Perspectives on Culture-Based Fisheries Developments in Asia

Total Page:16

File Type:pdf, Size:1020Kb

Perspectives on Culture-Based Fisheries Developments in Asia Culture-based fi sheries in lakes of the Yangtze River basin, China, with special reference to stocking of mandarin fi sh and Chinese mitten crab Qidong Wang1,2,3, Jiashou Liu1,3*, Zhongjie Li1,3 and Tanglin Zhang1,3 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, P.R. China. 2. University of the Chinese Academy of Sciences, Beijing 100049, P. R. China. 3. National Research Center for Freshwater Fisheries Engineering, Wuhan 430072, Hubei, P. R. China. * Corresponding author. Email: [email protected] Abstract: Lakes amount to 15% of the total freshwater surface area in China and are important for land-based fi sheries. More than 10 species are stocked into lakes to increase production and/or improve water quality. The most common species stocked are the Chinese major carps, i.e. silver carp, bighead carp, grass carp and black carp. In recent years, increasing amount of high valued species such as mandarin fi sh, mitten crab, yellow catfi sh and culters were stocked. However, the stocking of mandarin fi sh and mitten crab perhaps are the most successful because stock enhancement of these two species has been systematically conducted. In this paper, the culture-based fi sheries in lakes are presented, with special reference to mandarin fi sh and mitten crab stocking in lakes in China. The stocking rate of mandarin fi sh is determined by food consumption rates, which are mainly related to water temperature and fi sh size, and prey fi sh productivity. A bioenergetics model of mandarin fi sh was established to predict the growth and consumption of prey fi sh in stocked lakes. Impacts of stocked mandarin fi sh on wild mandarin fi sh populations are also dealt with. The stocking model of mitten crab in of culture-based fi sheries was also determined based on biomass of macrophyte coverage, benthos biomass and ratio of Secchi depth to mean water depth in lakes. Since increasing attention is being paid to eutrophication of lakes in China, land-based fi sheries development now prioritise maintaining integrity of water quality and biodiversity conservation. Integrated stocking of different species and lakes fi sheries management are also addressed. Keywords: Culture-based fi sheries, stock enhancement, Chinese mitten crab, mandarin fi sh, lakes, Yangtze River basin. Introduction fi sh production in the developing world. In this regard, for the management of CBF in the developing world, Aquaculture, a millennia old tradition, is thought to attempts have been made to relate yield to parameters have originated in China over 2,500 years back and have such as morphometric parameters of lakes or reservoirs, achieved great success in global food security and social species combinations and overall stocking rates and economy (Wu et al., 1992). China is the largest inland physico-chemical parameters (Hasan and Middendorp, fi shery producer in the world, with a total production 1998; Nguyen et al., 2001; Gomes et al., 2002; Nguyen et of 28.74 million tonnes corresponding to 54.5% global al., 2005; Wijenayake et al., 2005; Jayasinghe et al., 2006; inland fi shery production (52.78 million tons) including Pushpalatha and Chandrasoma, 2010). Developments capture and aquaculture production totally in 2012 (FAO, of CBF, however, need to have a scientific basis that 2014). includes information on optimal stocking rates, species combinations and ratios thereof, optimal time of Culture-based fi sheries (CBF), a mode of fi sheries harvesting and the like, if they are to realise the full enhancement, are mostly or entirely maintained by the potential and become a significant contributor to inland regular stocking of certain fi sh species (De Silva, 1991; fish production (Wijenayake et al., 2005). 2003) which rely on the natural productivity of the water body for growth, and on artifi cial stocking for recruitment (Lorenzen, 1995; Welcomme and Bartley, 1998). Citation: Wang, Q., Liu, J., Li, Z. and Zhang, T., 2015. Culture-based fi sh- Although CBF are very diverse in nature in the type eries in lakes of the Yangtze River basin, China, with special reference of water bodies utilised, species stocked, harvesting to stocking of mandarin fi sh and Chinese mitten crab. In: Sena S. De Silva, B.A. Ingram and S. Wilkinson (eds.), Perspectives on culture-based techniques, and management strategies (De Silva, fi sheries developments in Asia, pp. 99-110. Network of Aquaculture Centres 2003), they are conducted almost exclusively for food in Asia-Pacifi c, Bangkok, Thailand. 99 In China, CBF, an indispensable fi shery form for its Overall, the increase of CBF production over the years contribution to the volume of the inland fi shery, are has resulted from better management of the fi shery enjoying an enhanced reputation for its ability of resources, adoption of proper stocking and harvesting producing aquatic food with high nutritional quality strategies (e.g. time window of harvest, size at and high level of food safety. CBF practices in Chinese harvesting and techniques used) in Chinese lakes. reservoirs have been well documented (Li and Xu, 1995). Jia et al. (2013) dealt with lake fi sheries including cage culture, pen culture and integrated aquaculture in China. Brief history of CBF in China and main techniques However, there are few accounts exclusively on CBF in used Chinese lakes, especially on aspect of the development of techniques and environmental protection. This paper China has a long history of CBF in lakes. Prior to the attempts to trace the development trends, techniques 1960s, and before the development and extension of used and environment protection in CBF in lakes of the artifi cial propagation techniques for the four Chinese Yangtze River basin. It should also be noted that in view major carps species (Mylopharyngodon piceus (Richardson of the great diversity of CBF practices in China, it will be 1846), Ctenopharyngodon idellus (Valenciennes 1844), futile to attempt to review all these. We have endeavored Hypophthalmichthys molitrix (Valenciennes 1844) and here to address with suitable and special reference to Aristichthys nobilis (Richardson 1845)), wild capture mandarin fi sh Siniperca chuatsi and Chinese mitten crab, fi sheries predominated the freshwater fi sheries in the Eriocheir japonica sinensis, widely stocked in Chinese lakes. country. Since the 1970s, stock enhancement of the four Chinese major carps in lakes has been practised. In the 1980s, cage culture and pen culture dominated the Contribution of CBF to inland fi sheries of fi sheries in lakes. Since the 1990s, high valued species China such as Chinese mitten crab, mandarin fi sh, Mongolian culter (Culter mongolicus (Basilewsky, 1855)) have been stocked in lakes. CBF in China are well developed and practised in most lakes and reservoirs, making a signifi cant contribution to In the new millennium, China began to address issues inland fi sheries (Li and Xu, 1995). Overall, CBF production related to primary production and environmental has continued to increase over the last three decades impacts from intensive aquaculture practices in lakes (Wang et al., 2014). Based on 5-year average production and reservoirs. Increasingly strict regulations of the scale and area for each type of water bodies from 2006 to 2010 of cage culture, pen culture and culture-based fi sheries in China, the CBF production from lakes and reservoirs operations in selected lakes have been gradually accounted for 6.9% (1,482,187 t) and 11.9% (2,556,932 implemented. For example, the extent of pen culture t) of inland aquaculture production, respectively. The area in East Taihu Lake has been reduced from 11,267 ha area of lakes and reservoirs used for CBF accounted for to 3,000 ha in 2009 (Wang et al., 2014). Undoubtedly, 14.8% (997,007 ha) and 24.6% (1,656,105 ha) of inland semi-intensive and intensive aquaculture practices in aquaculture area, respectively (Fig. 1). CBF production lakes such as for example cage culture and pen culture from lakes showed a regular increase through the years especially with use of feed and/or fertilisers will be from 67,568 t (1981) to 1,614,977 t (2012) corresponding to further curtailed in the near future. All in all, CBF which a unit production of 91 kg/ha to 1,576 kg/ha, a signifi cant is balanced and effi cient through stock enhancement increase through the years, averaging 46.4 kg/ha/year and fi sheries management will be favoured, and eco- (Fig.2). Figure 1. Percent contribution of production for each of the freshwater environment types (left) and percent contribution of farming area for each of the freshwater environment types (right). Both are based on fi ve year averages from 2006 to 2010 in China base on the average of fi ve years from 2006 to 2010. Others, 2.8% Paddy, 5.4% Others, 2.0% River, 3.2% Reservoir, Paddy, 21.6% 11.9% Pond, 33.3% Lake, 6.9% River, 3.7% Pond, 69.8% Reservoir, 24.6% Lake, 14.8% 100 fi sheries, the responsible use of natural food resources Elimination of unwanted species, especially and protection of biodiversity and ecosystem health will carnivorous fi shes (e.g. snakehead fi sh, Channa argus be encouraged. (Cantor)). A range of CBF techniques are being implemented in In general, size and stocking rates of species are China as follows: the two main factors infl uencing success of CBF. Success is mainly infl uenced by survival rate, size at Introduction of new species (e.g. introduction of ice harvesting and cost. As for stocking rates a number fi sh, Neosalanx taihuensisi to Dianchi Lake) to exploit of models investigated some aspects of the dynamics under-utilised fi shery resources.
Recommended publications
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • Monophyly and Interrelationships of Snook and Barramundi (Centropomidae Sensu Greenwood) and five New Markers for fish Phylogenetics ⇑ Chenhong Li A, , Betancur-R
    Molecular Phylogenetics and Evolution 60 (2011) 463–471 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Monophyly and interrelationships of Snook and Barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics ⇑ Chenhong Li a, , Betancur-R. Ricardo b, Wm. Leo Smith c, Guillermo Ortí b a School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA b Department of Biological Sciences, The George Washington University, Washington, DC 200052, USA c The Field Museum, Department of Zoology, Fishes, 1400 South Lake Shore Drive, Chicago, IL 60605, USA article info abstract Article history: Centropomidae as defined by Greenwood (1976) is composed of three genera: Centropomus, Lates, and Received 24 January 2011 Psammoperca. But composition and monophyly of this family have been challenged in subsequent Revised 3 May 2011 morphological studies. In some classifications, Ambassis, Siniperca and Glaucosoma were added to the Accepted 5 May 2011 Centropomidae. In other studies, Lates + Psammoperca were excluded, restricting the family to Available online 12 May 2011 Centropomus. Recent analyses of DNA sequences did not solve the controversy, mainly due to limited taxonomic or character sampling. The present study is based on DNA sequence data from thirteen Keywords: genes (one mitochondrial and twelve nuclear markers) for 57 taxa, representative of all relevant Centropomidae species. Five of the nuclear markers are new for fish phylogenetic studies. The monophyly of Centrop- Lates Psammoperca omidae sensu Greenwood was supported by both maximum likelihood and Bayesian analyses of a Ambassidae concatenated data set (12,888 bp aligned). No support was found for previous morphological hypothe- Niphon spinosus ses suggesting that ambassids are closely allied to the Centropomidae.
    [Show full text]
  • Feeding and Growth of Golden Perch (Macquaria Ambigua), and Assessment of Its Potential for Aquaculture
    ResearchOnline@JCU This file is part of the following reference: Herbert, Brett (2005) Feeding and growth of Golden perch (Macquaria ambigua), and assessment of its potential for aquaculture. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1332/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1332/ B. Herbert 4 FEEDING AND GROWTH OF GOLDEN PERCH (MACQUARIA AMBIGUA), AND ASSESSMENT OF ITS POTENTIAL FOR AQUACULTURE Thesis submitted by Brett Herbert For the Degree of Doctor of Philosophy in the School of Marine Biology and Aquaculture James Cook University September 2005 ELECTRONIC COPY I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available. _______________________________ _______________ Signature Date STATEMENT OF ACCESS I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to other users in other approved libraries. All users consulting this thesis will have to sign the following statement: In consulting this thesis, I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it. Beyond this, I do not wish to place any restriction on access to this thesis.
    [Show full text]
  • Microsatellite DNA Markers and Their Correlation with Growth Traits in Mandarin Fish (Siniperca Chuatsi)
    Microsatellite DNA markers and their correlation with growth traits in mandarin fish (Siniperca chuatsi) L.F. Sun*, J. Li*, X.F. Liang, T.L. Yi, L. Fang, J. Sun, Y.H. He, X.N. Luo, Y.Q. Dou and M. Yang Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei, China *These authors contributed equally to this study. Corresponding author: X.F. Liang E-mail: [email protected] Genet. Mol. Res. 14 (4): 19128-19135 (2015) Received August 24, 2015 Accepted October 30, 2015 Published December 29, 2015 DOI http://dx.doi.org/10.4238/2015.December.29.22 ABSTRACT. The mandarin fish (Siniperca chuatsi) is a traditionally cultured freshwater fish with high commercial value in China. To facilitate marker- assisted selection in genetic improvement of this species, 120 microsatellite markers from the literature were characterized in the 25 largest and 25 smallest individuals. Eighteen polymorphic loci were then used to genotype 200 individuals, and the associations between their genotypes and growth traits were examined. We found that eight genotypes of six loci (AP 37-06, AP 37-11, AP 37-16, AP 37-48, AP 38-32, and AP 39-05) were positively correlated with growth traits (body weight, length, and height) in the mandarin fish population. The average observed and expected heterozygosities were 0.68 and 0.59, respectively, and the average PIC value was 0.50, indicating a population with high genetic diversity. Therefore, these markers could be useful for assisted selection in genetic breeding of this species and its related species.
    [Show full text]
  • Guide to Monogenoidea of Freshwater Fish of Palaeartic and Amur Regions
    GUIDE TO MONOGENOIDEA OF FRESHWATER FISH OF PALAEARTIC AND AMUR REGIONS O.N. PUGACHEV, P.I. GERASEV, A.V. GUSSEV, R. ERGENS, I. KHOTENOWSKY Scientific Editors P. GALLI O.N. PUGACHEV D. C. KRITSKY LEDIZIONI-LEDIPUBLISHING © Copyright 2009 Edizioni Ledizioni LediPublishing Via Alamanni 11 Milano http://www.ledipublishing.com e-mail: [email protected] First printed: January 2010 Cover by Ledizioni-Ledipublishing ISBN 978-88-95994-06-2 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted or utilized in any form or by any means, electonical, mechanical, photocopying or oth- erwise, without permission in writing from the publisher. Front cover: /Dactylogyrus extensus,/ three dimensional image by G. Strona and P. Galli. 3 Introduction; 6 Class Monogenoidea A.V. Gussev; 8 Subclass Polyonchoinea; 15 Order Dactylogyridea A.V. Gussev, P.I. Gerasev, O.N. Pugachev; 15 Suborder Dactylogyrinea: 13 Family Dactylogyridae; 17 Subfamily Dactylogyrinae; 13 Genus Dactylogyrus; 20 Genus Pellucidhaptor; 265 Genus Dogielius; 269 Genus Bivaginogyrus; 274 Genus Markewitschiana; 275 Genus Acolpenteron; 277 Genus Pseudacolpenteron; 280 Family Ancyrocephalidae; 280 Subfamily Ancyrocephalinae; 282 Genus Ancyrocephalus; 282 Subfamily Ancylodiscoidinae; 306 Genus Ancylodiscoides; 307 Genus Thaparocleidus; 308 Genus Pseudancylodiscoides; 331 Genus Bychowskyella; 332 Order Capsalidea A.V. Gussev; 338 Family Capsalidae; 338 Genus Nitzschia; 338 Order Tetraonchidea O.N. Pugachev; 340 Family Tetraonchidae; 341 Genus Tetraonchus; 341 Genus Salmonchus; 345 Family Bothitrematidae; 359 Genus Bothitrema; 359 Order Gyrodactylidea R. Ergens, O.N. Pugachev, P.I. Gerasev; 359 Family Gyrodactylidae; 361 Subfamily Gyrodactylinae; 361 Genus Gyrodactylus; 362 Genus Paragyrodactylus; 456 Genus Gyrodactyloides; 456 Genus Laminiscus; 457 Subclass Oligonchoinea A.V.
    [Show full text]
  • Amur Fish: Wealth and Crisis
    Amur Fish: Wealth and Crisis ББК 28.693.32 Н 74 Amur Fish: Wealth and Crisis ISBN 5-98137-006-8 Authors: German Novomodny, Petr Sharov, Sergei Zolotukhin Translators: Sibyl Diver, Petr Sharov Editors: Xanthippe Augerot, Dave Martin, Petr Sharov Maps: Petr Sharov Photographs: German Novomodny, Sergei Zolotukhin Cover photographs: Petr Sharov, Igor Uchuev Design: Aleksey Ognev, Vladislav Sereda Reviewed by: Nikolai Romanov, Anatoly Semenchenko Published in 2004 by WWF RFE, Vladivostok, Russia Printed by: Publishing house Apelsin Co. Ltd. Any full or partial reproduction of this publication must include the title and give credit to the above-mentioned publisher as the copyright holder. No photographs from this publication may be reproduced without prior authorization from WWF Russia or authors of the photographs. © WWF, 2004 All rights reserved Distributed for free, no selling allowed Contents Introduction....................................................................................................................................... 5 Amur Fish Diversity and Research History ............................................................................. 6 Species Listed In Red Data Book of Russia ......................................................................... 13 Yellowcheek ................................................................................................................................... 13 Black Carp (Amur) ......................................................................................................................
    [Show full text]
  • 301A3b09ab26a67a338b62177
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 4290793, 8 pages http://dx.doi.org/10.1155/2016/4290793 Research Article Spatiotemporal Distribution and Assemblages of Fishes below the Lowermost Dam in Protected Reach in the Yangtze River Main Stream: Implications for River Management Junyi Li,1,2 Hui Zhang,2 Danqing Lin,1,2 Jinming Wu,2 Chengyou Wang,2 Xuan Xie,1,2 and Qiwei Wei2 1 CollegeofLifeScience,SouthwestUniversity,Chongqing,China 2KeyLaboratoryofFreshwaterBiodiversityConservation,MinistryofAgricultureofChina, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China Correspondence should be addressed to Qiwei Wei; [email protected] Received 7 July 2016; Accepted 20 September 2016 Academic Editor: Kaiyu He Copyright © 2016 Junyi Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Now more and more ecologists concern about the impacts of dam construction on fish. However, studies of fishes downstream Gezhouba Dam were rarely reported except Chinese sturgeon (Acipenser sinensis Gray). In this study, catch investigations and five hydroacoustic detections were completed from 2015 to 2016 to understand the distribution, size, and categories of fishes and their relationship with the environmental factors below Gezhouba Dam in protected reach in the Yangtze River main stream. Results showed significant differences in fish distribution and TS (target strength) between wet and flood seasons. Mean TSinfive hydroacoustic detections were −59.98 dB, −54.70 dB, −56.16 dB, −57.90 dB, and −59.17 dB, respectively, and dominant fish species are Coreius guichenoti (Bleeker), Siniperca chuatsi (Basilewsky), and Pelteobagrus vachelli (Richardson).
    [Show full text]
  • Identification, Expression, and Functions of the Somatostatin Gene
    G C A T T A C G G C A T genes Article Identification, Expression, and Functions of the Somatostatin Gene Family in Spotted Scat (Scatophagus argus) 1,2, 1,2,3, 1,2 1,2,3 Peizhe Feng y , Changxu Tian y , Xinghua Lin , Dongneng Jiang , Hongjuan Shi 1,2,3, Huapu Chen 1,2,3, Siping Deng 1,2,3, Chunhua Zhu 1,2,3 and Guangli Li 1,2,3,* 1 Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; [email protected] (P.F.); [email protected] (C.T.); [email protected] (X.L.); [email protected] (D.J.); [email protected] (H.S.); [email protected] (H.C.); [email protected] (S.D.); [email protected] (C.Z.) 2 Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China 3 Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524088, China * Correspondence: [email protected]; Tel.: +86-75-92-383-124; Fax: +86-75-92-382-459 These authors contributed equally to this work. y Received: 28 October 2019; Accepted: 7 February 2020; Published: 12 February 2020 Abstract: Somatostatins (SSTs) are a family of proteins consisting of structurally diverse polypeptides that play important roles in the growth regulation in vertebrates. In the present study, four somatostatin genes (SST1, SST3, SST5, and SST6) were identified and characterized in the spotted scat (Scatophagus argus). The open reading frames (ORFs) of SST1, SST3, SST5, and SST6 cDNA consist of 372, 384, 321, and 333 bp, respectively, and encode proteins of 123, 127, 106, and 110 amino acids, respectively.
    [Show full text]
  • The Evolution of the Immune System: Conservation and Diversification
    Title The Evolution of the Immune System Conservation and Diversification Page left intentionally blank The Evolution of the Immune System Conservation and Diversification Davide Malagoli Department of Life Sciences Biology Building, University of Modena and Reggio Emilia, Modena, Italy AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Copyright © 2016 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek per- mission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
    [Show full text]
  • Identification and Functional Analysis of the Mandarin Fish (Siniperca
    Fish and Shellfish Immunology 92 (2019) 141–150 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Identification and functional analysis of the Mandarin fish (Siniperca chuatsi) hypoxia-inducible factor-1α involved in the immune response T Jian Hea,1, Yang Yua,1, Xiao-Wei Qinb, Ruo-Yun Zengb, Yuan-Yuan Wanga, Zhi-Min Lia, Shu Mia, ∗ Shao-Ping Wengb, Chang-Jun Guoa,b,c, , Jian-Guo Hea,b,c a State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China b Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China c Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China ARTICLE INFO ABSTRACT Keywords: Mandarin fish (Siniperca chuatsi) is a popular cultured freshwater fish species due to its high market value in Hypoxia China. With increasing density of breeding, mandarin fish is often cultured under low environmental oxygen HIF-1α concentrations (hypoxia). In this study, the relative expression levels of hypoxia response element (HRE)-luci- Immune response ferase reporter and the HIF signaling pathway downstream genes (scldha, scvegf, and scglut-1) were significantly Mandarin fish increased by hypoxic stress, thereby indicating that mandarin fish has an HIF signaling pathway. The mandarin fish HIF-1α (scHIF-1α) was also characterized. Multiple sequence alignments showed that scHIF-1α presented similar architectures to other known vertebrates.
    [Show full text]
  • Status of Research on Stock Enhancement of Mandarin Fish in Lakes, China
    Review Article Oceanogr Fish Open Access J Volume 8 Issue 1 - July 2018 Copyright © All rights are reserved by Tanglin Zhang DOI: 10.19080/OFOAJ.2018.08.555728 Status of Research on Stock Enhancement of Mandarin Fish in Lakes, China Wei Li, Tanglin Zhang*, Zhongjie Li and Jiashou Liu State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, China Submission: June 01, 2018; Published: July 16, 2018 Corresponding author: Tanglin Zhang, Center of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, Email: Abstract Siniperca chuatsi Mandarin fish, (Basilewsky), is a famous freshwater fish in China and has a relatively high market value. The fish have been stocked in lakes since the 1990s to increase populations, to pursue commercial returns and to ease conflicts between fishery development and water quality conservation. In this paper, we briefly review the status of stock enhancement of mandarin fish in China. The parameters of stock enhancement techniques including stocking size, stocking habitat, and stocking number are determined by a series of comparative experiments. Stocked mandarin fish showed good survival and growth performance, and consequently obtain better economic benefits compared with traditional fisheries of stocking. Impacts of stocked mandarin fish on wild mandarin fish populations and small-sized fish community are also dealt with. Stocking mandarin fish in lakes may have a positive role for improving water quality, suggesting that mandarin fish stocking could be a feasible bio-manipulation measure to alleviate eutrophication in Yangtze lakes. Introduction Siniperca chuatsi (Basilews- - abundant small-sized fish resources and to prevent small fish Mandarin fish, or Chinese perch, populations from growing excessively, stocking of piscivorous ky), is indigenous freshwater fish to East Asia, are mostly dis and the Amur River along the Russian borderlands [1].
    [Show full text]
  • Fish Biodiversity and Assemblages Along the Altitudinal Gradients Of
    www.nature.com/scientificreports OPEN Fish biodiversity and assemblages along the altitudinal gradients of tropical mountainous forest streams Chen‑Lin Soo1*, Lee Nyanti2, Nur Ezaimah Idris2, Teck‑Yee Ling2, Siong‑Fong Sim2, Jongkar Grinang2, Tonny Ganyai3 & Karen‑Suan‑Ping Lee3 Knowledge of the fundamental aspects of ecology such as the patterns of fsh species distribution and biodiversity in the forest streams is the frst and basic step to develop efective conservation strategies. Yet, studies on altitudinal changes of fsh composition and assemblages in Bornean forest streams are scarce despite being one of the hotspots of biodiversity conservation. Hence, surveys on freshwater fsh composition along the altitudinal gradients of the Baleh River Basin in Sarawak, Borneo were conducted from April 2014 to August 2015. The Baleh River Basin was divided into seven altitudinal groups with a total of 72 stations. Group elevation ranged from 53 to 269 m above sea level. The fsh samples and environmental parameters were taken concurrently during samplings. A total of 3565 specimens belonging to six orders, 14 families, and 76 species were found in the present study. The most dominant family in the Baleh River Basin was Cyprinidae (74.4%), followed by Gastromyzontidae (16.2%) while the most dominant species was Tor tambra (12.9%), followed by Lobocheilos ovalis (12.3%). Fish abundance signifcantly higher at high altitude sites than those at low altitude sites except for Mengiong River which has the lowest fsh abundance despite with high elevation. Species richness was found signifcantly lower in midstream segment. Noticeable altitudinal gradient of fsh assemblages was observed along the Baleh River except a discontinuity at the midstream segment which is attributable to the poorer quality infow from the Mengiong River coupled with the meandering feature of the segment.
    [Show full text]