Neutron Spin Echo Spectroscopy Piotr A
Total Page:16
File Type:pdf, Size:1020Kb
Introduction to Neutron Spin Echo Spectroscopy Piotr A. Żołnierczuk Jülich Centre for Neutron Science, Forschungszentrum Jülich 1. Introduction 2. The Principles of NSE 3. The SNS-NSE Spectrometer 4. Examples 5. Summary Oak Ridge, TN 2017 Neutron Spin Echo in A Nutshell • NSE measures very small velocity changes by using neutron magnetic moment as a “clock” • NSE “end-product” is the Intermediate Scattering Function: I(Q,�) • NSE can use broad wavelength band while maintaining very good resolution • NSE is a complementary technique to SANS in that it provides the dynamic information about ) the system � I(Q, • NSE is “counting intensive”: long counting times, large samples � [ns] 2 Neutron and X-Ray Instruments Zoology With NSE one can study: • Coherent Dynamics • Diffusion • Shape fluctuations • Polymer dynamics • Glassy systems • Incoherent Dynamics • Hydrogen • Magnetic Dynamics • Spin Glasses Source: ESS 3 NSE Spectrometers in the World MUSES ` J-NSE, RESEDA, MIRA VIN-ROSE SNS-NSE NG-A NSE iNSE 4 NSE Spectrometers Classic “IN11-Type” • IN11 - Institute Laue-Langevin, Grenoble, France • IN15 - Institute Laue-Langevin, Grenoble, France • J-NSE – JCNS hosted by FRM-II, Garching, Germany • NG-A NSE – NIST, Gaithersburg, USA • C2-3-1 iNSE, ISSP JRR-3M, Tokai, Japan • BL-15 SNS-NSE – JCNS/ORNL, Oak Ridge, USA • MUSES [NSRE] – Laboratoire Léon Brillouin, Saclay, France • RESEDA [NSRE] – FRM-II, Garching, Germany • VIN-ROSE [NSRE] – J-PARC, Tokai, Japan • MIRA [TAS+MIEZE] – FRM-II, Garching, Germany • FLEXX [TAS+NSRE] – HZB, Berlin, Germany • SESANS [SE+SANS] – TU Delft, Holland 5 The Principles of Neutron Spin Echo 6 Inelastic Neutron Scattering Dynamic Structure Factor "# ~ � �, � "$"% Neutron scattering kinematics: 3 3 Δ� = ℏ� = ��2 − ��3 /2 � � = �2 − �3 �3 2� � = �2 � ; λ = (Louis DE BrogliE, 1924) <= 7 Larmor Precession (I) Bloch Equation: ��⃗ = ��⃗×� �� B Larmor Frequency s �U = �� Neutron Gyromagnetic Ratio n �/2� ≈ 30 MHz/T Source: Wikipedia 8 Larmor Precession (II) B Polarizer Analyzer B B=1.6 mT �=1.6 Å 9 F. Mezei, Z. Phys. 255 (1972), 146-160 Neutron Spin Manipulation Mezei Flippers �-flipper �/2-flipper 10 Courtesy: M. Monkenbusch, Forschungszentrum Juelich Larmor Precession (III) s Accumulated phase: 2 � = � � = ��� B U = or < � = � �� ; for example: λ = 8Å, B = 0.4T, � = 1.2m → �/2� ≅ 3 ×10g [Number of Turns] NotEs: n � ≝ �� or more precisely � ≝ ∫ � m �� n 11 Neutron Spin Echo (I) 12 Courtesy: M. Monkenbusch, Forschungszentrum Jülich Neutron Spin Echo (II) 13 Courtesy: M. Monkenbusch, Forschungszentrum Jülich Neutron Spin Echo (Inelastic) 14 Courtesy: M. Monkenbusch, Forschungszentrum Jülich Neutron Spin Echo Energy change (quasi-elastic scattering) 1 1 Δ� = ℏ� = ��3 − ��3 ≅ � � �� 2 2 2 3 Accumulated phase: �3�3 �2�2 1 1 �3 − �2 = � − = ��� − �2�2 = �3�3 �3 �2 �3 �2 ℏ� � � 3 Δ� ≅ ��� = � �p� ��p 2� ℎ or Δ� = �� r < 3 where we define Fourier time � ≝ � �p 3s ; For quick computation � ≅ 0.186 � �p where � = ns, � = Tm and � = Å 15 Example: λ = 8Å, � = 0.56 Tm → � ≅ 50ns → ∆� ≅ 0.01 µeV Neutron Spin Echo Signal: �~ cos � = cos �� n 1 �~ � � ± ƒ � �, � cos(��) �� 2 n Fourier transform (Real part) U = Up B ~ �(�) A ~ � �, � = ℱ[� �, � ] A=Amplitude B=Average � �, � 2 A = �(�, 0) U − D D = Down F. Mezei, Z. Physik (1972) 255: 146. F. Mezei, C. Pappas, T. Gutberlet (Eds.): Neutron Spin-Echo 16 Spectroscopy, Lecture Notes in Physics 601, Springer, Heidelberg, 2003. Standard 4-point echo evaluation Δ�/�0 ~15-20% E2 E1 E3 E4 90-degree steps 1 n � = ‡ � E1 = B + A sin � ˆ † 4 ˆ‰2..g E2 = B + A cos �† E3 = B − A sin �† n 1 n E4 = B − A cos �† 3 � = ‡ �ˆ − � 2 ˆ‰2..g 17 Time-of-Flight and NSE Δ�/�0 up to ~50% Echo Signals 1) F. Mezei, Nucl. Inst. Methods 164, 153-156 (1979) 2) B. Farago, Time-of-Flight Neutron Spin Echo: Present Status in F.Mezei, C.Pappas, T.Gutberlet Neutron Spin Echo Spectroscopy, Springer (2003) 18 Energy and Time Domain (Backscattering ↔ NSE) Dynamic Structure Factor Intermediate Scattering Function S(Q,w) F.T. I(Q,�) �‹(�, �) = �(�, �) ∗ �(�, �) �‹(�, �) = �(�, �) �(�, �) To get S(Q,w) we have to To get I(Q,�) we just de-convolute instrument resolution divide out instrument resolution 19 Data Reduction — ›,œ 1. Resolution 4. Compute � �, �; pixEl = ˜™š • symmetry phase (echo) • ›,œ • get � �, �; pixEl 5. Group results 2. Sample: �‘’“(�, �; pixEl) 3. Background: • �”•‘ �, �; pixEl 20 • correction → �–ˆ• �, �; pixEl Complications 21 Coherent/Incoherent Scattering coherent 1 � = � + � no-flip žŸ ¡¢ 3 £¤ 2 � = � incoherent ¥¡¦¤ 3 £¤ + 1 �§¨Ÿ = � ¡¢� ¡¢(�) − �£¤ �£¤ (�) 1/3 no-flip 2/3 flip 3 22 Correction Coils r x • Problem: • Field integral � = �� the same for all trajectories • Solenoid field � � ~�3 • Solution: • correction coils with current distribution that varies as �3 23 S. Pasini, M. Monkenbusch, Meas. Sci. Technol. 26 (2015) 035501 Theme Variations 24 Paramagnetic NSE sample is the �-flipper 3M/4 M/2 M/4 C.Pappas, G. Ehlers, F. Mezei, Neutron Spin Echo and Magnetism 25 in Neutron Scattering from Magnetic Materials, ed. T. Chatterji (2006) “Non-standard” NSE Instruments NSRE SESANS RF field instead of solenoid Spin Echo encoded SANS 26 SNS-NSE: NSE Spectrometer at SNS 27 Spallation Neutron Source 28 Instrument Location & Layout 29 SNS-NSE: IN11-Type NSE Typical neutron wavelengths: Jmax ~ 0.56 Tm �= 2 -14Å, Δ�=2.5,3.6Å 2θ = 3.5° – 79.5° 30 SNS-NSE Coils SNS-NSE: the first NSE with superconducting main coils “Pythagorean” correction coils: �3 = �3 + �3 31 Magnetic Shielding Δϕ → 1 deg 32 Examples Two ”historical” examples: 1. SDS Micelles (1981) 2. Reptation Model (2002) Several recent results from SNS-NSE 33 SDS Micelles � �, � · = �´‹µ¶¶ › › ¸ �(�, 0) �°±± = �†� � /� � �� � = † 6��� 34 J. Hayter, J. Penfold, J. Chem. Soc., Faraday Trans. 1, 1981,77, 1851-1863 Reptation Model (de Gennes/Edwards) Coherent scattering, labeled chain Melt of long chain linear PE 35 A. Wischnewski et al., Phys. Rev. Lett. 88 (2002), 058301 Aspirin modulates the dynamical behavior of membranes � �, � = exp −(Γ � 3/p) �(�, 0) º°¤¥ � � 2/3 � � Γ = 0.025 � ¼ ¼ �p º°¤¥ » � � 36 V. K. Sharma et al., Phys. Chem. Chem. Phys. 2017 Mechanical Properties of Nanoscopic Lipid Domains � �, � = exp −(Γ � � 3/p) �(�, 0) 37 J. Nickels et al., J. Am. Chem. Soc., 2015, 137 (50) Fast antibody domain motion 38 L.R. StIngaciu et al. ScientIfIc Reports 2016 Example of Paramagnetic NSE 39 Courtesy of A. Samarakoon, University of Virginia Summary • NSE • a high resolution neutron spectroscopy • measures the intermediate scattering function S(Q,�) • need large samples, scattering intensity • SNS-NSE (BL-15) • the first NSE at a Spallation Source • the first one with superconducting coils • the only one with magnetic shielding • available in user program – write a proposal!! Acknowledgements: M. Monkenbusch, D. Richter, L. Stingaciu, M. Cochran, G. Ehlers, W-R Chen, T. Kozielewski, M. Ohl, N. Arend and M.Sharp 40 Literature 1. R. Pynn, Neutron Scattering, Neutron Spin Echo http://www.iub.edu/~neutron/notes/20061204_Pynn.pdf 2. F. Mezei, Z. Physik (1972) 255: 146. 3. F. Mezei (Ed.): Neutron Spin-Echo, Lecture Notes in Physics 128, Springer, 1980. 4. F. Mezei, C. Pappas, T. Gutberlet (Eds.): Neutron Spin-Echo Spectroscopy, Lecture Notes in Physics 601, Springer, 2003. 5. D. Richter, M. Monkenbusch, A. Arbe, J. Colmenero, Neutron Spin Echo in Polymer Systems, Adv. in Polymer Science 174, Springer, 2005 6. M. Monkenbusch, D. Richter, High Resolution Neutron Spectroscopy http://doi.org/10.1016/j.crhy.2007.10.001 7. C.Pappas, G. Ehlers, F. Mezei, Neutron Spin Echo and Magnetism in Neutron Scattering from Magnetic Materials, ed. T. Chatterji, Spinger 2006 8. B.Farago, Basics of Neutron Spin-Echo, ILL Neutron Data Booklet, https://www.ill.eu/fileadmin/users_files/documents/links/documentation/Neutron DataBooklet.pdf 9. G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Cambridge Univ. Press, 3rd edition (2012) 41.