Haliotis Rubra) Fishery in 2014

Total Page:16

File Type:pdf, Size:1020Kb

Haliotis Rubra) Fishery in 2014 Assessment of the Western Zone Blacklip Abalone (Haliotis rubra) Fishery in 2014 B. Stobart, S. Mayfield and J. Dent SARDI Publication No. F2015/000407-1 SARDI Research Report Series No. 864 SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 September 2015 Fishery Stock Assessment Report to PIRSA Fisheries and Aquaculture Stobart et al. 2015 Western Zone Blacklip Stock Assessment Report Assessment of the Western Zone Blacklip Abalone (Haliotis rubra) Fishery in 2014 Fishery Stock Assessment Report to PIRSA Fisheries and Aquaculture B. Stobart, S. Mayfield and J. Dent SARDI Publication No. F2015/000407-1 SARDI Research Report Series No. 864 September 2015 ii Stobart et al. 2015 Western Zone Blacklip Stock Assessment Report This publication may be cited as: Stobart, B., Mayfield, S. and Dent, J. (2015). Assessment of the Western Zone Blacklip Abalone (Haliotis rubra) Fishery in 2014. Fishery Stock Assessment Report to PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication F2015/000407-1. SARDI Research Report Series No. 864. 68pp. Cover photograph: Blacklip abalone (Haliotis rubra), B. Stobart South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.pir.sa.gov.au/research DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it. The SARDI Report Series is an Administrative Report Series which has not been reviewed outside the department and is not considered peer-reviewed literature. Material presented in these Administrative Reports may later be published in formal peer-reviewed scientific literature. © 2015 SARDI This work is copyright. Apart from any use as permitted under the Copyright Act 1968 (Cth), no part may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owner. Neither may information be stored electronically in any form whatsoever without such permission. Printed in Adelaide: September 2015 SARDI Publication No. F2015/000407-1 SARDI Research Report Series No. 864 Author(s): B. Stobart, S. Mayfield and J. Dent Reviewer(s): T. Ward, A. Linnane (SARDI) and B. McGrath-Steer (PIRSA) Approved by: Dr Q. Ye Science Leader – Inland Waters & Catchment Ecology Signed: Date: 18 September 2015 Distribution: PIRSA Fisheries and Aquaculture, Western Zone Abalone Fishery licence holders, SAASC Library, Parliamentary Library, State Library and National Library Circulation: Public Domain iii Stobart et al. 2015 Western Zone Blacklip Stock Assessment Report TABLE OF CONTENTS EXECUTIVE SUMMARY..................................................................................... I 1. INTRODUCTION ......................................................................................... 2 1.1. Overview ............................................................................................................ 2 1.2. History and description of the fishery ............................................................ 3 1.2.1. Commercial fishery ................................................................................... 3 1.2.2. Economic importance of the commercial fishery ....................................... 6 1.2.3. Recreational fishery .................................................................................. 6 1.2.4. Illegal, unregulated and unreported catch ................................................. 6 1.3. Management Plan ............................................................................................. 7 1.4. Blacklip biology ................................................................................................ 9 1.5. Previous stock assessments ......................................................................... 10 2. METHODS ................................................................................................ 12 2.1. Catch and effort .............................................................................................. 12 2.2. Commercial catch sampling .......................................................................... 13 2.3. Fishery-independent surveys ........................................................................ 15 2.4. Harvest strategy .............................................................................................. 15 2.5. Quality Assurance .......................................................................................... 15 2.5.1. Research planning .................................................................................. 15 2.5.2. Data collection ......................................................................................... 16 2.5.3. Data entry, validation, storage and security ............................................ 16 2.5.4. Data and statistical analyses ................................................................... 16 2.5.5. Data interpretation and report writing ...................................................... 16 3. RESULTS ................................................................................................. 17 3.1. Western Zone .................................................................................................. 17 3.1.1. Spatial assessment units ........................................................................ 18 3.1.2. Distribution of catch among spatial assessment units ............................ 20 3.1.3. Temporal patterns in high importance spatial assessment units ............ 22 Drummond (Rank 1-1; 16.5-29.2%) .................................................................. 22 iv Stobart et al. 2015 Western Zone Blacklip Stock Assessment Report Sheringa (Rank 2-2; 11.0-10.7%) ..................................................................... 23 Point Westall (Rank 3-3; 7.8-10.7%) ................................................................. 25 Avoid Bay (Rank 4-4; 7.3-7.7%) ........................................................................ 28 Reef Head (Rank 5-5; 6.7-6.4%) ....................................................................... 29 Searcy Bay (Rank 6-7; 6.3-5.4%) ..................................................................... 31 Ward Island (Rank 7-11; 5.7-2.4%) ................................................................... 32 Anxious Bay (Rank 8-6; 5.7-6.1%) .................................................................... 34 3.1.4. Temporal patterns in medium importance spatial assessment units ...... 35 Venus Bay (Rank 9-9; 4.9-3.5%) ...................................................................... 35 Hotspot (Rank 10-23; 4.7-0.2%) ....................................................................... 35 Point Avoid (Rank 11-8; 3.8-4.7%) .................................................................... 35 Flinders Island (Rank 12-14; 2.4-1.2%) ............................................................ 37 Baird Bay (Rank 13-17; 2.4-0.8%) .................................................................... 37 3.2. Risk-of-overfishing in SAUs and zonal stock status ................................... 38 4. DISCUSSION ............................................................................................ 40 4.1. Information, data gaps and uncertainty in the assessment ....................... 40 4.2. Status of blacklip in the WZ ........................................................................... 41 4.3. Harvest strategy for the WZ abalone fishery ................................................ 45 4.4. Future research needs ................................................................................... 47 5. REFERENCES .......................................................................................... 48 APPENDIX ............................................................................................................... 54 A.1. Blacklip biology ................................................................................ 54 A.2. Blacklip performance indicators ....................................................... 56 A.3. Historic medium importance SAU FI surveys .................................. 68 v Stobart et al. 2015 Western Zone Blacklip Stock Assessment Report LIST OF TABLES Table 1.1. Stock status terminology for the Status of key Australian fish stocks reports ................................................................................................. 1 Table 1.2. Management milestones: Western Zone of the South Australian Abalone Fishery. ................................................................................. 4 Table 1.3. Summary of the current management arrangements for the Western Zone commercial abalone fishery. ...................................................... 6 Table 3.1. Outcome from application of the harvest strategy described in the Management Plan for the South Australian Abalone Fishery against the blacklip fishery in the Western Zone. .........................................
Recommended publications
  • Blacklip Abalone (Haliotis Rubra) Exploitation Status Overfished to Recruitment Overfished
    I & I NSW WILD FISHERIES RESEARCH PROGRAM Blacklip Abalone (Haliotis rubra) EXPLOITATION STATUS OVERFISHED TO RECRUITMENT OVERFISHED Stock is currently recovering from historically low levels that occurred due to a combination of overfishing and mortality due to the parasite Perkinsus sp. There are concerns about possible recruitment overfishing in the northern regions. SCIENTIFIC NAME STANDARD NAME COMMENT Haliotis rubra Blacklip abalone Haliotis rubra Image © Bernard Yau Background Blacklip abalone (Haliotis rubra) is a large, juveniles and adults all occur in the same flattened marine gastropod mollusc which habitat. This suggests that local recruitment occurs in rocky reef habitats on the south- is dependent on the proximity of adults. This, eastern Australian coastline from northern combined with the restricted movement NSW to Rottnest Island in Western Australia, of adult abalone, gives rise to stocks which including Tasmania. Blacklip abalone form are spatially highly structured. Increasingly the basis of the abalone fishery in NSW. The sophisticated management regimes are species is also harvested in the other southern being developed to properly account for this Australian states along with the greenlip structuring. abalone H. laevigata. The bulk of the Australian Commercially, blacklip abalone are harvested production of abalone is exported to lucrative by endorsed divers, usually using compressed markets in south-east Asia. air supplied from a hookah unit, although Blacklip abalone can live for over in some cases SCUBA or free diving may be 20 years and can reach a maximum size of used. A chisel shaped abalone iron is used to 22 cm shell length (SL) and a weight of over pry the abalone away from the rock surface.
    [Show full text]
  • The South African Commercial Abalone Haliotis Midae Fishery Began
    S. Afr. J. mar. Sci. 22: 33– 42 2000 33 TOWARDS ADAPTIVE APPROACHES TO MANAGEMENT OF THE SOUTH AFRICAN ABALONE HALIOTIS MIDAE FISHERY C. M. DICHMONT*, D. S. BUTTERWORTH† and K. L. COCHRANE‡ The South African abalone Haliotis midae resource is widely perceived as being under threat of over- exploitation as a result of increased poaching. In this paper, reservations are expressed about using catch per unit effort as the sole index of abundance when assessing this fishery, particularly because of the highly aggregatory behaviour of the species. A fishery-independent survey has been initiated and is designed to provide relative indices of abundance with CVs of about 25% in most of the zones for which Total Allowable Catchs (TACs) are set annually for this fishery. However, it will take several years before this relative index matures to a time-series long enough to provide a usable basis for management. Through a series of simple simulation models, it is shown that calibration of the survey to provide values of biomass in absolute terms would greatly enhance the value of the dataset. The models show that, if sufficient precision (CV 50% or less) could be achieved in such a calibration exercise, the potential for management benefit is improved substantially, even when using a relatively simple management procedure to set TACs. This improvement results from an enhanced ability to detect resource declines or increases at an early stage, as well as from decreasing the time period until the survey index becomes useful. Furthermore, the paper demonstrates that basic modelling techniques could usefully indicate which forms of adaptive management experiments would improve ability to manage the resource, mainly through estimation of the level of precision that would be required from those experiments.
    [Show full text]
  • White Abalone (Haliotis Sorenseni)
    White Abalone (Haliotis sorenseni) Five-Year Status Review: Summary and Evaluation Photo credits: Joshua Asel (left and top right photos); David Witting, NOAA Restoration Center (bottom right photo) National Marine Fisheries Service West Coast Region Long Beach, CA July 2018 White Abalone 5- Year Status Review July 2018 Table of Contents EXECUTIVE SUMMARY ............................................................................................................. i 1.0 GENERAL INFORMATION .............................................................................................. 1 1.1 Reviewers ......................................................................................................................... 1 1.2 Methodology used to complete the review ...................................................................... 1 1.3 Background ...................................................................................................................... 1 2.0 RECOVERY IMPLEMENTATION ................................................................................... 3 2.2 Biological Opinions.......................................................................................................... 3 2.3 Addressing Key Threats ................................................................................................... 4 2.4 Outreach Partners ............................................................................................................. 5 2.5 Recovery Coordination ...................................................................................................
    [Show full text]
  • Shelled Molluscs
    Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1.
    [Show full text]
  • Molluscan Fisheries and Aquaculture World Congress of Malacology Perth 2004
    Molluscan Fisheries and Aquaculture World Congress of Malacology Perth 2004 Dr F. Wells Dr L. Joll Dr G. Maguire Project No. 2003/300 ISBN 1 920843 30 2 Copyright Fisheries Research and Development Corporation and Western Australian Museum 2006. This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry. 2 TABLE OF CONTENTS Page No. NONTECHNICAL SUMMARY ................................................................................... 4 ACKNOWLEDGEMENTS ......................................................................................... 5 BACKGROUND ........................................................................................................ 5 NEED ........................................................................................................ 5 OBJECTIVES ........................................................................................................ 5 METHODS .......................................................................................................
    [Show full text]
  • Black Abalone Status Review Report (Status Review) As Mandated by the ESA
    Status Review Report for Black Abalone Status Review Report for Black Abalone (Haliotis cracherodii Leach, 1814) Glenn VanBlaricom, Melissa Neuman, John Butler, Andrew DeVogelaere, Rick Gustafson, Chris Mobley, Dan Richards, Scott Rumsey, and Barbara Taylor NMFS Southwest Region 501 West Ocean Boulevard, Suite 4200 Long Beach, CA 90802 January 2009 U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Table of Contents List of Figures ................................................................................................................... iv List of Tables .................................................................................................................... vi Executive Summary ........................................................................................................ vii Acknowledgements ........................................................................................................... x 1.0 Introduction ......................................................................................................... 11 1.1 Scope and Intent of Present Document ................................................. 11 1.2 Key Questions in ESA Evaluations ....................................................... 12 1.2.1 The “Species” Question ...................................................................... 12 1.2.2 Extinction Risk .................................................................................... 12 1.3 Summary of Information Presented
    [Show full text]
  • White Abalone Recovery Plan
    FINAL WHITE ABALONE RECOVERY PLAN (Haliotis sorenseni) Prepared by The White Abalone Recovery Team for National Oceanic and Atmospheric Administration National Marine Fisheries Service Office of Protected Resources October 2008 RECOVERY PLAN FOR WHITE ABALONE (Haliotis sovenseni) Prepared by National Marine Fisheries Service Southwest Regional Office ~ationalwarineFisheries Service National Oceanic and Atmospheric Administration White Abalone Recovery Plan DISCLAIMER DISCLAIMER Recovery plans delineate reasonable actions which are believed to be required to recover and/or protect listed species. Plans are published by the National Marine Fisheries Service (NMFS), sometimes prepared with the assistance of recovery teams, contractors, state agencies, and others. Objectives will be obtained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views or the official positions or approval of any individuals or agencies involved in the plan formulation, other than NMFS. They represent the official position of NMFS only after they have been signed by the Assistant Administrator. Approved recovery plans are subject to modification as dictated by new findings, changes in species status and the completion of recovery actions. LITERATURE CITATION SHOULD READ AS FOLLOWS: National Marine Fisheries Service. 2008. White Abalone Recovery Plan (Haliotis sorenseni). National Marine Fisheries Service, Long Beach, CA. ADDITIONAL COPIES MAY BE OBTAINED FROM: United States Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Regional Office 501 W. Ocean Blvd., Suite 4200 Long Beach, CA 90802-4213 On Line: http://swr.nmfs.noaa.gov/ Recovery plans can be downloaded from the National Marine Fisheries Service website: http://www.nmfs.noaa.gov/pr/recovery/plans.htm Cover photograph of a white abalone by John Butler of the NOAA Southwest Fisheries Science Center.
    [Show full text]
  • Genetic Variation in New Zealand Abalone, Haliotis Iris
    Genetic variation in New Zealand abalone, Haliotis iris A thesis submitted in partial fulfillment of the of the requirements for the Degree of Doctor of Philosophy in Biological Sciences at the University of Canterbury by Margaret Will University of Canterbury Christchurch, New Zealand 2009 Table of Contents ABSTRACT ...............................................................................................................................1 1. INTRODUCTION..................................................................................................................3 GENE FLOW.............................................................................................................................3 ABALONE ................................................................................................................................7 Systematics .........................................................................................................................9 Assessing genetic structure...............................................................................................11 Genetic structure of abalone.............................................................................................12 NEW ZEALAND ABALONE......................................................................................................20 Aims .................................................................................................................................22 2. GENETIC STRUCTURE ACROSS COOK STRAIT.........................................................25
    [Show full text]
  • Pubblicazione Mensile Edita Dalla Unione Malacologica Italiana
    Distribution and Biogeography of the Recent Haliotidae (Gastropoda: Vetigastropoda) Worid-wide Daniel L. Geiger Autorizzazione Tribunale di Milano n. 479 del 15 Ottobre 1983 Spedizione in A.P. Art. 2 comma 20/C Legge 662/96 - filiale di Milano Maggio 2000 - spedizione n. 2/3 • 1999 ISSN 0394-7149 SOCIETÀ ITALIANA DI MALACOLOGIA SEDE SOCIALE: c/o Acquano Civico, Viale Gadio, 2 - 20121 Milano CONSIGLIO DIRETTIVO 1999-2000 PRESIDENTE: Riccardo Giannuzzi -Savelli VICEPRESIDENTE: Bruno Dell'Angelo SEGRETARIO: Paolo Crovato TESORIERE: Sergio Duraccio CONSIGLIERI: Mauro Brunetti, Renato Chemello, Stefano Chiarelli, Paolo Crovato, Bruno Dell’Angelo, Sergio Duraccio, Maurizio Forli, Riccardo Giannuzzi-Savelli, Mauro Mariani, Pasquale Micali, Marco Oliverio, Francesco Pusateri, Giovanni Repetto, Carlo Smriglio, Gianni Spada REVISORI DEI CONTI: Giuseppe Fasulo, Aurelio Meani REDAZIONE SCIENTIFICA - EDITORIAL BOARD DIRETTORE - EDITOR: Daniele BEDULLI Dipartimento di Biologia Evolutiva e Funzionale. V.le delle Scienze. 1-43100 Parma, Italia. Tel. + + 39 (521) 905656; Fax ++39 (521) 905657 E-mail : [email protected] CO-DIRETTORI - CO-EDITORS: Renato CHEMELLO (Ecologia - Ecology) Dipartimento di Biologia Animale. Via Archirafi 18. 1-90123 Palermo, Italia. Tel. + + 39 (91) 6177159; Fax + + 39 (9D 6172009 E-mail : [email protected] Marco OLIVERIO (Sistematica - Systematics) Dipartimento di Biologia Animale e dell’Uomo. Viale dell’Università 32. 1-00185 Roma, Italia. E-mail : [email protected] .it Italo NOFRONI (Sistematica - Systematict) Via Benedetto Croce, 97. 1-00142 Roma, Italia. Tel + + 39(06) 5943407 E-mail : [email protected] Pasquale MICALI (Relazioni con i soci - Tutor) Via Papina, 17. 1-61032 Fano (PS), Italia. Tel ++39 (0721) 824182 - Van Aartsen, Daniele Bedulli, Gianni Bello, Philippe Bouchet, Erminio Caprotti, Riccardo Catta- MEMBRI ADVISORS : Jacobus J.
    [Show full text]
  • Dietary Protein Requirements of Abalone (Haliotis Discus, Reeve 1846) Depending on Abalone Size
    RESEARCH ARTICLE eISSN 2234-1757 Fish Aquat Sci. 2021;24(3):129-136 Fisheries and https://doi.org/10.47853/FAS.2021.e13 Aquatic Sciences Dietary protein requirements of abalone (Haliotis discus, Reeve 1846) depending on abalone size Seong Il Baek1, Sung Hwoan Cho2, * 1 Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea 2 Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Korea Abstract Dietary protein requirements of abalone (Haliotis discus) depending on abalone size were determined and compared. One thou- sand and fifty small abalone (initial weight of 2.7 g) and five hundred forty large one (initial weight of 16.0 g) were distributed into 15 and 18 containers in Trial 1 and 2, respectively. Five and six experimental diets containing crude protein level from 20% to 40% and 20% to 45% with 5% increment of protein level for the small and large abalone were prepared and referred to as the CP20, CP25, CP30, CP35, CP40, and CP45 diets, respectively. The experimental diets were fed to abalone for 16 weeks in Trials 1 and 2. Specific growth rate (SGR) of the small abalone fed the CP20 diet was lower compared to that of abalone fed all other diets in Trial 1. Growth performance (weight gain and SGR) of the large abalone fed the CP30, CP35, and CP40 diets were greater than that of abalone fed the CP20, CP25, and CP45 diets in Trial 2. Dietary protein requirements were estimated to be 33.0% and 33.5% for the small and large abalone based on the 2nd order polynomial analysis, respectively.
    [Show full text]
  • A Survey of Stock of the Donkey's Ear Abalone, Haliotis Asinina L. in The
    A survey of stock of the donkey’s ear abalone, Haliotis asinina L. in the Sagay Marine Reserve, Philippines: evaluating the effectiveness of marine protected area enforcement Ronald J. Maliao, Edward L. Webb∗, Kathe R. Jensen School of Environment, Resources and Development, The Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand Received 19 August 2002; received in revised form 7 May 2003; accepted 18 May 2003 Abstract Marine protected areas (MPA) are tools for integrated coastal management (ICM); they have gained worldwide acceptance as a strategy for resource restoration and conservation. Research must gauge the effectiveness of MPA implementation in promoting fisheries recovery. This study investigated the effectiveness of enforcement in the Sagay Marine Reserve (SMR), western Philippines, in promoting the recovery of abalone stock. Enforcement of protection in the SMR is accomplished through the bantay-dagat (sea patrol), which utilizes reef watchtowers to deter illegal activities. The abalone populations in two protected reefs (well-enforced protection) and two open access reefs (poorly enforced protection) in the SMR were surveyed using 50 m×2 m belt transects. Abalone density was significantly greater, and abalone were larger, on protected than on unprotected reefs. However, we found that recruitment appeared limited at all sites, and that abalone tended to be sexually mature at small sizes. This may indicate that the population has been near a critical threshold, that recent climatic events may have suppressed recovery rates, and/or that enforcement and rule compliance was low and with continued poaching. Nevertheless, the results of this study agree with findings of other research that a properly enforced no-take MPA can promote recovery of local stocks.
    [Show full text]
  • Genetic Diversity of Marine Fisheries Resources Possible Impacts of Fishing
    FAO FISHERIES TECHNICAL PAPER 344 Genetic diversity of marine fisheries resources Possible impacts of fishing TABLE OF CONTENTS by P.J.Smith Fisheries Research Centre Ministry of Agriculture and Fisheries Wellington, New Zealand The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-43 ISBN 92-5-103631-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. Food and Agriculture Organization of the United Nations Rome, 1994 © FAO 1994 PREPARATION OF THIS DOCUMENT Conserving biodiversity in the ocean has been more neglected than that on land, yet the ocean is rich in genetic, species and ecosystem diversity. Fishery resources are an important subset of the world's biodiversity. They are affected by human activities including fishing, aquaculture and other development sectors. The present paper is a general review on genetic diversity of marine fishery resources with particular emphasis on the impact of fishing.
    [Show full text]