University Microfilms, Inc., Ann Arbor, Michigan ILLUS TRATIONS— (Continued) Figure Page

Total Page:16

File Type:pdf, Size:1020Kb

University Microfilms, Inc., Ann Arbor, Michigan ILLUS TRATIONS— (Continued) Figure Page This dissertation has been 64—6920 microfilmed exactly as received JORDAN, John Maxwell, 1938- STUDIES ON METABOLISM IN PENICILLIUM CHARLESII; SOME RELATIONSHIPS BETWEEN DICARBOXYLIC ACID METABOLISM AND PRO­ DUCTION OF GALACTOCAROLOSE. The Ohio State University, Ph.D., 1963 Chemistry, biological University Microfilms, Inc., Ann Arbor, Michigan ILLUS TRATIONS— (Continued) Figure Page 12 Variation with time of carbohydrate concentration of systems containing various concentrations of diammonium dihydroxymaleate . ................ 88 13 Atypical behavior of system containing high level of medium n i t r o g e n ......................... 99 14 Changes in hydrogen ion concentration and carbo­ hydrate concentration of growth medium of the RTg and RT^ series ...•••• ............. 101 15 Changes in hydrogen ion and carbohydrate concen­ tration of the growth medium for the DHM_ and DHM., series ........... ......... • • 104 16 Changes in hydrogen ion and carbohydrate concen­ tration of the growth medium for the Funig and Fum^ series .................... ........ 106 17 Changes in hydrogen ion and carbohydrate concen­ tration of the growth medium for the Mal_ and Mal^ series 110 32 18 Distribution of P -labeled components of a perchloric acid extract of P. charlesii exposed 4.5 days to orthophosphate-P^^ • • • T ..... 126 32 19 Distribution of P -labeled components of a perchloric acid extract of P. charlesii exposed 9 days to orthophosphate-P^............. 129 32 20 Distribution of P -labeled components of a . perchloric acid extract of P. charlesii exposed 13.5 days to orthophosphate-P^ . I I ~ ..... 133 32 21 Distribution of P -labeled components of a perchloric acid extract of P. charlesii exposed l8.0 days to orthophosphate-P^^T • • • • • 136 22 Distribution of P^-labeled and U.V.-light ab­ sorbing components of perchloric acid extract of P. charlesii exposed 4.5 days to orthophosphate- p32 . .................... 146 23 Comparison of the near ultraviolet spectra.of various solutions ofJx .......... ....... 148 24 Column chromatography ofJx...... ........ 154 ix Fig# 9•--Variation with time of hydrogen ion concen­ tration of systems containing various concentrations of diam­ monium fumarate# The curve defined by X represents the FUM^ system The curve defined by closed triangles represents the FUMg system The curve defined by the closed circles represents the FUM^ system 82 63 Fig. 10.--•Variation with time of carbohydrate concen­ tration of systems containing various concentrations of diam­ monium fumarate• The curves are defined according to the notations of Figure 9 TOTAL SUGAR AS KLETT UNITS o> oo o DAYS ro o oo ro o ro ro pH $8 Fig. 11.--Variation with time of hydrogen ion concen­ tration of systems containing various concentrations of diam­ monium dihydroxymaleate. The curve defined by X represents the DHM_ system The curve defined by closed triangles represents the DHMg system The curve defined by the closed circles represents the DHM^ system 86 9 0 7 0 5 0 pH 3 0 1 0 2 4 6 8 DAYS Fig. 12.— Variation with time of carbohydrate concen­ tration of systems containing various concentrations of d±- hydroxymaleate• The curves are defined according to the notations of Figure 11 88 TOTAL SUGAR AS KLETT UNITS o> 00 o Fig. 12 Fig. *<co ro <n oo io ro 68 rate of carbohydrate release from the mycelium into the growth y.- . medium was but slightly less than the rate of carbohydrate up- take. Chromatographic evidence suggested that glucose was the major carbohydrate component of the medium during the incubation and that no unusual sugars appeared during the lag period* Changes in pH in the DHM^ system are much in accord with previous experiences involving the "normal" Raulin-Thom medium with the exception that the date of positive inflection— the 21st day in this case— corresponds to a much later phase in the growth of Ft charlesii than has been noted previously* The curve re­ lating the concentration as a function of time of the medium glucose revealed that a lag occurred after 7 days growth of the organism* However, in this case the lag is much more pronounced than was observed in the DHM^ system* Figure 12 summarizes changes in the carbohydrate concen­ tration of the growth media for the dihydroxymaleate series* The data entered in Table 3 demonstrate the relationship between the initial concentration of the various ammonium carboxylic acid salts, the amounts of oligosaccharide synthesized by P* charlesii and the "efficiency" of oligosaccharide production in the various experimental systems* With but two exceptions (FUMg and RTg) the highest yields of mycelium were obtained in those systems which contained the highest concentration of medium nitrogen* To the extent that comparisons of wet-weights of fungal tissue are valid, the re­ lationship between initial nitrogen available and mycelium formed TABLE 3 RELATIONSHIP BETWEEN CONCENTRATION OF AMMONIUM DICAHBOXYLIC ACID SALT IN GROWTH MEDIUM AND OLIGOSACCHARIDE PRODUCTION BY P. CHARLESII Concentration of Ammonium Total Carbo­ "Efficiency" of Oligosac­ Salt of Di- Total hydrate Iso­ charide Synthesis carboxylic Mycelium lated as Units of Oligosaccharide Series Acid Synthesized Hezose Units of Mycelium Designation JU Moles/Ml Grams fA Moles JiMoles/Gm rt5 43.68 11.0 781.2 7.10 r t 2 14.56 15.0 1382.0 9.21 RTX 4.85 5.2 1302.0 25.04 RT0 14.56 9.4 882.0 9.58 dhm3 43.68 17.0 991.2 5.35 dh m2 14.56 5.6 1260.0 22.50 dhb^ 4.85 5.7 1294.0 34.90 FUM3 43.68 12.1 883 7.13 fum2 14.56 15.7 630 4.01 FUM1 4.85 6.2 772 12,45 ma l3 43.68 11.5 555 4.82 m a l 2 14.56 11.0 1108 10.07 MAI^ 4.85 6.1 1176 19.29 ILLUSTRATIONS— (Continued) Figure Page 25 A comparison of the near ultraviolet of Jx, the distillate of Jx, and authentic pyridine .... 157 26 The ultraviolet and visible absorption spectrum of J y ............. ........................... 162 27 The effect of acid on the visible and ultraviolet absorption spectrumo f J y ..................... 16k- 28 Variation in carbohydrate and hydrogen ion con­ centration of growth-medium as a function of age of a culture of P. charlesii............. 170 29 Total carbon-1^ appearing in C0*> as a function of age of P. charlesii • . .............. 173 30 Time course of^istribution of carbon-l4 from tartrate-l,*f-C in mycelium, growth medium, and C (>2 of P. c h a r l e s i i .......... 176 31 Plot of specific activity of respired CO* as a function of time of growth of P. > charlesii • . • 179 32 Plot of total activity in and specific activity of respired C"*- 0 * as a function of time of growth of P. charlesii........................ 182 33 Variations in carbohydrate concentration of growth medium as function of age of P. charlesii 187 3^ Variation with age of mycelium of carbon-l4 in respired CO^ ........ ............. 190 35 Variation with age of culture of carbon-1^ from tartrate-l,^-Cr in the mycelium and growth- medium of P. charlesii 192 36 Variation with age of mycelium of carbon-1^ distribution in mycelium, growth medium, and C ^2 of P. charlesii ......... 19^ 37 'Distribution of carbon-l^f labeled components of "alcohol1! fractions of growth medium of P. charlesii .............................. 200 38 Distribution of carbon-1^ labeled components of extracts of 10.5 -day mycelium of P.,charlesii . 203 x 92 probably reflects Increased capacity of Penicillium charlesii for synthesis of nitrogen-containing cellular constituents* In confirmation of previous observations and some findings to be discussed in the next section, the absolute M amount of oligosaccharides synthesized generally approaches a maximum in that member of a series which corresponds to lowest nitrogen level in that series. Thus in the dihydroxymaleate series the highest absolute yield of oligosaccharides was ob­ tained in the DHM^ system which contained 4.85 micromoles per ml of diammoniumdihydroxymaleate. Almost absolute consistency was observed when note was made of the intraseries "efficiency" of oligosaccharide formation. In every case the ratio synthesized" reached a mn-rimum in the series member which corresponded to the lowest initial level of nitrogen in the growth medium. The present observations are consistent with the sug­ gestion that maximal synthesis of oligosaccharides by P. charlesii will be obtained under conditions in which the ratio of initial organic carbon concentration to initial nitrogen concentration, of the growth medium is large. Such a view is not discordant with the concept of "shunt metabolism" which has been discussed by Foster (124). When an organism's available pathways for metabolism of a particular substrate become saturated or con­ trolled in some other fashion, enzyme systems "shunt" off excess substrate and deposit it in the form of a shunt product. In f this interpretation the substance defined as a shunt product 93 might be formed under conditions in which the primary metabolic pathways are not saturated but the rate of the synthesis and the absolute amount of material formed would be less than at full saturation* In the present case, if glucose and certain dicarboxylic acids were the saturating substrates and the metabolism of these two types of organic substances were controlled, at least in part, by limiting nitrogen levels Penicillium charlesii would be expected to efficiently synthesize oligosaccharides when the organism is grown on a medium which is rich in organic precursors of galactocarolose but low in nitrogen concentration* (3) The effect on metabolism of varying concentrations of nitrogen of the growth medium Studies discussed in the preceding sections indicated that the amounts of galactocarolose formed by P. charlesii varied 1) When various dicarboxylic acids were substituted for tartaric acid 2) With the concentration of the ammonium salt of the dicarboxylic acid when the concentration of the free- dicarboxylic acid was held constant.
Recommended publications
  • 48 3-1-4. Reactions Using Mutant FSA A129S Another Mutant Enzyme
    Results _ 3-1-4. Reactions using mutant FSA A129S Another mutant enzyme, A129S, which has serine at 129th residue instead of alanine (Fig.3-11a), has high potential to catalyze the reactions using DHA as a donor substrate. Virtually, the kcat/Km value for DHA is more than 12 fold of that of WT (Schürmann, 2001). This implies that larger amounts of products can be acquired with A129S than with WT, or unfavorable reactions with WT may be accomplished with the mutant enzyme. Firstly, FSA A129S was produced in DH5α with pUC18 plasmid vector and purified with same method as WT was done (Fig.3-11b, Table 3-8). This mutant enzyme was overexpressed well and a strong band corresponding to FSA was seen on SDS-PAGE gel (as 10~15% of total protein in crude extract). In addition, this mutant enzyme held the stability against high temperature. Thus, a heat treatment step was part of the purification protocol. However, protein solution obtained from hydroxyapatite column of the final purification step showed still a few extra protein bands on SDS-PAGE gel (Fig.3-11b). Although it contained those extra proteins, the purity appeared to be more than 90% on the gel and the specific activity was quite high enough to assay the catalytic ability of the enzyme for several substrates. Indeed, even crude extract showed higher specific activity than purified WT had (Table 3-8). Three reactions (scheme 3-1) were probed to assay catalytic ability of both FSA WT and A129S. Dihydroxyacetone (DHA) or hydroxyacetone (HA) were used as donor substrates, and formaldehyde or glycolaldehyde as acceptor.
    [Show full text]
  • United States Patent Office
    - 2,926,180 United States Patent Office Patented Feb. 23, 1960 2 cycloalkyl, etc. These substituents R and R' may also be substituted with various groupings such as carboxyl 2,926,180 groups, sulfo groups, halogen atoms, etc. Examples of CONDENSATION OF AROMATIC KETONES WITH compounds which are included within the scope of this CARBOHYDRATES AND RELATED MATER ALS 5 general formula are acetophenone, propiophenone, benzo Carl B. Linn, Riverside, Ill., assignor, by mesne assign phenone, acetomesitylene, phenylglyoxal, benzylaceto ments, to Universal Oil Products Company, Des phenone, dypnone, dibenzoylmethane, benzopinacolone, Plaines, Ill., a corporation of Delaware dimethylaminobenzophenone, acetonaphthalene, benzoyl No Drawing. Application June 18, 1957 naphthalene, acetonaphthacene, benzoylnaphthacene, ben 10 zil, benzilacetophenone, ortho-hydroxyacetophenone, para Serial No. 666,489 hydroxyacetophenone, ortho - hydroxy-para - methoxy 5 Claims. (C. 260-345.9) acetophenone, para-hydroxy-meta-methoxyacetophenone, zingerone, etc. This application is a continuation-in-part of my co Carbohydrates which are condensed with aromatic pending application Serial No. 401,068, filed December 5 ketones to form a compound selected from the group 29, 1953, now Patent No. 2,798,079. consisting of an acylaryl-desoxy-alditol and an acylaryl This invention relates to a process for interacting aro desoxy-ketitol include simple sugars, their desoxy- and matic ketones with carbohydrates and materials closely omega-carboxy derivatives, compound sugars or oligo related to carbohydrates. The process relates more par saccharides, and polysaccharides. ticularly to the condensation of simple sugars, their 20 Simple sugars include dioses, trioses, tetroses, pentoses, desoxy- and their omega-carboxy derivatives, compound hexoses, heptoses, octoses, nonoses, and decoses. Com sugars or oligosaccharides, and polysaccharides with aro pound sugars include disaccharides, trisaccharides, and matic ketones in the presence of a hydrogen fluoride tetrasaccharides.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,101,662 B2 Tamarkin Et Al
    USOO91 01662B2 (12) United States Patent (10) Patent No.: US 9,101,662 B2 Tamarkin et al. (45) Date of Patent: *Aug. 11, 2015 (54) COMPOSITIONS WITH MODULATING A61K 47/32 (2013.01); A61 K9/0014 (2013.01); AGENTS A61 K9/0031 (2013.01); A61 K9/0034 (2013.01); A61 K9/0043 (2013.01); A61 K (71) Applicant: Foamix Pharmaceuticals Ltd., Rehovot 9/0046 (2013.01); A61 K9/0048 (2013.01); (IL) A61 K9/0056 (2013.01) (72) Inventors: Dov Tamarkin, Macabim (IL); Meir (58) Field of Classification Search Eini, Ness Ziona (IL); Doron Friedman, CPC ........................................................ A61 K9/12 Karmei Yosef (IL); Tal Berman, Rishon See application file for complete search history. le Ziyyon (IL); David Schuz, Gimzu (IL) (56) References Cited (73) Assignee: Foamix Pharmaceuticals Ltd., Rehovot U.S. PATENT DOCUMENTS (IL) 1,159,250 A 11/1915 Moulton (*) Notice: Subject to any disclaimer, the term of this 1,666,684 A 4, 1928 Carstens patent is extended or adjusted under 35 1924,972 A 8, 1933 Beckert 2,085,733. A T. 1937 Bird U.S.C. 154(b) by 0 days. 2,390,921 A 12, 1945 Clark This patent is Subject to a terminal dis 2,524,590 A 10, 1950 Boe claimer. 2,586.287 A 2/1952 Apperson 2,617,754 A 1 1/1952 Neely 2,767,712 A 10, 1956 Waterman (21) Appl. No.: 14/045,528 2.968,628 A 1/1961 Reed 3,004,894 A 10/1961 Johnson et al. (22) Filed: Oct. 3, 2013 3,062,715 A 11/1962 Reese et al.
    [Show full text]
  • Assessment of DHA in Self-Tanning Creams Applied in Spray Booths
    Assessment of DHA in self-tanning creams applied in spray booths Lena Höglund MSc. DTC (Danish Toxicology Centre): Betty Bügel Mogensen Rossana Bossi Marianne Glasius National Environmental Research Institute of Denmark Survey of Chemical Substances in Consumer Products, No. 72 2006 The Danish Environmental Protection Agency will, when opportunity offers, publish reports and contributions relating to environmental research and development projects financed via the Danish EPA. Please note that publication does not signify that the contents of the reports necessarily reflect the views of the Danish EPA. The reports are, however, published because the Danish EPA finds that the studies represent a valuable contribution to the debate on environmental policy in Denmark. Contents SUMMARY AND CONCLUSIONS 5 1 INTRODUCTION 7 2 OBJECTIVES 10 3 TECHNIQUES 12 3.1 DESCRIPTION OF TECHNIQUES 12 3.1.1 Manual turbine spray 12 3.1.2 Third-generation booths (closed booths) 13 3.1.3 Fourth-generation booths (open booths) 15 3.2 SAFETY INSTRUCTIONS 16 3.2.1 General remarks on enterprises' safety instructions 16 3.2.2 Safety instructions from the authorities 16 3.2.3 Advice for customers from personnel 16 4 SUBSTANCES CONTAINED IN PRODUCTS 20 5 HEALTH ASSESSMENT 22 5.1 TOXOCOLOGICAL PROFILE OF DIHYDROXYACETONE (DHA) (CAS NO. 96-26-4) 22 5.2 BRIEF HEALTH ASSESSMENT OF ETHOXYDIGLYCOL (CAS NO. 111-90-0) 26 5.3 BRIEF HEALTH ASSESSMENT OF PHENOXYETHANOL (CAS NO.122-99-6) 27 5.4 BRIEF HEALTH ASSESSMENT OF GLYCERINE (CAS NO. 56-81-5) 27 5.5 BRIEF HEALTH ASSESSMENT OF POLYSORBATES AND SORBITAN ESTERS 27 5.6 BRIEF HEALTH ASSESSMENT OF ERYTHRULOSE (CAS NO.
    [Show full text]
  • Unit 1: Carbohydrates Structure and Biological Importance: Monosaccharides, Disaccharides, Polysaccharides and Glycoconjugates
    CBCS 3rd Semester Core Course VII Paper: Fundamentals of Biochemistry Unit 1: Carbohydrates Structure and Biological importance: Monosaccharides, Disaccharides, Polysaccharides and Glycoconjugates By- Dr. Luna Phukan Definition The carbohydrates are a group of naturally occurring carbonyl compounds (aldehydes or ketones) that also contain several hydroxyl groups. It may also include their derivatives which produce such compounds on hydrolysis. They are the most abundant organic molecules in nature and also referred to as “saccharides”. The carbohydrates which are soluble in water and sweet in taste are called as “sugars”. Structure of Carbohydrates Carbohydrates consist of carbon, hydrogen, and oxygen. The general empirical structure for carbohydrates is (CH2O)n. They are organic compounds organized in the form of aldehydes or ketones with multiple hydroxyl groups coming off the carbon chain. The building blocks of all carbohydrates are simple sugars called monosaccharides. A monosaccharide can be a polyhydroxy aldehyde (aldose) or a polyhydroxy ketone (ketose) The carbohydrates can be structurally represented in any of the three forms: 1. Open chain structure. 2. Hemi-acetal structure. 3. Haworth structure. Open chain structure – It is the long straight-chain form of carbohydrates. Hemi-acetal structure – Here the 1st carbon of the glucose condenses with the -OH group of the 5th carbon to form a ring structure. Haworth structure – It is the presence of the pyranose ring structure Classification of Carbohydrates Monosaccharides The simple carbohydrates include single sugars (monosaccharides) and polymers, oligosaccharides, and polysaccharides. Simplest group of carbohydrates and often called simple sugars since they cannot be further hydrolyzed. Colorless, crystalline solid which are soluble in water and insoluble in a non-polar solvent.
    [Show full text]
  • Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
    Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds.
    [Show full text]
  • Modeling of the Partial Oxidation of Glycerol by Estimation of Its Transfer Function
    MATEC Web of Conferences 76, 04033 (2016) DOI: 10.1051/matecconf/20167604033 CSCC 2016 Modeling of the partial oxidation of glycerol by estimation of its transfer function Juan Carlos Beltrán-Prieto1,a, Karel Kolomazník1, Roman Slavík2 1 Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic 2 Department of Environmental Engineering Protection, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 275, 762 72 Zlín, Czech Republic Abstract. The reaction pathway for the conversion of glycerol into different products, namely glyceraldehyde, glyceric acid, glycolic acid, mesoxalic acid and tartronic acid was studied by means of electrochemistry. Multiple Pulse Amperometry technique was used to control the potential during the electrooxidation reaction. The estimation of the transfer function was realized on the basis of dynamic models for the oxidation reaction. The equations obtained in the s-domain were expressed in the time domain using Inverse Laplace transformation to describe the variation of glycerol and products concentration. 1 Introduction Analysis of reaction products formed during the sustained electrolysis was performed by High The partial oxidation of glycerol via heterogeneous redox Performance Liquid Chromatography (HPLC). Multiple reaction is a process that is carried out under mild pulse amperometry technique was used to control the conditions. This allows the minimization of energy waste potential during the electrooxidation reaction. Proposal of and by-products generation. This process has been a reaction pathway was performed in order to determine intensively studied by several authors [1–7]. In the rate constants, followed by the estimation of the mentioned works, glyceric acid, CO2, hydroxypyruvate, transfer function calculated on the basis of dynamic tartronic acid, mesoxalic acid, glyceraldehyde, or formic models for the anodic oxidation.
    [Show full text]
  • Continuous Production of Erythrulose Using Transketolase in a Membrane Reactor Jÿrgen Bongs, Doris Hahn, Ulrich Schšrken, Georg A
    Biotechnology Letters, Vol 19, No 3, March 1997, pp. 213–215 1 Continuous production of erythrulose using transketolase in a membrane reactor JŸrgen Bongs, Doris Hahn, Ulrich Schšrken, Georg A. Sprenger, 1 Udo Kragl* and Christian Wandrey Institut fŸr Biotechnologie, Forschungszentrum JŸlich GmbH, D-52425 JŸlich, Germany Transketolase can be used for synthesis of chiral intermediates and carbohydrates. However the enzyme is strongly deactivated by the educts. This deactivation depends on the reactor employed. An enzyme membrane reactor allows the continuous production of L-erythrulose with high conversion and stable operational points. A productivity (space- time yield) of 45 g LÐ1 dÐ1 was reached. 24 pts min base to base from Key words to line 1 of text 1 Introduction (10 mM), thiaminpyrophosphate (0.5 mM) and DTT (1 Transketolase (E.C. 2.2.1.1.) is used for the asymmetric mM). The substrate concentration of glycolaldehyde was synthesis of natural substances or their precursors 50 mM, the product concentration of L-erythrulose was such as carbohydrates (Drueckhammer et al., 1991), (+)- 50 mM, each compound dissolved in the liquid buffer exo-brevicomin (Myles et al., 1991), or fagomine system. Other reaction conditions were: pH = 7.0; (Effenberger and Null, 1992). In vivo transketolase cata- T = 25°C. lyses the reversible transfer of a two-carbon ketol moiety from a ketose to an aldose. When b-hydroxypyruvate Repetitive batch (HPA) is used as the donor substrate the reaction The reaction was performed in a commercially available becomes irreversible (Bolte et al., 1987) (Figure 1) even stirred ultrafiltration cell (Amicon) equipped with an 1 though there is a wide range of possible acceptor UF-membrane (Amicon) with a cut-off of 10 kDa.
    [Show full text]
  • Erythritol As Sweetener—Wherefrom and Whereto?
    Applied Microbiology and Biotechnology (2018) 102:587–595 https://doi.org/10.1007/s00253-017-8654-1 MINI-REVIEW Erythritol as sweetener—wherefrom and whereto? K. Regnat1 & R. L. Mach1 & A. R. Mach-Aigner1 Received: 1 September 2017 /Revised: 12 November 2017 /Accepted: 13 November 2017 /Published online: 1 December 2017 # The Author(s) 2017. This article is an open access publication Abstract Erythritol is a naturally abundant sweetener gaining more and more importance especially within the food industry. It is widely used as sweetener in calorie-reduced food, candies, or bakery products. In research focusing on sugar alternatives, erythritol is a key issue due to its, compared to other polyols, challenging production. It cannot be chemically synthesized in a commercially worthwhile way resulting in a switch to biotechnological production. In this area, research efforts have been made to improve concentration, productivity, and yield. This mini review will give an overview on the attempts to improve erythritol production as well as their development over time. Keywords Erythritol . Sugar alcohols . Polyols . Sweetener . Sugar . Sugar alternatives Introduction the range of optimization parameters. The other research di- rection focused on metabolic pathway engineering or genetic Because of today’s lifestyle, the number of people suffering engineering to improve yield and productivity as well as to from diabetes mellitus and obesity is increasing. The desire of allow the use of inexpensive and abundant substrates. This the customers to regain their health created a whole market of review will present the history of erythritol production- non-sugar and non-caloric or non-nutrient foods. An impor- related research from a more commercial viewpoint moving tant part of this market is the production of sugar alcohols, the towards sustainability and fundamental research.
    [Show full text]
  • Ii- Carbohydrates of Biological Importance
    Carbohydrates of Biological Importance 9 II- CARBOHYDRATES OF BIOLOGICAL IMPORTANCE ILOs: By the end of the course, the student should be able to: 1. Define carbohydrates and list their classification. 2. Recognize the structure and functions of monosaccharides. 3. Identify the various chemical and physical properties that distinguish monosaccharides. 4. List the important monosaccharides and their derivatives and point out their importance. 5. List the important disaccharides, recognize their structure and mention their importance. 6. Define glycosides and mention biologically important examples. 7. State examples of homopolysaccharides and describe their structure and functions. 8. Classify glycosaminoglycans, mention their constituents and their biological importance. 9. Define proteoglycans and point out their functions. 10. Differentiate between glycoproteins and proteoglycans. CONTENTS: I. Chemical Nature of Carbohydrates II. Biomedical importance of Carbohydrates III. Monosaccharides - Classification - Forms of Isomerism of monosaccharides. - Importance of monosaccharides. - Monosaccharides derivatives. IV. Disaccharides - Reducing disaccharides. - Non- Reducing disaccharides V. Oligosaccarides. VI. Polysaccarides - Homopolysaccharides - Heteropolysaccharides - Carbohydrates of Biological Importance 10 CARBOHYDRATES OF BIOLOGICAL IMPORTANCE Chemical Nature of Carbohydrates Carbohydrates are polyhydroxyalcohols with an aldehyde or keto group. They are represented with general formulae Cn(H2O)n and hence called hydrates of carbons.
    [Show full text]
  • Monosaccharides
    UNIT 5 MONOSACCHARIDES Structure 5.1 Introduction 5.4 Biologically Important Sugar Derivatives Expected Learning Outcomes Sugar Acids 5.2 Overview of Carbohydrates Sugar Alcohols Amino Sugars 5.3 Monosaccharides Deoxy Sugars Linear Structure Sugar Esters Ring Structure Glycosides Conformations 5.5 Summary Stereoisomers 5.6 Terminal Questions Optical Properties 5.7 Answers 5.8 Further Readings 5.1 INTRODUCTION Carbohydrates constitute the most abundant organic molecules found in nature and are widely distributed in all living organisms. These are synthesized in nature by green plants, algae and some bacteria by photosynthesis. They also form major part of our diet and provide us energy required for the life sustaining activities such as growth, metabolism and reproduction. At microscopic level, these constitute the structural components of the cell such as cell membrane and cell wall. In this unit, we shall begin with general overview of the chemical nature of carbohydrates and their classification. The unit focuses mainly on the simplest carbohydrates known as monosaccharides. We shall learn about the chemical structures of different monosaccharides and how to draw them. We shall also discuss their stereochemistry in detail which would help to understand how change in orientation of same substituents results in different molecules with same chemical formula but different properties. We shall also discuss about some of the chemical reactions of monosaccharides resulting in 77 formation of important derivatives and their biological importance.
    [Show full text]
  • 11 June 2021 Aperto
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Investigation of the degradation of cresols in the treatments with ozone This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/98980 since 2015-12-29T11:53:12Z Published version: DOI:10.1016/j.watres.2012.02.040 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 29 September 2021 This is an author version of the contribution published on: Water Reaserch, 46, 8, 2012, DOI: 10.1016/j.watres.2012.02.0408 M.C. Valsania, F. Fasano, S.D. Richardson, M. Vincenti volume 46, Elsevier, 2012, 2795-2804 The definitive version is available at: http://www.sciencedirect.com/science/article/pii/S0043135412001431 This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions: (1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license.
    [Show full text]