Barbosa Laboratório de Sistemática e Evolução de Peixes Teleósteos, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, Caixa Postal 68049, CEP 21944-970, Rio de Janeiro, RJ, Brasil; anaisbarbosa(at)yahoo.com.br Accepted 01.xi.2013. Published online at www.senckenberg.de/vertebrate-zoology on 18.xii.2013. Abstract Two new species of catfish genus Trichomycterus are described from southeastern Brazil. Trichomycterus mimosensis new species is diag- nosed by the number of pectoral-fin rays, the first pectoral-fin ray prolonged as a filament, the length of the pectoral-fin filament, the length of the dorsal-fin base, the morphology of the metapterygoid, the length of the maxillary barbel, the morphology of the hypobranchial 1, the width and depth of the head, the depth of the caudal peduncle, the shape of the head and caudal fin, and the colour pattern.Trichomycterus gasparinii new species is diagnosed by the number of pectoral-fin rays, the length of the pectoral-fin filament, the width of the head, the depth of the caudal peduncle, the arrangement of the odontodes on opercular path, the morphology of the metapterygoid and the caudal-fin shape. Resumo Duas espécies novas de peixes do genêro Trichomycterus do sudeste do Brasil são descritas. Trichomycterus mimosensis espécie nova é diagnosticada pelo número de raios da nadadeira peitoral, primeiro raio da nadadeira peitoral prolongado como um filamento, comprimento do filamento da nadadeira peitoral, comprimento da base da nadadeira dorsal, morfologia do metapterigóide, comprimento do barbilhão maxilar, morfologia do hipobranquial 1, largura e altura da cabeça, altura do pedúnculo caudal, formato da cabeça e da nadadeira caudal e pelo padrão de colorido.
    [Show full text]
  • Species Composition and Invasion Risks of Alien Ornamental Freshwater
    www.nature.com/scientificreports OPEN Species composition and invasion risks of alien ornamental freshwater fshes from pet stores in Klang Valley, Malaysia Abdulwakil Olawale Saba1,2, Ahmad Ismail1, Syaizwan Zahmir Zulkifi1, Muhammad Rasul Abdullah Halim3, Noor Azrizal Abdul Wahid4 & Mohammad Noor Azmai Amal1* The ornamental fsh trade has been considered as one of the most important routes of invasive alien fsh introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fsh species from 60 freshwater fsh pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fshes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fshes was identifed. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fshes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the frst time, revealed the number of high-risk ornamental fsh species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia. As a global hobby, fshkeeping is cherished by both young and old people.
    [Show full text]
  • Trichomycterus Giganteus (A Catfish, No Common Name) Ecological Risk Screening Summary
    Trichomycterus giganteus (a catfish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, January 2017 Revised, May 2018 Web Version, 8/19/2019 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “South America: Upper Rio Guandu basin in southeastern Brazil.” Status in the United States This species has not been reported as introduced in the United States. There is no evidence that this species is in trade in the United States, based on a search of the literature and online aquarium retailers. From Arizona Secretary of State (2006): “Fish listed below are restricted live wildlife [in Arizona] as defined in R12-4-401. […] South American parasitic catfish, all species of the family Trichomycteridae and Cetopsidae […]” 1 From Dill and Cordone (1997): “[…] At the present time, 22 families of bony and cartilaginous fishes are listed [as prohibited in California], e.g. all parasitic catfishes (family Trichomycteridae) […]” From FFWCC (2016): “Prohibited nonnative species are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities. [The list of prohibited nonnative species includes:] Parasitic catfishes […] Trichomycterus giganteus” From Louisiana House of Representatives Database (2010): “No person, firm, or corporation shall at any time possess, sell, or cause to be transported into this state [Louisiana] by any other person, firm, or corporation, without first obtaining the written permission of the secretary of the Department of Wildlife and Fisheries, any of the following species of fish: […] all members of the families […] Trichomycteridae (pencil catfishes) […]” From Mississippi Secretary of State (2019): “All species of the following animals and plants have been determined to be detrimental to the State's native resources and further sales or distribution are prohibited in Mississippi.
    [Show full text]