Continental Shelf the Last Maritime Zone

Total Page:16

File Type:pdf, Size:1020Kb

Continental Shelf the Last Maritime Zone Continental Shelf The Last Maritime Zone The Last Maritime Zone Published by UNEP/GRID-Arendal Copyright © 2009, UNEP/GRID-Arendal ISBN: 978-82-7701-059-5 Printed by Birkeland Trykkeri AS, Norway Disclaimer Any views expressed in this book are those of the authors and do not necessarily reflect the views or policies of UNEP/GRID-Arendal or contributory organizations. The designations employed and the presentation of material in this book do not imply the expression of any opinion on the part of the organizations concerning the legal status of any country, territory, city or area of its authority, or deline- ation of its frontiers and boundaries, nor do they imply the validity of submissions. All information in this publication is derived from official material that is posted on the website of the UN Division of Ocean Affairs and the Law of the Sea (DOALOS), which acts as the Secretariat to the Com- mission on the Limits of the Continental Shelf (CLCS): www.un.org/ Depts/los/clcs_new/clcs_home.htm. UNEP/GRID-Arendal is an official UNEP centre located in Southern Norway. GRID-Arendal’s mission is to provide environmental informa- tion, communications and capacity building services for information management and assessment. The centre’s core focus is to facili- tate the free access and exchange of information to support decision making to secure a sustainable future. www.grida.no. Continental Shelf The Last Maritime Zone Continental Shelf The Last Maritime Zone Authors and contributors Tina Schoolmeester and Elaine Baker (Editors) Joan Fabres Øystein Halvorsen Øivind Lønne Jean-Nicolas Poussart Riccardo Pravettoni (Cartography) Morten Sørensen Kristina Thygesen Cover illustration Alex Mathers Language editor Harry Forster (Interrelate Grenoble) Special thanks to Yannick Beaudoin Janet Fernandez Skaalvik Lars Kullerud Harald Sund (Geocap AS) Continental Shelf The Last Maritime Zone Foreword During the past decade, many coastal States have been engaged in peacefully establish- ing the limits of their maritime jurisdiction. This represents an historical milestone towards the definition of maritime sovereignty, and presents enormous economic opportunities for coastal States, but also brings new environmental challenges and responsibilities. States may secure their legal entitlement to the seabed generations. Importantly, the rules and regulations regard- by submitting information on the continental shelf beyond ing the continental shelf require the States to safeguard 200 nautical miles as defined in Article 76 of the United the environment and share benefits from resource devel- Nations Convention on the Law of the Sea (UNCLOS). opment with developing States. Furthermore, the ocean This is profoundly significant in that it will enable many de- beyond national jurisdiction remains the common heritage veloping coastal States and small island nations to access of all mankind. valuable natural resources, such as oil, gas and minerals, as well as sedentary organisms. Today there are legitimate concerns about the state of the marine environment, and its unique and largely un- The high costs and extensive technical capacity required documented ecosystems. While resource development in to comply with the provisions of Article 76 were recog- these marine areas will likely present additional challeng- nized by the UN General Assembly. Accordingly, in 2002 es and environmental management issues, the sustain- they called on the UN Environment Programme’s Global able development of these areas could result in long-term Resource Information Database (GRID) network to assist economic and environmental benefits. Therefore States interested states, particularly developing States and small should consider all options, including the establishment of island developing nations. This gave rise to the UNEP Shelf marine protected areas, which could support eco-tourism Programme, which along with other international initiatives, and healthy fisheries. has been providing data and technical assistance to States preparing proposals to define their national jurisdiction. Continental Shelf: The Last Maritime Zone examines the status of the submissions made to date and begins to il- All States have an obligation to ensure that their territorial lustrate a new world map – one which will hopefully help re- rights – including marine territories – are secured for future duce poverty and lead to the wise use of ocean resources. Peter Prokosch Managing Director UNEP/GRID-Arendal Continental Shelf The Last Maritime Zone Contents Foreword 6 Historic Dates for the UNCLOS 8 Peaceful Regulation of Ocean Space Where does sovereignty end? 0 All States cross the Finish Line Status of Submissions 12 Making it Final and Binding Busy Bees 14 Under Construction A New World Map 0 Room to Move Strategies for Securing the Seabed 22 Antarctica Frozen decision 24 Oceans of Possibilities … and Responsibilities 6 Abbreviations 6 Glossary 8 Fact Sheet 9 References 0 Summary of Submissions 32 Summary of Preliminary Information Continental Shelf The Last Maritime Zone 2001 2009 The ten-year period for lodging On 13 May, the ten-year these submissions is set to start on period for making 13 May 1999 for States that ratified submissions to CLCS the Convention before this date. ends for most States. 2008 Decision of States Parties to the UNCLOS which allows states to meet the 18th century May 2009 time limit by Cannon-shot rule: indicating the status and A coastal State intended submission date, enjoys sovereignty and by providing prelimi- 17th century as far seawards as nary information. Freedom-of-the- a cannon can fire a 1494 seas doctrine or cannon ball, which Pope Alexander VI Mare Liberum: at that time was divides the Atlantic The seas are free about 3 M – the 2000 2005 2010 Ocean between to all nations but sea beyond 3 M is Spain and Portugal. belong to none. Mare Liberum. Historic Dates for the UNCLOS 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 1930 1945 1956 1967 1982 1994 1999 The League of Nations Truman Proclamation: US UNCLOS I: First STATUS: 25 countries use the 3 M The Third United Nations Conference Agreement on Adoption of the called a conference in extends jurisdiction over Conference on the rule, 66 countries use the 12 M rule, on the Law of the Sea is concluded UNCLOS Scientific and The Hague to extend natural resources on its Law of the Sea. 8 countries the 200 M rule for claiming and is open for signature – the implementation Technical Guidelines national claims – no continental shelf – other sovereignty. Convention sets limits for various reached and law of the Commission on agreement reached. nations are quick to follow. maritime zones measured from a comes into force the Limits of the Arvid Pardo – known as the Father of defined baseline – the Convention on 16 November, Continental Shelf – 1946–50 1958–60 the Law of the Sea’s Third Conference also makes provisions for the passage a year after these guidelines were Argentina (1946), Chile (1947), Four conventions resulting calls for an effective international regime of ships, protection of the marine Guyana became prepared to assist Peru (1947) and Ecuador (1950) from UNCLOS I are over the seabed and ocean floor environment, scientific research, the 60th state to States in making a claim sovereign rights to 200 M to concluded: they are related beyond a clearly defined national conservation and management of ratify the treaty. submission to define cover Humboldt Current fishing to the Territorial Sea and jurisdiction to avoid escalating tensions. resources, and settlement of disputes. the boundary of their grounds. Other nations extend Contiguous Zone, the continental shelf their territorial seas to 12 M. Continental Shelf, the High 1966 1973–82 1990–94 beyond 200 M. Seas and Fishing and Convention on Fishing and UNCLOS III: Third Conference on the Law of the Negotiations on the Conservation of Living Conservation of Living Resources Sea starts with more than 160 participating nations implementation of Resources of the High Seas. of the High Seas, enters into force. and lasts until 1982 – in an attempt to reduce the UNCLOS. possibility of groups of nations dominating the 1960 1964 negotiations, a consensus process rather than a UNCLOS II: Second Conventions on the Territorial Sea and Contiguous majority vote is used. conference on the Law of the zone and Continental Shelf enter into force. Sea – no new agreements. The “continental shelf” is defined as “the seabed Developing nations partici- and subsoil of the submarine areas adjacent to pated but with no significant the coast but outside the area of the territorial voice of their own. sea, to a depth of 200 metres (m) or, beyond that limit, to where the depth of the superjacent 1962 waters admits of the exploitation of the natural Convention on the High Seas enters into force. resources of the said areas. 6 Continental Shelf The Last Maritime Zone 2001 2009 The ten-year period for lodging On 13 May, the ten-year these submissions is set to start on period for making 13 May 1999 for States that ratified submissions to CLCS the Convention before this date. ends for most States. 2008 Decision of States Parties to the UNCLOS which allows states to meet the 18th century May 2009 time limit by Cannon-shot rule: indicating the status and A coastal State intended submission date, enjoys sovereignty and by providing prelimi- 17th century as far seawards as nary information. Freedom-of-the-
Recommended publications
  • Mapping the Canyon
    Deep East 2001— Grades 9-12 Focus: Bathymetry of Hudson Canyon Mapping the Canyon FOCUS Part III: Bathymetry of Hudson Canyon ❒ Library Books GRADE LEVEL AUDIO/VISUAL EQUIPMENT 9 - 12 Overhead Projector FOCUS QUESTION TEACHING TIME What are the differences between bathymetric Two 45-minute periods maps and topographic maps? SEATING ARRANGEMENT LEARNING OBJECTIVES Cooperative groups of two to four Students will be able to compare and contrast a topographic map to a bathymetric map. MAXIMUM NUMBER OF STUDENTS 30 Students will investigate the various ways in which bathymetric maps are made. KEY WORDS Topography Students will learn how to interpret a bathymet- Bathymetry ric map. Map Multibeam sonar ADAPTATIONS FOR DEAF STUDENTS Canyon None required Contour lines SONAR MATERIALS Side-scan sonar Part I: GLORIA ❒ 1 Hudson Canyon Bathymetry map trans- Echo sounder parency ❒ 1 local topographic map BACKGROUND INFORMATION ❒ 1 USGS Fact Sheet on Sea Floor Mapping A map is a flat representation of all or part of Earth’s surface drawn to a specific scale Part II: (Tarbuck & Lutgens, 1999). Topographic maps show elevation of landforms above sea level, ❒ 1 local topographic map per group and bathymetric maps show depths of land- ❒ 1 Hudson Canyon Bathymetry map per group forms below sea level. The topographic eleva- ❒ 1 Hudson Canyon Bathymetry map trans- tions and the bathymetric depths are shown parency ❒ with contour lines. A contour line is a line on a Contour Analysis Worksheet map representing a corresponding imaginary 59 Deep East 2001— Grades 9-12 Focus: Bathymetry of Hudson Canyon line on the ground that has the same elevation sonar is the multibeam sonar.
    [Show full text]
  • The Impact of Makeshift Sandbag Groynes on Coastal Geomorphology: a Case Study at Columbus Bay, Trinidad
    Environment and Natural Resources Research; Vol. 4, No. 1; 2014 ISSN 1927-0488 E-ISSN 1927-0496 Published by Canadian Center of Science and Education The Impact of Makeshift Sandbag Groynes on Coastal Geomorphology: A Case Study at Columbus Bay, Trinidad Junior Darsan1 & Christopher Alexis2 1 University of the West Indies, St. Augustine Campus, Trinidad 2 Institute of Marine Affairs, Chaguaramas, Trinidad Correspondence: Junior Darsan, Department of Geography, University of the West Indies, St Augustine, Trinidad. E-mail: [email protected] Received: January 7, 2014 Accepted: February 7, 2014 Online Published: February 19, 2014 doi:10.5539/enrr.v4n1p94 URL: http://dx.doi.org/10.5539/enrr.v4n1p94 Abstract Coastal erosion threatens coastal land which is an invaluable limited resource to Small Island Developing States (SIDS). Columbus Bay, located on the south-western peninsula of Trinidad, experiences high rates of coastal erosion which has resulted in the loss of millions of dollars to coconut estate owners. Owing to this, three makeshift sandbag groynes were installed in the northern region of Columbus Bay to arrest the coastal erosion problem. Beach profiles were conducted at eight stations from October 2009 to April 2011 to determine the change in beach widths and beach volumes along the bay. Beach width and volume changes were determined from the baseline in October 2009. Additionally, a generalized shoreline response model (GENESIS) was applied to Columbus Bay and simulated a 4 year model run. Results indicate that there was an increase in beach width and volume at five stations located within or adjacent to the groyne field.
    [Show full text]
  • Shaping the Beach, One Wave at a Time New Research Is Deciphering How Currents, Waves, and Sands Change Our Shorelines
    http://oceanusmag.whoi.edu/v43n1/raubenheimer.html Shaping the Beach, One Wave at a Time New research is deciphering how currents, waves, and sands change our shorelines By Britt Raubenheimer, Associate Scientist nearshore region—the stretch of sand, for a beach to erode or build up. Applied Ocean Physics & Engineering Dept. rock, and water between the dry land be- Understanding beaches and the adja- Woods Hole Oceanographic Institution hind the beach and the beginning of deep cent nearshore ocean is critical because or years, scientists who study the water far from shore. To comprehend and nearly half of the U.S. population lives Fshoreline have wondered at the appar- predict how shorelines will change from within a day’s drive of a coast. Shoreline ent fickleness of storms, which can dev- day to day and year to year, we have to: recreation is also a significant part of the astate one part of a coastline, yet leave an • decipher how waves evolve; economy of many states. adjacent part untouched. One beach may • determine where currents will form For more than a decade, I have been wash away, with houses tumbling into the and why; working with WHOI Senior Scientist Steve sea, while a nearby beach weathers a storm • learn where sand comes from and Elgar and colleagues across the coun- without a scratch. How can this be? where it goes; try to decipher patterns and processes in The answers lie in the physics of the • understand when conditions are right this environment. Most of our work takes A Mess of Physics Near the Shore Many forces intersect and interact in the surf and swash zones of the coastal ocean, pushing sand and water up, down, and along the coast.
    [Show full text]
  • 1 PILOT PROJECT SAND GROYNES DELFLAND COAST R. Hoekstra1
    PILOT PROJECT SAND GROYNES DELFLAND COAST R. Hoekstra1, D.J.R. Walstra1,2 , C.S Swinkels1 In October and November 2009 a pilot project has been executed at the Delfland Coast in the Netherlands, constructing three small sandy headlands called Sand Groynes. Sand Groynes are nourished from the shore in seaward direction and anticipated to redistribute in the alongshore due to the impact of waves and currents to create the sediment buffer in the upper shoreface. The results presented in this paper intend to contribute to the assessment of Sand Groynes as a commonly applied nourishment method to maintain sandy coastlines. The morphological evolution of the Sand Groynes has been monitored by regularly conducting bathymetry surveys, resulting in a series of available bathymetry surveys. It is observed that the Sand Groynes have been redistributed in the alongshore, mainly in northward direction driven by dominant southwesterly wave conditions. Furthermore, data analysis suggests that Sand Groynes have a trapping capacity for alongshore supplied sand originating from upstream located Sand Groynes. A Delft3D numerical model has been set up to verify whether the morphological evolution of Sand Groynes can be properly hindcasted. Although the model has been set up in 2DH mode, hindcast results show good agreement with the morphological evolution of Sand Groynes based on field data. Trends of alongshore redistribution of Sand Groynes are well reproduced. Still the model performance could be improved, for instance by implementation of 3D velocity patterns and by a more accurate schematization of sediment characteristics. Keywords: Sand Groyne, Delfland Coast, sand nourishment, sediment transport, Delft3D INTRODUCTION Objective The main objective of this paper is to asses an innovative sand nourishment method to maintain a sandy coastline, by constructing small sandy headlands in the upper shoreface called Sand Groynes (see Figure 1).
    [Show full text]
  • The Open Ocean
    THE OPEN OCEAN Grade 5 Unit 6 THE OPEN OCEAN How much of the Earth is covered by the ocean? What do we mean by the “open ocean”? How do we describe the open oceans of Hawai’i? The World’s Oceans The ocean is the world’s largest habitat. It covers about 70% of the Earth’s surface. Scientists divide the ocean into two main zones: Pelagic Zone: The open ocean that is not near the coast. pelagic zone Benthic Zone: The ocean bottom. benthic zone Ocean Zones pelagic zone Additional Pelagic Zones Photic zone Aphotic zone Pelagic Zones The Hawaiian Islands do not have a continental shelf Inshore: anything within 100 meters of shore Offshore : anything over 500 meters from shore Inshore Ecosystems Offshore Ecosystems Questions 1.) How much of the Earth is covered by the ocean? Questions 1.) How much of the Earth is covered by the ocean? Answer: 70% of the Earth is covered by ocean water. Questions 2.) What are the two MAIN zones of the ocean? Questions 2.) What are the two MAIN zones of the ocean? Answer: Pelagic Zone-the open ocean not near the coast. Benthic Zone-ocean bottom. Questions 3.) What are some other zones within the Pelagic Zone or Open Ocean? Questions 3.) What are some other zones within the Pelagic Zone or Open Ocean? Answer: Photic zone- where sunlight penetrates Aphotic zone- where sunlight cannot penetrate Neritic zone- over the continental shelf Oceanic zone- beyond the continental shelf Questions 4.) What is inshore? What is offshore? Questions 4.) What is inshore? What is offshore? Answer: Inshore: anything within 100 meters of shore Offshore: anything over 500 meters from shore .
    [Show full text]
  • Coastal Ocean and Continental Shelves
    Coastal Ocean and 16 Continental Shelves Lead Author Katja Fennel, Dalhousie University Contributing Authors Simone R. Alin, NOAA Pacific Marine Environmental Laboratory; Leticia Barbero, NOAA Atlantic Ocean- ographic and Meteorological Laboratory; Wiley Evans, Hakai Institute; Timothée Bourgeois, Dalhousie Uni- versity; Sarah R. Cooley, Ocean Conservancy; John Dunne, NOAA Geophysical Fluid Dynamics Laboratory; Richard A. Feely, NOAA Pacific Marine Environmental Laboratory; Jose Martin Hernandez-Ayon, Auton- omous University of Baja California; Chuanmin Hu, University of South Florida; Xinping Hu, Texas A&M University, Corpus Christi; Steven E. Lohrenz, University of Massachusetts, Dartmouth; Frank Muller-Karger, University of South Florida; Raymond G. Najjar, The Pennsylvania State University; Lisa Robbins, University of South Florida; Joellen Russell, University of Arizona; Elizabeth H. Shadwick, College of William & Mary; Samantha Siedlecki, University of Connecticut; Nadja Steiner, Fisheries and Oceans Canada; Daniela Turk, Dalhousie University; Penny Vlahos, University of Connecticut; Zhaohui Aleck Wang, Woods Hole Oceano- graphic Institution Acknowledgments Raymond G. Najjar (Science Lead), The Pennsylvania State University; Marjorie Friederichs (Review Editor), Virginia Institute of Marine Science; Erica H. Ombres (Federal Liaison), NOAA Ocean Acidification Program; Laura Lorenzoni (Federal Liaison), NASA Earth Science Division Recommended Citation for Chapter Fennel, K., S. R. Alin, L. Barbero, W. Evans, T. Bourgeois, S. R. Cooley, J. Dunne, R. A. Feely, J. M. Hernandez-Ayon, C. Hu, X. Hu, S. E. Lohrenz, F. Muller-Karger, R. G. Najjar, L. Robbins, J. Russell, E. H. Shadwick, S. Siedlecki, N. Steiner, D. Turk, P. Vlahos, and Z. A. Wang, 2018: Chapter 16: Coastal ocean and continental shelves. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report [Cavallaro, N., G.
    [Show full text]
  • Offshore Wind and Wave Energy Feasibility Mapping for the Outer Continental Shelf Off the State of Oregon
    OCS Study BOEM 2014-658 Offshore Wind and Wave Energy Feasibility Mapping for the Outer Continental Shelf off the State of Oregon US Department of the Interior Bureau of Ocean Energy Management Pacific OCS Region September 30, 2014 OCS Study BOEM 2014-658 PNNL-23720 Offshore Wind and Wave Energy Feasibility Mapping for the Outer Continental Shelf off the State of Oregon Authors K Larson1 J Tagestad1 S Geerlofs1 M Sanders2 J Ahmann3 J Busch2 B Van Cleve1 1 Pacific Northwest National Laboratory 2 Oregon Wave Energy Trust 3 Parametrix Prepared Under Inter-agency Agreement M13PG00032 U.S Department of the Interior Bureau of Ocean Energy Management Pacific OCS Region September 30, 2014 OCS Study BOEM 2014-658 DISCLAIMER REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management, Pacific OCS Region, Recently Completed Environmental Studies webpage at: http://www.boem.gov/Pacific-Completed-Studies/ This report can also be obtained from the National Technical Information Service; the contact information is below. US Department of Commerce National Technical Information Service 5301 Shawnee Rd. Springfield, VA 22312 Phone: (703) 605-6000, 1(800)553-6847 Fax: (703) 605-6900 Website: http://www.ntis.gov/ CITATION K Larson, J Tagestad, S Geerlofs, M Sanders, J Ahmann, J Busch, B Van Cleve. 2014. Offshore Wind and Wave Energy Feasibility Mapping for the Outer Continental Shelf off the State of Oregon. US Department of the Interior, Bureau of Ocean Energy Management, Pacific OCS Region, Camarillo, CA. OCS Study BOEM 2014-658.
    [Show full text]
  • Wave-Driven Circulation Patterns in the Lee of Groynes
    ARTICLE IN PRESS Continental Shelf Research ] (]]]]) ]]]–]]] Contents lists available at ScienceDirect Continental Shelf Research journal homepage: www.elsevier.com/locate/csr Wave-driven circulation patterns in the lee of groynes Charitha Pattiaratchi Ã, Dale Olsson 1, Yasha Hetzel, Ryan Lowe School of Environmental Systems Engineering, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia article info abstract Article history: Surf zone drifters and a current meter were used to study the nearshore circulation patterns in the lee of Received 15 December 2008 groynes at Cottesloe Beach and City Beach in Western Australia. The circulation patterns revealed that a Received in revised form persistent re-circulation cell was present in the lee of the groyne which was driven by changes in wave 4 April 2009 set-up resulting from lower wave heights in the lee of the groyne. The re-circulation consisted of a Accepted 10 April 2009 longshore current directed towards the groyne which was deflected offshore due to groyne resulting in a rip current along the groyne face. The offshore-flowing rip current and the incoming waves converged at Keywords: the offshore extent of this circulation cell, with the deflection of the rip current parallel to the shoreline Groynes and then completing the recirculation through an onshore component. The Eulerian measurements Circulation revealed that 55% of the currents on the lee side of the groyne were directed offshore and that these Lagrangian currents had a maximum speed of 2 m sÀ1. Spectral analysis of the wave heights and the currents Drifters Numerical modelling revealed several corresponding peaks in the measured spectral densities with timescales between 12 s Western Australia and 50 min.
    [Show full text]
  • Oceans: Submarine Relief and Water Circulation
    MODULE - 3 Ocean: Submarine Relief and Water Circulation The domain of the water on the Earth 8 Notes OCEANS: SUBMARINE RELIEF AND WATER CIRCULATION Water is important for life on the earth. It is required for all life processes, such as, cell growth, protein formation, photosynthesis and, absorption of material by plants and animals. There are some living organisms, which can survive without air but none can survive without water. All the water present on the earth makes up the hydrosphere. The water in its liquid state as in rivers, lakes, wells, springs, seas and oceans; in its solid state, in the form of ice and snow, though in its gaseous state the water vapour is a constituent of atmosphere yet it also forms a part of the hydrosphere. Oceans are the largest water bodies in the hydrosphere. In this lesson we will study about ocean basins, their relief, causes and effects of circulation of ocean waters and importance of oceans for man. OBJECTIVES After studying this lesson, you will be able to : identify various oceans and continents on the world map; differentiate the various submarine relief features; analyze the important factors determining the distribution of temperature both horizontally and vertically in oceans; locate the areas of high and low salinity on the world map and give reasons for the variation in the distribution of salinity in ocean waters; state the three types of ocean movements - waves, tides and currents; explain the formation of waves; 136 GEOGRAPHY Ocean: Submarine Relief and Water Circulation MODULE - 3 The domain of the give various factors responsible for the occurrence of tides; water on the Earth establish relationship between the planetary winds and circulation of ocean currents; explain with suitable examples the importance of oceans to mankind with special reference to the significance of continental shelves for human beings .
    [Show full text]
  • Deep-Ocean Basins
    Chapter23 The Ocean Basins ChapterCh t Outline Outli ne 1 ● The Water Planet Divisions of the Global Ocean Exploration of the Ocean 2 ● Features of the Ocean Floor Continental Margins Deep-Ocean Basins 3 ● Ocean-Floor Sediments Sources of Deep Ocean– Basin Sediments Physical Classification of Sediments Why It Matters Oceans cover more than 70 percent of Earth’s surface. Oceans interact with the atmosphere to influence weather and climate. Exploring and analyzing data about the chemistry of ocean water, the geology of the ocean floor, marine ecosystems, and the physics of water movement is critical to understanding natural processes on Earth. 634 Chapter 23 hhq10sena_obacho.inddq10sena_obacho.indd 663434 PDF 88/1/08/1/08 11:09:46:09:46 PPMM Inquiry Lab 20 min Sink or Float? Fill the bottom half of 3-L soda bottle with water to within about 3 inches from the top and place it on a plastic or metal tray to catch any spills. Using small (3-oz) plastic cups, with some paper clips and metal nuts for ballast, see if you can get a cup to sink with air still trapped inside, simulating a submersible. You may need something pointed to make holes in the cups. Questions to Get You Started 1. What is buoyancy and why is it so important for maritime travel? 2. Compare techniques for sinking the cup. Does one method consistently work better than others? 3. What challenges do engineers face when designing submersibles? 635 hhq10sena_obacho.inddq10sena_obacho.indd 663535 PDF 88/1/08/1/08 11:09:58:09:58 PPMM These reading tools will help you learn the material in this chapter.
    [Show full text]
  • Let's Bet on Sediments!
    Deep East 2001 Exploration Let’s Bet on Sediments! FOCUS Part II: (per group of 2-4) Sediments of Hudson Canyon 3 large jars with lids (e.g. Snapple bottles) 1/2 cup of each of the 3 various sediments (peb- GRADE LEVEL bles, sand, silt) 9 - 12 Water - enough to fill the 3 large jars 1 Sediment Analysis Worksheet FOCUS QUESTION 1 Stop watch How is sediment size related to the amount of time 1 Magnifying glass the sediment is suspended in water? 1 plastic spoon LEARNING OBJECTIVES Part III Demonstration Extension: Students will be able to investigate and analyze the pat- 1-10 gallon aquarium terns of sedimentation in the Hudson Canyon. 1/2 cup of each of the 3 various sediments used Students will observe how heavier particles sink in Activity One faster than finer particles. Water - enough to fill the aquarium 1 hair dryer Students will learn that submarine landslides (trench 1 aquarium filter slope failure) are avalanches of sediment in deep ocean canyons. AUDIO/VISUAL EQUIPMENT Overhead Projector for Part I Students will infer that the passive side of a conti- nental margin is not as geologically quiet as previ- TEACHING TIME ously thought. One 45-minute period ADAPTATIONS FOR DEAF STUDENTS SEATING ARRANGEMENT Teaching Time: Cooperative groups of two to four • Two 45-minute periods MAXIMUM NUMBER OF STUDENTS MATERIALS 30 Part I: Exploring Ocean Frontiers: Hudson Canyon over- KEY WORDS head. Turbidites Sedimentation Sediments 1 Deep East 2001 – Grades 9-12 Deep East 2001 – Grades 9-12 Focus: Sediments of Hudson Canyon oceanexplorer.noaa.gov oceanexplorer.noaa.gov Focus: Sediments of Hudson Canyon North American Plate are trapped within these three zones (R.
    [Show full text]
  • 1 OCEANOGRAPHY the PACIFIC OCEAN by PROF. A. BALSUBRAMANIAN OUTLINE 1.0 Introduction 1.1 Geographic Setting 1.2 Dimension
    OCEANOGRAPHY THE PACIFIC OCEAN BY PROF. A. BALSUBRAMANIAN OUTLINE 1.0 Introduction 1.1 Geographic setting 1.2 Dimension 1.3 Depth 1.4 Principal Arms 1.5 Volume of water 2.0 Historical explorations 3.0 Crustal plates 4.0 Profile of the ocean floor 4.1 Continental shelf 4.2 Continental slope 4.3 Submarine canyons 4.4 Deep ocean floor 4.5 Abyssal plains/hills 4.6 Ring of Fire 4.7 Mid ocean ridges 4.8 Deep ocean trenches 4.9 Seamounts 4.10 Guyots 4.11 Icebergs 4.12 Active volcanoes 4.13 Islands or island arcs 5.0 Sedimentation 6.0 Water masses and Temperature 6.1 Salinity 6.2 Density 7.0 Climate 7.1 Water circulation and Ocean Currents 7.2 Oceanic currents 7.3 Ocean waves 8.0 Ecological zones 8.1 Marine fauna 8.2 Marine flora 8.3 Marine sediments 9.0 Economic mineral resources 9.1 Commerce and shipping 9.2 Ports and terminals 10.0 Marine pollution 10.1 Hazards 1 The Objectives After attending this lesson, the learner should be able to comprehend about the geographic setting of the Pacific ocean, its dimension, associated water masses, morphological features of the ocean floor, very significant conditions of the ocean, sediments, marine life, marine pollution and other hazards. In addition the user should be able to understand, the importance of the Pacific in the context of global activities including the historical oceanographic explorations. 1.0 Introduction The world’s oceanic water masses occupy about 97 per cent of the hydrosphere.
    [Show full text]