Neutrons in Our Future

Total Page:16

File Type:pdf, Size:1020Kb

Neutrons in Our Future Neutrons in Our Future NEUTRONS in our future a proposed high-flux spallation neutron source Roger Pynn Experimental hall at LANSCE here is a paradigm in scientific neutrons as probes of the structures 1950s to obtain data for nuclear- research that repeats itself of materials. That area of research, power programs. To this day the Tcontinually—the discovery referred to simply as neutron scat- most productive neutron-scattering that earned yesterday’s Nobel Prize tering, is an important part of program is to be found at a reactor— becomes the tool for today’s re- today’s scientific agenda, which the Institut Laue Langevin (ILL) in search. Take x rays, lasers, and stresses industrial competitiveness Grenoble, France. However, the situ- transistors, for example. Each was and quality of life. To design new ation is changing. A newer tech- worth a Nobel in its day, and each is and improved materials for industri- nique for producing neutrons at pro- now found not only in almost every al applications, scientists build on ton accelerators rather than nuclear research laboratory but also in hos- their understanding of existing ma- reactors is fast becoming competi- pitals, supermarkets, and homes. terials, a large part of which comes tive. The technique, proton-induced The same paradigm applies to neu- from information about their struc- spallation of heavy-metal nuclei, is trons. Discovered by James Chad- tures. Neutron scattering provides currently the basis of the neutron wick in 1932, these neutral particles that information, often in situations source at the Laboratory’s Manuel were the stuff of esoteric research where other techniques fail. Lujan, Jr. Neutron Scattering Center until fast fission and politics com- Successful neutron-scattering ex- and will remain the basis of a more bined to make them central players periments require large number of intense neutron source that the Labo- in the Los Alamos story. Nuclear neutrons to be directed at a sample ratory hopes to build. An upgrade of reactions in which neutrons partici- because only a small fraction of the the LAMPF proton accelerator will pate are at the heart of all of the nu- neutrons are scattered. The first neu- make the more intense neutron clear weapons designed here and tron sources that were sufficiently in- source possible—which brings us elsewhere. Other neutron reac- tense for such experiments were nu- back once more to our paradigm. tions—those in which neutrons are clear reactors, and neutron scattering LAMPF was built more than twenty scattered rather than absorbed by began as a parasitic activity at re- years ago to study nuclear reactions nuclei—are the basis for the use of search reactors that were built in the that involve energetic protons or 1993 Number 21 Los Alamos Science 107 Neutrons in Our Future pions. Now, one of those reactions, other means. Even a partial list of drogen could be added to other lig- proton-induced spallation, may be contributions from the past decade is ands such as ethylene (catalytic hy- the basis for a new neutron-scattering impressive. During that period neu- drogenation) at a much lower cost in facility. tron scattering revealed the structure energy than the 104 kilocalories per of the first high-temperature super- mole required to break the hydro- he success of neutron scattering conductors; the structure and excita- gen-hydrogen bond of uncoordinated Tand its continuing importance tions of buckminsterfullerenes, or molecular hydrogen. are a result of several properties of bucky balls; the conformation of Polymers and other macromole- the neutron. Because of its neutrali- molecules in a polymer melt; the in- cules absorbed at solid or fluid sur- ty and the weakness of its interac- terfacial structure of artificially pro- faces have many applications to a tions with matter, the neutron—un- duced polymeric and magnetic lay- wide variety of technologies. They like x rays or light— can penetrate ers; the structure and dynamics of are a means for achieving colloidal deeply into solids and liquids and new catalysts; the spin dynamics of stabilization in water-treatment provide information about bulk, as highly correlated electron systems; schemes, ceramic processing, inks, opposed to surface, structure. In ad- and the condensate fraction in super- and fuels; they are used for mechan- dition, because neutrons are scat- fluid helium. It is safe to say that a ical protection of solids against fric- tered by both the nuclei and the un- large part of the conceptual and the- tion and wear in motors and comput- paired electrons in matter, they pro- oretical underpinning of the modern er disks; and surface-active mole- vide information about both atomic theory of solids would be unverified cules at liquid-liquid interfaces are and magnetic structure. The thermal and incomplete without neutron used to clean up oil spills and to en- neutrons generated by nuclear reac- scattering. And without that knowl- hance emulsification and blending. tors or spallation sources have ener- edge our current technology could The variation of polymer density gies that are comparable to those of not exist. close to an absorbing surface had vibrating or diffusing atoms in LANSCE has made its share of been studied theoretically but was solids. Therefore neutrons can contributions during the five years it difficult to study experimentally probe not only the equilibrium posi- has been operating. The discovery until neutron reflection provided the tions of atoms in solids but also by Gregory J. Kubas of the Labora- answer. Work at LANSCE verified temporal structural changes. Be- tory’s Inorganic and Structural theoretical predictions for the pro- cause the neutron-scattering power Chemistry Group that certain metal file of the “polymer brush” formed of atomic nuclei varies erratically complexes can coordinate molecular by the stretching of polymer mole- and often considerably with atomic hydrogen is widely regarded as one cules away from a solid surface into number, neutrons can often distin- of the most significant developments a surrounding fluid and provided a guish between neighboring elements of the 1980s in inorganic chemistry. characterization of the “polymer and can easily distinguish the light- Studies at LANSCE of the vibra- mushrooms” that occur as the graft- est element, hydrogen, even in the tional and rotational dynamics of ing density of the absorbed polymers presence of much heavier elements. those dihydrogen ligands have pro- (the number of attached polymers The latter property makes neutrons a vided insight into the nature of this per unit area) is decreased. particularly powerful probe of bio- unique chemical bond—the first As the transportation industry logical molecules and man-made known example of stable intermole- struggles to improve fuel efficiency, polymers, both of which contain cular coordination of a sigma bond it is turning increasingly to new substantial amounts of hydrogen. to a metal. The system mimics a composite materials—such as alu- For more than forty years neutron catalytic reaction “frozen” in an in- minum reinforced with silicon-car- scattering has played an indispens- termediate state of a type that is bide particles—that provide the dual able role in studies of condensed usually too ephemeral to study and advantages of strength and lightness. matter, providing essential informa- understand. The dihydrogen ligand To understand the mechanisms of tion about materials as different as is important in catalysis because it failure of such materials and to as- antiferromagnets, ribosomes, and can easily exchange hydrogen with sess their lifetimes in real compo- shape-memory alloys. Often the in- other ligands in a complex. It is nents, it is important to understand formation has been unobtainable by conceivable, for example, that hy- the residual stresses induced in the 108 Los Alamos Science Number 21 1993 Neutrons in Our Future materials during fabrication. De- and short annual operating periods. dressed was chaired by Walter Kohn pending on their distribution, such The problems of LANSCE have been of the University of California, stresses can be devastating—aircraft exacerbated by constant erosion of Santa Barbara, and had been charged fuselages have disintegrated in flight the operating budget of LAMPF over by Will Happer, head of the DOE’s and railroad tracks have cracked and the past five years. LANSCE is now Office of Energy Research, to exam- caused train crashes—or beneficial— threatened with closure because ine the relative merits of reactor and wine barrels have been held together LAMPF is no longer the highest pri- spallation sources for the country’s by metal hoops for centuries. Unfor- ority of the nuclear-physics commu- future neutron-scattering program. tunately no conventional technique nity. Without a new neutron source, After several contentious weeks, the for measuring residual stress, such as U.S. researchers will not remain committee finally concluded that the strain-gauge sectioning or hole competitive. Fundamental research country would be best served if two drilling, is truly nondestructive. as well as technology will suffer. new sources—one of each type— Over the last five years, neutron dif- Nor are our competitors standing could be built. fraction has proved to be a unique, still. A consortium of European lab- Since its beginning in 1987, nondestructive alternative and has oratories has proposed a design LANSCE has been operated as a Na- been systematically exploited at study for an advanced spallation tional User Facility, open to scien- LANSCE. Our work on composite source (the European Spallation tists from industry, academia, and materials has allowed sophisticated Source, or ESS) that would provide other national laboratories. Experi- computer models for stresses—resid- capabilities well beyond those avail- mental proposals submitted by po- ual stresses as well as stress induced able at the ILL. The proposed tential users are peer-reviewed to by applied load—to be verified and, ESS—consisting of a high-energy ensure that the best use is made of in some cases, improved.
Recommended publications
  • Resolution Neutron Scattering Technique Using Triple-Axis
    1 High -resolution neutron scattering technique using triple-axis spectrometers ¢ ¡ ¡ GUANGYONG XU, ¡ * P. M. GEHRING, V. J. GHOSH AND G. SHIRANE ¢ ¡ Physics Department, Brookhaven National Laboratory, Upton, NY 11973, and NCNR, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899. E-mail: [email protected] (Received 0 XXXXXXX 0000; accepted 0 XXXXXXX 0000) Abstract We present a new technique which brings a substantial increase of the wave-vector £ - resolution of triple-axis-spectrometers by matching the measurement wave-vector £ to the ¥§¦©¨ reflection ¤ of a perfect crystal analyzer. A relative Bragg width of can be ¡ achieved with reasonable collimation settings. This technique is very useful in measuring small structural changes and line broadenings that can not be accurately measured with con- ventional set-ups, while still keeping all the strengths of a triple-axis-spectrometer. 1. Introduction Triple-axis-spectrometers (TAS) are widely used in both elastic and inelastic neutron scat- tering measurements to study the structures and dynamics in condensed matter. It has the £ flexibility to allow one to probe nearly all coordinates in energy ( ) and momentum ( ) space in a controlled manner, and the data can be easily interpreted (Bacon, 1975; Shirane et al., 2002). The resolution of a triple-axis-spectrometer is determined by many factors, including the ¨ incident (E ) and final (E ) neutron energies, the wave-vector transfer , the monochromator PREPRINT: Acta Crystallographica Section A A Journal of the International Union of Crystallography 2 and analyzer mosaic, and the beam collimations, etc. This has been studied in detail by Cooper & Nathans (1967), Werner & Pynn (1971) and Chesser & Axe (1973).
    [Show full text]
  • Neutron Scattering
    Neutron Scattering John R.D. Copley Summer School on Methods and Applications of High Resolution Neutron Spectroscopy and Small Angle Neutron Scattering NIST Center for NeutronNCNR Summer Research, School 2011 June 12-16, 2011 Acknowledgements National Science Foundation NIST Center for Neutron (grant # DMR-0944772) Research (NCNR) Center for High Resolution Neutron Scattering (CHRNS) 2 NCNR Summer School 2011 (Slow) neutron interactions Scattering plus Absorption Total =+Elastic Inelastic scattering scattering scattering (diffraction) (spectroscopy) includes “Quasielastic neutron Structure Dynamics scattering” (QENS) NCNR Summer School 2011 3 Total, elastic, and inelastic scattering Incident energy Ei E= Ei -Ef Scattered energy Ef (“energy transfer”) Total scattering: Elastic scattering: E = E (i.e., E = 0) all Ef (i.e., all E) f i Inelastic scattering: E ≠ E (i.e., E ≠ 0) D f i A M M Ef Ei S Ei D S Diffractometer Spectrometer (Some write E = Ef –Ei) NCNR Summer School 2011 4 Kinematics mv= = k 1 222 Emvk2m==2 = Scattered wave (m is neutron’s mass) vector k , energy E 2θ f f Incident wave vector ki, energy Ei N.B. The symbol for scattering angle in Q is wave vector transfer, SANS experiments is or “scattering vector” Q =Q is momentum transfer θ, not 2θ. Q = ki - kf (For x-rays, Eck = = ) (“wave vector transfer”) NCNR Summer School 2011 5 Elastic scattering Q = ki - kf G In real space k In reciprocal space f G G G kf Q ki 2θ 2θ G G k Q i E== 0 kif k Q =θ 2k i sin NCNR Summer School 2011 6 Total scattering, inelastic scattering Q = ki - kf G kf G Q Qkk2kkcos2222= +− θ 2θ G if if ki At fixed scattering angle 2θ, the magnitude (and the direction) of Q varies with the energy transfer E.
    [Show full text]
  • Neutron Scattering
    Neutron Scattering Basic properties of neutron and electron neutron electron −27 −31 mass mkn =×1.675 10 g mke =×9.109 10 g charge 0 e spin s = ½ s = ½ −e= −e= magnetic dipole moment µnn= gs with gn = 3.826 µee= gs with ge = 2.0 2mn 2me =22k 2π =22k Ek== E = 2m λ 2m energy n e 81.81 150.26 Em[]eV = 2 Ee[]V = 2 λ ⎣⎡Å⎦⎤ λ ⎣⎦⎡⎤Å interaction with matter: Coulomb interaction — 9 strong-force interaction 9 — magnetic dipole-dipole 9 9 interaction Several salient features are apparent from this table: – electrons are charged and experience strong, long-range Coulomb interactions in a solid. They therefore typically only penetrate a few atomic layers into the solid. Electron scattering is therefore a surface-sensitive probe. Neutrons are uncharged and do not experience Coulomb interaction. The strong-force interaction is naturally strong but very short-range, and the magnetic interaction is long-range but weak. Neutrons therefore penetrate deeply into most materials, so that neutron scattering is a bulk probe. – Electrons with wavelengths comparable to interatomic distances (λ ~2Å ) have energies of several tens of electron volts, comparable to energies of plasmons and interband transitions in solids. Electron scattering is therefore well suited as a probe of these high-energy excitations. Neutrons with λ ~2Å have energies of several tens of meV , comparable to the thermal energies kTB at room temperature. These so-called “thermal neutrons” are excellent probes of low-energy excitations such as lattice vibrations and spin waves with energies in the meV range.
    [Show full text]
  • Spallation Neutron Sources for Science and Technology
    Proceedings of the 8th Conference on Nuclear and Particle Physics, 20-24 Nov. 2011, Hurghada, Egypt SPALLATION NEUTRON SOURCES FOR SCIENCE AND TECHNOLOGY M.N.H. Comsan Nuclear Research Center, Atomic Energy Authority, Egypt Spallation Neutron Facilities Increasing interest has been noticed in spallation neutron sources (SNS) during the past 20 years. The system includes high current proton accelerator in the GeV region and spallation heavy metal target in the Hg-Bi region. Among high flux currently operating SNSs are: ISIS in UK (1985), SINQ in Switzerland (1996), JSNS in Japan (2008), and SNS in USA (2010). Under construction is the European spallation source (ESS) in Sweden (to be operational in 2020). The intense neutron beams provided by SNSs have the advantage of being of non-reactor origin, are of continuous (SINQ) or pulsed nature. Combined with state-of-the-art neutron instrumentation, they have a diverse potential for both scientific research and diverse applications. Why Neutrons? Neutrons have wavelengths comparable to interatomic spacings (1-5 Å) Neutrons have energies comparable to structural and magnetic excitations (1-100 meV) Neutrons are deeply penetrating (bulk samples can be studied) Neutrons are scattered with a strength that varies from element to element (and isotope to isotope) Neutrons have a magnetic moment (study of magnetic materials) Neutrons interact only weakly with matter (theory is easy) Neutron scattering is therefore an ideal probe of magnetic and atomic structures and excitations Neutron Producing Reactions
    [Show full text]
  • Single Crystal Diffuse Neutron Scattering
    Review Single Crystal Diffuse Neutron Scattering Richard Welberry 1,* ID and Ross Whitfield 2 ID 1 Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia 2 Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; whitfi[email protected] * Correspondence: [email protected]; Tel.: +61-2-6125-4122 Received: 30 November 2017; Accepted: 8 January 2018; Published: 11 January 2018 Abstract: Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source. Keywords: single crystal; diffuse scattering; neutrons; spallation source; time-of-flight 1. Introduction Bragg scattering, which is used in conventional crystallography, gives only information about the average crystal structure. Diffuse scattering from single crystals, on the other hand, is a prime source of local structural information. There is now a wealth of evidence to show that the more local structure is investigated the more we are obliged to reassess our understanding of crystalline structure and behaviour [1].
    [Show full text]
  • Basics of Neutron Scattering
    Part I Basics of neutron scattering 13 Chapter 1 Introduction to neutron scattering Neutron scattering is one of the most powerful and versatile experimental meth- ods to study the structure and dynamics of materials on the atomic and nanome- ter scale. Quoting the Nobel committee, when awarding the prize to C. Shull and B. Brockhouse in 1994, these pioneers have “helped answer the question of where atoms are and ... the question of what atoms do” [4]. Neutron scattering is presently used by more than 5000 researchers world- wide, and the scope of the method is continuously broadening. In the 1950’ies and 1960’ies, neutron scattering was an exotic tool in Solid State Physics and Chemical Crystallography, but today it serves communities as diverse as Biol- ogy, Earth Sciences, Planetary Science, Engineering, Polymer Chemistry, and Cultural Heritage. In brief, neutrons are used in all scientific fields that deal with hard, soft, or biological materials. It is, however, appropriate to issue a warning already here. Although neu- tron scattering is a great technique, it is also time-consuming and expensive. Neutron scattering experiments last from hours to days and are performed at large international facilities. Here, the running costs correspond to several thou- sand Euros per instrument day. Hence, neutron scattering should be used only where other methods are inadequate. For the study of atomic and nanometer-scale structure in materials, X-ray scattering is the technique of choice. X-ray sources are by far more abundant and are, especially for synchrotron X-ray sources, much stronger than neutron sources. Hence, the rule of thumb goes: “If an experiment can be performed with X-rays, use X-rays”.
    [Show full text]
  • Opportunities and Challenges in Neutron Crystallography
    EPJ Web of Conferences 236, 02001 (2020) https://doi.org/10.1051/epjconf/202023602001 JDN 24 Opportunities and challenges in neutron crystallography Nathan Richard Zaccai1,*, and Nicolas Coquelle2,† 1CIMR, University of Cambridge, Cambridge CB2 0XY, United Kingdom 2Institut Laue Langevin, 38042 Grenoble Cedex 9, France Abstract. Neutron and X-ray crystallography are complementary to each other. While X-ray scattering is directly proportional to the number of electrons of an atom, neutrons interact with the atomic nuclei themselves. Neutron crystallography therefore provides an excellent alternative in determining the positions of hydrogens in a biological molecule. In particular, since highly polarized hydrogen atoms (H+) do not have electrons, they cannot be observed by X-rays. Neutron crystallography has its own limitations, mainly due to inherent low flux of neutrons sources, and as a consequence, the need for much larger crystals and for different data collection and analysis strategies. These technical challenges can however be overcome to yield crucial structural insights about protonation states in enzyme catalysis, ligand recognition, as well as the presence of unusual hydrogen bonds in proteins. 1 Introduction Although X-ray crystallography has become the workhorse of structural biology, Neutron crystallography has several advantages to offer in the structural analysis of biological molecules. X-rays and neutrons interact differently with matter in general, and with biological macromolecules in particular. These two crystallography approaches are therefore complementary to each other [1]. While X-ray scattering is directly proportional to the number of electrons of an atom, neutrons interact with the atomic nuclei themselves. In this perspective, hydrogen atoms, which represent ~50% of the atomistic composition of proteins and DNA, are hardly visible using X-ray crystallography, while they can be observed in nuclear density maps derived from neutron diffraction data even at moderate resolution (2.5Å and higher).
    [Show full text]
  • Triple-Axis Spectroscopy
    Triple-Axis Spectroscopy Seung-Hun Lee Outline • Basic principles of TAS • Multiplexing detection modes for TAS 1. Horizontally focusing mode 2. Position-sensitive-detector (PSD) mode • Examples of science utilizing the PSD mode Mn12 : Magnetic Molecule ZnCr2O4 : Geometrically Frustrated Magnet 1. 1. ω h 1. 0. 12345 T( Neutron Scattering Sample ? Incident neutrons Scattered neutrons measures scattering cross section as a function of Q and ω 2 d σ (Q,ω) dΩdω Neutron Scattering Correlation Function Cross Section 2 Fourier Transform d σ < S (t) S (0) > dΩdω R R Ordered moment Fluctuating moment 0 Γ ~ h/τ 0 Time ω Long range order Short range order κ ~ 1/ξ Q R-R Γ : relaxation time τ : lifetime κ : intrinsic linewidth ξ : correlation length How can we determine Q and ω ? Scattering triangle : Energy and momentum are conserved in the scattering process Now, how to determine ki, kf, and 2θ ? • Triple-axis spectroscopy (TAS) • Time-of-flight spectroscopy (TOF) Conventional Triple-Axis Spectroscopy (TAS) A single point at a time Sample Single Detector Neutron Source Analyzer Monochromator TAS is ideally suited for probing small regions of phase space Shortcoming: Low data collection rate Improvement Multicrystal analyzer and position-sensitive detector Horizontally Focusing (HF) Analyzer Mode Sample Relaxed Q-resolution Monochromator Single Detector ∆2θ Multicrystal Analyzer L = distance from sample to HF analyzer wa = total width of HF analyzer ∆2θ =wa sinθa/L ~ 9 degree for Ef=5 meV at SPINS Useful for studying systems with short-range correlations
    [Show full text]
  • Dynamics and Neutron Scattering
    Introduction to Neutron Spectroscopy John R.D. Copley Summer School on the Fundamentals of Neutron Scattering NIST Center for Neutron Research, June 8-12, 2015 NCNR Summer School, 2015 Neutron scattering Neutron scattering is an experimental technique that is used to reveal information about the structure and dynamics of materials. When a neutron strikes a material object and leaves in a new direction it is said to have been scattered. Its momentum is changed and there may also be a change in its kinetic energy. In a neutron scattering experiment a sample is placed in a beam from a neutron source, and some of the scattered neutrons are counted. NCNR Summer School, 2015 Neutron scattering There are two main types of neutron scattering experiments. (1) Neutron diffraction experiments, Ei is incident energy which give structural information, Ef is scattered energy e.g. D M (2) Neutron spectroscopy experiments, which give dynamical information, e.g. Ei A S Ef M: monochromator M S: sample D: detector Ei D S A: analyzer NCNR Summer School, 2015 Recognition Clifford G. Shull Bertram N. Brockhouse (Neutron Diffraction) (Neutron Spectroscopy) The importance of these techniques was recognized by the Royal Swedish Academy of Sciences who in 1994 awarded the Nobel Prize in Physics to two scientists “for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter”. The Prize was shared between Professor Clifford G. Shull of MIT, “for the development of the neutron diffraction technique”, and Professor Bertram N. Brockhouse of McMaster University (Canada), “for the development of neutron spectroscopy”.
    [Show full text]
  • Neutron Spin Echo Spectroscopy
    Neutron Spin Echo Spectroscopy Peter Fouquet [email protected] Institut Laue-Langevin Grenoble, France September 2014 Hercules Specialized Course 17 - Grenoble What you are supposed to learn in this lecture 1. The length and time scales that can be studied using NSE spectroscopy 2. The measurement principle of NSE spectroscopy 3. Discrimination techniques for coherent, incoherent and magnetic dynamics 4. To which scientific problems can I apply NSE spectroscopy? The measurement principle of neutron spin echo spectroscopy (quantum mechanical model) The neutron wave function is split by magnetic fields magnetic coil 1 magnetic coil 2 polarised sample The 2 wave packets arrive at neutron the sample with a time difference t If the molecules move between the arrival of the first and second wave packet then coherence is lost t λ3 Bdl The intermediate ∝ scattering function I(Q,t) reflects this loss in coherence strong wavelength field integral dependence The measurement principle of neutron spin echo spectroscopy Dynamic Scattering NSE spectra for diffusive motion Function S(Q,ω) G(R,ω) I(Q,t) = e-t/τ Fourier Transforms temperature up ⇒ τ down Intermediate VanHove Correlation Scattering Function Function I(Q,t) G(R,t) Measured with Neutron Spin Echo (NSE) Spectroscopy Neutron spin echo spectroscopy in the time/space landscape NSE is the neutron spectroscopy with the highest energy resolution The time range covered is 1 ps < t < 1 µs (equivalent to neV energy resolution) The momentum transfer range is 0.01 < Q < 4 Å-1 Spin Echo The measurement principle
    [Show full text]
  • Neutron Scattering with a Triple-Axis Spectrometer Basic Techniques
    Neutron Scattering with a Triple-Axis Spectrometer Basic Techniques Gen Shirane, Stephen M. Shapiro, and John M. Tranquada Brookhaven National Laboratory published by the press syndicate of the university of cambridge The Pitt Building, Trumpington Street, Cambridge, United Kingdom cambridge university press The Edinburgh Building, Cambridge, CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruizde Alarc on´ 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org c Cambridge University Press 2002 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2002 Printed in the United Kingdom at the University Press, Cambridge Typeface Times 10/13pt System LATEX [UPH] A catalogue record of this book is available from the British Library Library of Congress Cataloguing in Publication data Shirane, G. Neutron scattering with a triple-axis spectrometer / Gen Shirane, Stephen M. Shapiro, and John M. Tranquada. p. cm. ISBN 0 521 41126 2 1. Neutrons–Scattering. I. Shapiro, S. M. (Stephen M.), 1941– II. Tranquada, John M., 1955– III. Title. QC793.5.N4628 S47 2002 539.7’213–dc21 2001035050 ISBN 0 521 41126 2 hardback Contents Preface page ix 1 Introduction 1 1.1 Properties of thermal neutrons 1 1.2 Neutron sources 4 1.3 Reciprocal space and scattering diagram 11 1.3.1 Elastic scattering 12 1.3.2 Inelastic scattering 14 1.4 Neutron scattering instruments 15 1.4.1 Three-axis instrument 15 1.4.2 Time-of-flight (TOF) instrument 16 1.4.3 Backscattering and neutron spin echo (NSE) 17 References 18 2 Scattering formulas 20 2.1 Introduction 20 2.2 Fermi’s Golden Rule and the Born approximation 21 2.3 Coherent vs.
    [Show full text]
  • The Basics of Neutron Spin Echo Bela Farago ILL - Grenoble
    The basics of Neutron Spin Echo Bela Farago ILL - Grenoble Introduction Until 1974 inelastic neutron scattering consisted of producing by some means a neutron beam of known speed and measuring the final speed of the neutrons after the scattering event. The smaller the energy change was, the better the neutron speed had to be defined. As the neutrons come form a reactor with an approximately Maxwell distribution, an infinitely good energy resolution can be achieved only at the expense of infinitely low count rate. This introduces a practical resolution limit around 0.1|jeV on back- scattering instuments. In 1972 F. Mezei discovered the method of Neutron Spin Echo. this method decouples the energy resolution from intensity loss. Basics It can be shown [1] that an ensemble of polarized particle with a magnetic moment and 1/2 spin behaves exactly like a classical magnetic moment. Entering a region with a magnetic field perpendicular to its magnetic moment it will undergo Larmor precession. In the case of neutrons: (o-yB where B is the magnetic field, CD is the frequency of rotation and ^=2.916kHz/Oe is the gyromagnetic ratio of the neutron. When the magnetic field changes its direction relative to the neutron trajectory two limiting cases have to be distinguished: 1) Adiabatic change, when the change of the magnetic field direction (as seen by the neutron) is slow compared to the Larmor precession. In this case the component of the beam polarization which was parallel to the magnetic field will be maintained and it will follow the field direction.
    [Show full text]