White Abalone Recovery Plan

Total Page:16

File Type:pdf, Size:1020Kb

White Abalone Recovery Plan FINAL WHITE ABALONE RECOVERY PLAN (Haliotis sorenseni) Prepared by The White Abalone Recovery Team for National Oceanic and Atmospheric Administration National Marine Fisheries Service Office of Protected Resources October 2008 RECOVERY PLAN FOR WHITE ABALONE (Haliotis sovenseni) Prepared by National Marine Fisheries Service Southwest Regional Office ~ationalwarineFisheries Service National Oceanic and Atmospheric Administration White Abalone Recovery Plan DISCLAIMER DISCLAIMER Recovery plans delineate reasonable actions which are believed to be required to recover and/or protect listed species. Plans are published by the National Marine Fisheries Service (NMFS), sometimes prepared with the assistance of recovery teams, contractors, state agencies, and others. Objectives will be obtained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views or the official positions or approval of any individuals or agencies involved in the plan formulation, other than NMFS. They represent the official position of NMFS only after they have been signed by the Assistant Administrator. Approved recovery plans are subject to modification as dictated by new findings, changes in species status and the completion of recovery actions. LITERATURE CITATION SHOULD READ AS FOLLOWS: National Marine Fisheries Service. 2008. White Abalone Recovery Plan (Haliotis sorenseni). National Marine Fisheries Service, Long Beach, CA. ADDITIONAL COPIES MAY BE OBTAINED FROM: United States Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Regional Office 501 W. Ocean Blvd., Suite 4200 Long Beach, CA 90802-4213 On Line: http://swr.nmfs.noaa.gov/ Recovery plans can be downloaded from the National Marine Fisheries Service website: http://www.nmfs.noaa.gov/pr/recovery/plans.htm Cover photograph of a white abalone by John Butler of the NOAA Southwest Fisheries Science Center. i White Abalone Recovery Plan TABLE OF CONTENTS TABLE OF CONTENTS DISCLAIMER................................................................................................................................I TABLE OF CONTENTS ............................................................................................................ II ACKNOWLEDGMENTS ..........................................................................................................IV EXECUTIVE SUMMARY ......................................................................................................... V LIST OF ACRONYMS AND ABBREVIATIONS ...............................................................XIII I. BACKGROUND..................................................................................................................... I-1 A. STATUS OF THE SPECIES.........................................................................................................I-1 B. SPECIES’ DESCRIPTION AND TAXONOMY ...............................................................................I-1 C. POPULATION TRENDS AND DISTRIBUTION..............................................................................I-3 HISTORIC AND CURRENT RANGE ..................................................................................................................I-3 EXPLOITATION HISTORY ...............................................................................................................................I-4 POPULATION TRENDS....................................................................................................................................I-4 D. LIFE HISTORY/ECOLOGY .....................................................................................................I-10 REPRODUCTION...........................................................................................................................................I-10 LARVAL STAGE, SETTLEMENT, AND METAMORPHOSIS...............................................................................I-11 JUVENILE STAGE.........................................................................................................................................I-12 ADULT STAGE.............................................................................................................................................I-13 E. HABITAT CHARACTERISTICS ................................................................................................I-14 DISTRIBUTION.............................................................................................................................................I-14 ABUNDANCE AND QUALITY OF SUITABLE HABITAT ...................................................................................I-15 F. CRITICAL HABITAT...............................................................................................................I-16 G. REASONS FOR LISTING/CURRENT THREATS .........................................................................I-16 LISTING FACTORS AND CURRENT THREATS................................................................................................I-16 CURRENT THREATS.....................................................................................................................................I-21 H. CONSERVATION MEASURES.................................................................................................I-25 PRIVATE-PUBLIC PARTNERSHIPS.................................................................................................................I-25 NATIONAL MARINE FISHERIES SERVICE CONSERVATION MEASURES FOR WHITE ABALONE......................I-25 NATIONAL PARK SERVICE CONSERVATION MEASURES FOR WHITE ABALONE...........................................I-25 NATIONAL MARINE SANCTUARY CONSERVATION MEASURES FOR WHITE ABALONE ................................I-26 STATE OF CALIFORNIA CONSERVATION MEASURES FOR WHITE ABALONE ................................................I-26 MEXICAN CONSERVATION MEASURES FOR WHITE ABALONE ....................................................................I-26 I. KNOWN BIOLOGICAL CONSTRAINTS/NEEDS..........................................................................I-27 II. RECOVERY STRATEGY .................................................................................................II-1 A. KEY FACTS AND ASSUMPTIONS ........................................................................................... II-1 B. PRIMARY FOCUS AND JUSTIFICATION OF RECOVERY EFFORTS ............................................ II-1 III. RECOVERY GOALS, OBJECTIVES, AND CRITERIA........................................... III-1 A. RECOVERY GOAL................................................................................................................III-1 B. RECOVERY OBJECTIVES ......................................................................................................III-1 C. RECOVERY CRITERIA ..........................................................................................................III-2 IV. RECOVERY PROGRAM ................................................................................................IV-1 A. STEP-DOWN OUTLINE .........................................................................................................IV-1 B. NARRATIVE.........................................................................................................................IV-4 ii White Abalone Recovery Plan TABLE OF CONTENTS RECOVERY ACTION 1. ASSESS AND MONITOR SUBPOPULATIONS IN THE WILD IN COOPERATION WITH THE STATE OF CALIFORNIA, OTHER FEDERAL AGENCIES, PRIVATE ORGANIZATIONS AND THE MEXICAN GOVERNMENT. ........................................................................................................................................... IV-4 RECOVERY ACTION 2. IDENTIFY AND CHARACTERIZE EXISTING AND POTENTIAL WHITE ABALONE HABITAT THROUGH ACOUSTIC REMOTE SENSING TECHNOLOGY. ................................................................ IV-9 RECOVERY ACTION 3. PROTECT WHITE ABALONE POPULATIONS AND THEIR HABITAT...................... IV-10 RECOVERY ACTION 4. CONTINUE, REFINE AND EXPAND CAPTIVE PROPAGATION AND ENHANCEMENT PROGRAM FOR WHITE ABALONE IN CALIFORNIA WITH THE GOAL OF ARTIFICIALLY ENHANCING POPULATIONS IN THE WILD. ............................................................................................................................................ IV-13 RECOVERY ACTION 5. PLAN AND IMPLEMENT A PUBLIC OUTREACH AND EDUCATION PLAN. ............ IV-16 RECOVERY ACTION 6. SECURE FINANCIAL SUPPORT FOR WHITE ABALONE RECOVERY. .................... IV-16 V. IMPLEMENTATION SCHEDULE .................................................................................. V-1 VI. LITERATURE CITED.....................................................................................................VI-1 APPENDIX A............................................................................................................................ A-1 WHITE ABALONE BROODSTOCK COLLECTION AND HOLDING PROTOCOL ................................ A-1 APPENDIX B. ........................................................................................................................... B-1 NATIONAL MARINE FISHERIES SERVICE WHITE ABALONE GENETICS MANAGEMENT PLAN.... B-1 APPENDIX C...........................................................................................................................
Recommended publications
  • Petition to Protect the Pinto Abalone
    BEFORE THE SECRETARY OF COMMERCE PETITION TO LIST THE PINTO ABALONE (HALIOTIS KAMTSCHATKANA) UNDER THE ENDANGERED SPECIES ACT Center for Biological Diversity August 1, 2013 NOTICE OF PETITION Penny Pritzker Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave, NW Washington, D.C. 20230 Email: [email protected] Samuel Rauch Assistant Administrator for Fisheries National Marine Fisheries Service 1315 East West Highway Silver Spring, MD 20910 Ph: (301) 427-8000 Email: [email protected] PETITIONER The Center for Biological Diversity PO Box 100599 Anchorage, AK 99510-0599 Ph: (907) 793-8691 Date: August 1, 2013 Kiersten Lippmann Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. § 1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 533(e), and 50 C.F.R. § 424.14(a), the Center for Biological Diversity (“Petitioner”) hereby petitions the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (“NOAA”), through the National Marine Fisheries Service (“NMFS” or “NOAA Fisheries”), to list the pinto abalone (Haliotis kamtschatkana) as a threatened or endangered species and to designate critical habitat to ensure its survival and recovery. The Center for Biological Diversity (Center) is a non-profit, public interest environmental organization dedicated to the protection of native species and their habitats through science, policy, and environmental law. The Center has nearly 475,000 members and online activists in Alaska, throughout the United States and internationally. The Center and its members are concerned with the conservation of endangered species and the effective implementation of the ESA.
    [Show full text]
  • Evolution of Large Body Size in Abalones (Haliotis): Patterns and Implications
    Paleobiology, 31(4), 2005, pp. 591±606 Evolution of large body size in abalones (Haliotis): patterns and implications James A. Estes, David R. Lindberg, and Charlie Wray Abstract.ÐKelps and other ¯eshy macroalgaeÐdominant reef-inhabiting organisms in cool seasÐ may have radiated extensively following late Cenozoic polar cooling, thus triggering a chain of evolutionary change in the trophic ecology of nearshore temperate ecosystems. We explore this hypothesis through an analysis of body size in the abalones (Gastropoda; Haliotidae), a widely distributed group in modern oceans that displays a broad range of body sizes and contains fossil representatives from the late Cretaceous (60±75 Ma). Geographic analysis of maximum shell length in living abalones showed that small-bodied species, while most common in the Tropics, have a cosmopolitan distribution, whereas large-bodied species occur exclusively in cold-water ecosys- tems dominated by kelps and other macroalgae. The phylogeography of body size evolution in extant abalones was assessed by constructing a molecular phylogeny in a mix of large and small species obtained from different regions of the world. This analysis demonstrates that small body size is the plesiomorphic state and largeness has likely arisen at least twice. Finally, we compiled data on shell length from the fossil record to determine how (slowly or suddenly) and when large body size arose in the abalones. These data indicate that large body size appears suddenly at the Miocene/Pliocene boundary. Our ®ndings support the view that ¯eshy-algal dominated ecosys- tems radiated rapidly in the coastal oceans with the onset of the most recent glacial age.
    [Show full text]
  • Blacklip Abalone (Haliotis Rubra) Exploitation Status Overfished to Recruitment Overfished
    I & I NSW WILD FISHERIES RESEARCH PROGRAM Blacklip Abalone (Haliotis rubra) EXPLOITATION STATUS OVERFISHED TO RECRUITMENT OVERFISHED Stock is currently recovering from historically low levels that occurred due to a combination of overfishing and mortality due to the parasite Perkinsus sp. There are concerns about possible recruitment overfishing in the northern regions. SCIENTIFIC NAME STANDARD NAME COMMENT Haliotis rubra Blacklip abalone Haliotis rubra Image © Bernard Yau Background Blacklip abalone (Haliotis rubra) is a large, juveniles and adults all occur in the same flattened marine gastropod mollusc which habitat. This suggests that local recruitment occurs in rocky reef habitats on the south- is dependent on the proximity of adults. This, eastern Australian coastline from northern combined with the restricted movement NSW to Rottnest Island in Western Australia, of adult abalone, gives rise to stocks which including Tasmania. Blacklip abalone form are spatially highly structured. Increasingly the basis of the abalone fishery in NSW. The sophisticated management regimes are species is also harvested in the other southern being developed to properly account for this Australian states along with the greenlip structuring. abalone H. laevigata. The bulk of the Australian Commercially, blacklip abalone are harvested production of abalone is exported to lucrative by endorsed divers, usually using compressed markets in south-east Asia. air supplied from a hookah unit, although Blacklip abalone can live for over in some cases SCUBA or free diving may be 20 years and can reach a maximum size of used. A chisel shaped abalone iron is used to 22 cm shell length (SL) and a weight of over pry the abalone away from the rock surface.
    [Show full text]
  • The South African Commercial Abalone Haliotis Midae Fishery Began
    S. Afr. J. mar. Sci. 22: 33– 42 2000 33 TOWARDS ADAPTIVE APPROACHES TO MANAGEMENT OF THE SOUTH AFRICAN ABALONE HALIOTIS MIDAE FISHERY C. M. DICHMONT*, D. S. BUTTERWORTH† and K. L. COCHRANE‡ The South African abalone Haliotis midae resource is widely perceived as being under threat of over- exploitation as a result of increased poaching. In this paper, reservations are expressed about using catch per unit effort as the sole index of abundance when assessing this fishery, particularly because of the highly aggregatory behaviour of the species. A fishery-independent survey has been initiated and is designed to provide relative indices of abundance with CVs of about 25% in most of the zones for which Total Allowable Catchs (TACs) are set annually for this fishery. However, it will take several years before this relative index matures to a time-series long enough to provide a usable basis for management. Through a series of simple simulation models, it is shown that calibration of the survey to provide values of biomass in absolute terms would greatly enhance the value of the dataset. The models show that, if sufficient precision (CV 50% or less) could be achieved in such a calibration exercise, the potential for management benefit is improved substantially, even when using a relatively simple management procedure to set TACs. This improvement results from an enhanced ability to detect resource declines or increases at an early stage, as well as from decreasing the time period until the survey index becomes useful. Furthermore, the paper demonstrates that basic modelling techniques could usefully indicate which forms of adaptive management experiments would improve ability to manage the resource, mainly through estimation of the level of precision that would be required from those experiments.
    [Show full text]
  • White Abalone (Haliotis Sorenseni)
    White Abalone (Haliotis sorenseni) Five-Year Status Review: Summary and Evaluation Photo credits: Joshua Asel (left and top right photos); David Witting, NOAA Restoration Center (bottom right photo) National Marine Fisheries Service West Coast Region Long Beach, CA July 2018 White Abalone 5- Year Status Review July 2018 Table of Contents EXECUTIVE SUMMARY ............................................................................................................. i 1.0 GENERAL INFORMATION .............................................................................................. 1 1.1 Reviewers ......................................................................................................................... 1 1.2 Methodology used to complete the review ...................................................................... 1 1.3 Background ...................................................................................................................... 1 2.0 RECOVERY IMPLEMENTATION ................................................................................... 3 2.2 Biological Opinions.......................................................................................................... 3 2.3 Addressing Key Threats ................................................................................................... 4 2.4 Outreach Partners ............................................................................................................. 5 2.5 Recovery Coordination ...................................................................................................
    [Show full text]
  • New Zealand Fisheries Assessment Research Document 8919 Paua
    Not to be cited without permission of the author(s) New Zealand Fisheries Assessment Research Document 8919 Paua fishery assessment 1989 D.R. Schiel MAFFish Fisheries Research Centre P 0 Box 297 Wellington May 1989 MAFFish, N.Z. Ministry of Agricultun and Fisheries This series documents the scientific basis for stock assessments and fisheries management advice in New Zealand. It addresses the issues of the day in the current legislative context and in the time frames required. The documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Paua Fishery Assessment 1989 D. R. Schiel 1. INTRODUCTION 1.1 Overview This paper contains background data and information on paua, Haliotis iris and H. australis. There is not a large literature on these species, and little published information exists on the fishery. What follows represents a summary of the literature, unpublished information available at MAFFish, and conversations with those involved with the paua fishery. 1.2 Description of Fishery Paua (usually called abalone in other countries) are marine molluscs which occur in shallow, rocky habitats throughout the shores of New Zealand. Two species are fished commercially in New Zealand. These are the black-footed H. iris, which is by far the commonest species, and the yellow-footed H. australis. Most of the commercial catch is comprised of H. iris, while only a small amount of H. australis is caught. This document concerns H, iris, as there is more information on this species, and separate fisheries records are not kept for the two species.
    [Show full text]
  • Regulation of Haemocyanin Function in Haliotis Iris 255 Also Matched with Adductor Muscle Haemolymph Samples
    The Journal of Experimental Biology 205, 253–263 (2002) 253 Printed in Great Britain © The Company of Biologists Limited 2002 JEB3731 The archaeogastropod mollusc Haliotis iris: tissue and blood metabolites and allosteric regulation of haemocyanin function Jane W. Behrens1,3, John P. Elias2,3, H. Harry Taylor3 and Roy E. Weber1,* 1Department of Zoophysiology, Institute Biological Sciences, University of Aarhus, DK 8000 Aarhus, Denmark, 2School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia and 3Department of Zoology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand *Author for correspondence (e-mail: [email protected]) Accepted 30 October 2001 Summary 2+ 2+ We investigated divalent cation and anaerobic end- Mg and Ca restored the native O2-binding properties product concentrations and the interactive effects of these and the reverse Bohr shift. L- and D-lactate exerted substances and pH on haemocyanin oxygen-binding (Hc- minor modulatory effects on O2-affinity. At in vivo 2+ 2+ O2) in the New Zealand abalone Haliotis iris. During 24 h concentrations of Mg and Ca , the cooperativity is 2+ of environmental hypoxia (emersion), D-lactate and dependent largely on Mg , which modulates the O2 tauropine accumulated in the foot and shell adductor association equilibrium constants of both the high-affinity muscles and in the haemolymph of the aorta, the pedal (KR) and the low-affinity (KT) states (increasing and sinus and adductor muscle lacunae, whereas L-lactate was decreasing, respectively). This allosteric mechanism not detected. Intramuscular and haemolymph D-lactate contrasts with that encountered in other haemocyanins concentrations were similar, but tauropine accumulated and haemoglobins.
    [Show full text]
  • Shelled Molluscs
    Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1.
    [Show full text]
  • The Importance and Persistence of Abalone (Haliotis Spp.) Along the California
    The Importance and Persistence of Abalone (Haliotis spp.) along the California Coast Dr. Stevens ENVS 190 Senior Thesis Kalli Fenk Abstract Abalone was once a common sight along the California Coast. Native tribes co-existed with the species for thousands of years. They relied on if for sustenance and they used it for tools, utensils, jewelry, trading, and regalia. In return, they took care of the abalone as if it were one of their own. When colonization devastated Native Californian culture, much of their knowledge disappeared along with the species they cared for. Abalone was highly valuable for its taste and beauty. When commercialization of abalone fisheries began their populations began to decline. Now, they face more obstacles to recovery than ever before. Current abalone stressors include, poaching, low population densities, pollution, and disease. Warming ocean temperatures also subject abalone to sea level rise and ocean acidification. I recommend a combined approach of traditional ecological management and western science be used to provide adaptive management strategies for policy makers and fisheries managers. In preserving these creatures we are inherently preserving cultural heritage and traditions of over 20 tribes in California. Table of Contents Introduction……………………………………………………………………….1 Background………………………………………………………………………..2 Biology………………………………………………………………………3 Ecology……………………………………………………………………....4 Native History and Cultural Significance…………………………………...6 20th Century Population Declines…………………………………………..10 Current
    [Show full text]
  • Reference List for 12-Month Finding on Two Petitions to List the Pinto Abalone (Haliotis Kamtschatkana) Under the Endangered Species Act
    Reference List for 12-Month Finding on Two Petitions to List the Pinto Abalone (Haliotis kamtschatkana) under the Endangered Species Act National Marine Fisheries Service, West Coast Region Protected Resources Division, Long Beach, CA December 2014 FEDERAL REGISTER NOTICES U.S. Federal Register, Volume 68 No. 60. 68 FR 15100, March 28, 2003. Policy for evaluation of conservation efforts when making listing decisions. U.S. Federal Register, Volume 69 No. 73. 69 FR 19975, 15 April 2004. Endangered and threatened species; Establishment of Species of Concern list, addition of species to Species of Concern list, description of factors for identifying Species of Concern, and revision of candidate species list under the Endangered Species Act. U.S. Federal Register, Volume 78 No. 222. 78 FR 69033, 18 November 2013. Endangered and threatened wildlife: 90-day finding on petitions to list the pinto abalone as threatened or endangered under the Endangered Species Act. U.S. Federal Register, Volume 79 No. 126. 79 FR 37578, 1 July 2014. Endangered and threatened wildlife: Final Policy on Interpretation of the Phrase ‘‘Significant Portion of Its Range’’ in the Endangered Species Act’s Definitions of ‘‘Endangered Species’’ and ‘‘Threatened Species.’’ PERSONAL COMMUNICATIONS Bird, Amanda. Masters Program, California State University, Fullerton (CSUF). July 26, 2014. Pers. comm. with Melissa Neuman (NMFS) regarding unpublished preliminary data from surveys to characterize the demographics of pinto abalone populations in nearshore San Diego kelp beds (Point Loma and La Jolla). Boch, Charles. Stanford University. April 28, 2014. Pers. comm. with David Kushner (NPS) regarding estimated proportion of H. kamtschatkana in mixed assemblages of H.
    [Show full text]
  • D050p145.Pdf
    DISEASES OF AQUATIC ORGANISMS Vol. 50: 145–152, 2002 Published July 8 Dis Aquat Org Evaluation of radiography, ultrasonography and endoscopy for detection of shell lesions in live abalone Haliotis iris (Mollusca: Gastropoda) Hendrik H. Nollens1,*, John C. Schofield2, Jonathan A. Keogh1, P. Keith Probert1 1Department of Marine Science, and 2Department of Laboratory Animal Sciences, School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand ABSTRACT: Radiography, ultrasonography and endoscopy were examined for their efficacy as non- destructive techniques for the detection of shell lesions in the marine gastropod Haliotis iris Gmelin. X-rays provided 69% correct diagnoses, with detection being restricted to those lesions which were mineralised. Ultrasound also showed potential to reliably detect lesions (83% correct diagnoses), but only where the lesions demonstrated a clear 3-dimensional relief. Lesion dimensions were under- estimated using ultrasound. Endoscopy, applied to anaesthetised individuals, provided the most accurate method (92% correct diagnoses) for lesion detection and, although invasive, had no dis- cernible effect on survival of the abalone 8 mo after screening. KEY WORDS: Abalone · Haliotis · Gastropoda · Shell lesion · Detection · Radiography · Ultrasono- graphy · Endoscopy Resale or republication not permitted without written consent of the publisher INTRODUCTION Grindley et al. (1998) reported shells in which the lesion had invaded the adductor muscle attachment A range of shell-invading organisms associated with site, potentially resulting in the abalone losing its shell. live abalone has been reported in the literature Aquaculturists also reported this condition to cause (Kojima & Imajima 1982, Clavier 1992, Thomas & Day fatalities to abalone kept in captivity. In addition, it has 1995), although in most cases the effects of such organ- been suggested that wild populations with affected isms on their host remains to be ascertained.
    [Show full text]
  • Molluscan Fisheries and Aquaculture World Congress of Malacology Perth 2004
    Molluscan Fisheries and Aquaculture World Congress of Malacology Perth 2004 Dr F. Wells Dr L. Joll Dr G. Maguire Project No. 2003/300 ISBN 1 920843 30 2 Copyright Fisheries Research and Development Corporation and Western Australian Museum 2006. This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry. 2 TABLE OF CONTENTS Page No. NONTECHNICAL SUMMARY ................................................................................... 4 ACKNOWLEDGEMENTS ......................................................................................... 5 BACKGROUND ........................................................................................................ 5 NEED ........................................................................................................ 5 OBJECTIVES ........................................................................................................ 5 METHODS .......................................................................................................
    [Show full text]