ESD Risk Assessment Report 2009 for the Abalone Fishery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Environmental Risk Limits for Triphenyltin in Water
Environmental risk limits for triphenyltin in water RIVM report 601714018/2012 R. van Herwijnen | C.T.A. Moermond | P.L.A. van Vlaardingen | F.M.W. de Jong | E.M.J. Verbruggen National Institute for Public Health and the Environment P.O. Box 1 | 3720 BA Bilthoven www.rivm.com Environmental risk limits for triphenyltin in water RIVM Report 601714018/2012 RIVM Report 601714018 Colophon © RIVM 2012 Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication. R. van Herwijnen C.T.A. Moermond P.L.A. van Vlaardingen F.M.W. de Jong E.M.J. Verbruggen Contact: René van Herwijnen Expertise Centre for Substances [email protected] This investigation has been performed by order and for the account of the Ministry of Infrastructure and the Environment, Directorate for Sustainability, within the framework of the project 'Chemical aspects of the Water Framework Directive and the Directive on Priority Substances'. Page 2 of 104 RIVM Report 601714018 Abstract Environmental risk limits for triphenyltin in water RIVM has, by order of the Ministry of Infrastructure and the Environment, derived environmental risk limits for triphenyltin. This was necessary because the current risk limts have not been derived according to the most recent methodology. Main uses of triphenyltin were for wood preservation and as antifouling on ships. The use as antifouling has been banned within Europe since 2003. The Dutch Steering Committee for Substances will set new standards on the basis of the scientific advisory values in this report. -
Tracking Larval, Newly Settled, and Juvenile Red Abalone (Haliotis Rufescens ) Recruitment in Northern California
Journal of Shellfish Research, Vol. 35, No. 3, 601–609, 2016. TRACKING LARVAL, NEWLY SETTLED, AND JUVENILE RED ABALONE (HALIOTIS RUFESCENS ) RECRUITMENT IN NORTHERN CALIFORNIA LAURA ROGERS-BENNETT,1,2* RICHARD F. DONDANVILLE,1 CYNTHIA A. CATTON,2 CHRISTINA I. JUHASZ,2 TOYOMITSU HORII3 AND MASAMI HAMAGUCHI4 1Bodega Marine Laboratory, University of California Davis, PO Box 247, Bodega Bay, CA 94923; 2California Department of Fish and Wildlife, Bodega Bay, CA 94923; 3Stock Enhancement and Aquaculture Division, Tohoku National Fisheries Research Institute, FRA 3-27-5 Shinhamacho, Shiogama, Miyagi, 985-000, Japan; 4National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Agency of Japan 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan ABSTRACT Recruitment is a central question in both ecology and fisheries biology. Little is known however about early life history stages, such as the larval and newly settled stages of marine invertebrates. No one has captured wild larval or newly settled red abalone (Haliotis rufescens) in California even though this species supports a recreational fishery. A sampling program has been developed to capture larval (290 mm), newly settled (290–2,000 mm), and juvenile (2–20 mm) red abalone in northern California from 2007 to 2015. Plankton nets were used to capture larval abalone using depth integrated tows in nearshore rocky habitats. Newly settled abalone were collected on cobbles covered in crustose coralline algae. Larval and newly settled abalone were identified to species using shell morphology confirmed with genetic techniques using polymerase chain reaction restriction fragment length polymorphism with two restriction enzymes. Artificial reefs were constructed of cinder blocks and sampled each year for the presence of juvenile red abalone. -
Quarantine Requirements for the Importation of Live Crustaceans and Molluscs
Quarantine Requirements for the Importation of Live Crustaceans and Molluscs (In case of any discrepancy between the English version and the Chinese text of these Requirements, the Chinese text shall govern.) Promulgated by Council of Agriculture on April 12, 2004 Amendment by Council of Agriculture on February 16, 2011 Amendment by Council of Agriculture on March 25, 2014 Amendment by Council of Agriculture on August 25, 2014 1. The scope of the species and listed diseases of live crustaceans and molluscs of this Requirements apply to are listed in the Attached tables of the Requirements. The applicant shall apply for an import permit from a central competent authority if the species of live crustaceans and molluscs are referred to Article 24 of Wildlife Conservation Act as protected wildlife or Article 27 as wildlife which are not domestic species. The importation of live crustaceans and molluscs for human consumption shall comply with Article 11 of Act Governing Food Sanitation. 2. The importation of live crustaceans and molluscs for aquaculture or rearing purpose shall comply with the following conditions: (1) Live crustaceans and molluscs shall be kept in the water area or aquaculture facility of origin approved by the exporting country for at least fourteen days prior to the shipment, where high mortality of unknown etiology has not occurred among live crustaceans and molluscs during the previous three months. (2) The water area or aquaculture facility of origin shall meet one of the following conditions: I. The following basic -
Sea Ranching Trials for Commercial Production of Greenlip (Haliotis Laevigata) Abalone in Western Australia
1 Sea ranching trials for commercial production of greenlip (Haliotis laevigata) abalone in Western Australia An outline of results from trials conducted by Ocean Grown Abalone Pty Ltd April 2013 Roy Melville-Smith1, Brad Adams2, Nicola J. Wilson3 & Louis Caccetta3 1Curtin University Department of Environment and Agriculture GPO Box U1987, Perth WA6845 2Ocean Grown Abalone Pty Ltd PO Box 231, Augusta WA6290 3Curtin University Department of Mathematics and Statistics GPO Box U1987, Perth WA6845 2 Table of Contents Abstract ............................................................................................................................................... 4 Acknowledgements ............................................................................................................................. 5 1 Introduction .................................................................................................................................... 6 2 Methods .......................................................................................................................................... 7 2.1 Seed stock production ................................................................................................................. 7 2.2 Transport of seed stock ................................................................................................................ 7 2.3 The study site ............................................................................................................................... 8 2.4 Habitat -
W+W Special Paper B-18-2
W+W Special Paper B-18-2 DIE GENETISCHE FAMILIE DER HALIOTIDAE – HYBRIDISIERUNG, FORTPFLANZUNGSISOLATION UND SYMPATRISCHE ARTBILDUNG Nigel Crompton September 2018 http://www.wort-und-wissen.de/artikel/sp/b-18-2_haliotidae.pdf Bild: Doka54, Public Domain Inhalt Einleitung ................................................................................................ 3 Taxonomie der Seeohren ...................................................................... 6 Die taxonomische Stellung der Seeohren .........................................................7 Glossar ..............................................................................................................7 Seeohren-Arten und Hybriden ......................................................... 9 Genetische Familien und Befruchtung ..........................................14 Genetische Familien und sympatrische Artbildung ......................15 Die Rolle der Wechselwirkung zwischen Ei und Spermium bei der Befruchtung..............................................................................................16 Wechselwirkung zwischen Ei und Spermium und sympatrische Artbildung ....17 Besonderheiten der VERL-Lysin-Bindungsdomänen ......................................18 Wie kann es trotz Hybridisierung zur Artbildung kommen? ..........................19 Weitere Beispiele und vergleichbare Mechanismen bei Pflanzen ......................20 Schlussfolgerung .............................................................................21 Quellen ............................................................................................21 -
Blacklip Abalone (Haliotis Rubra) Exploitation Status Overfished to Recruitment Overfished
I & I NSW WILD FISHERIES RESEARCH PROGRAM Blacklip Abalone (Haliotis rubra) EXPLOITATION STATUS OVERFISHED TO RECRUITMENT OVERFISHED Stock is currently recovering from historically low levels that occurred due to a combination of overfishing and mortality due to the parasite Perkinsus sp. There are concerns about possible recruitment overfishing in the northern regions. SCIENTIFIC NAME STANDARD NAME COMMENT Haliotis rubra Blacklip abalone Haliotis rubra Image © Bernard Yau Background Blacklip abalone (Haliotis rubra) is a large, juveniles and adults all occur in the same flattened marine gastropod mollusc which habitat. This suggests that local recruitment occurs in rocky reef habitats on the south- is dependent on the proximity of adults. This, eastern Australian coastline from northern combined with the restricted movement NSW to Rottnest Island in Western Australia, of adult abalone, gives rise to stocks which including Tasmania. Blacklip abalone form are spatially highly structured. Increasingly the basis of the abalone fishery in NSW. The sophisticated management regimes are species is also harvested in the other southern being developed to properly account for this Australian states along with the greenlip structuring. abalone H. laevigata. The bulk of the Australian Commercially, blacklip abalone are harvested production of abalone is exported to lucrative by endorsed divers, usually using compressed markets in south-east Asia. air supplied from a hookah unit, although Blacklip abalone can live for over in some cases SCUBA or free diving may be 20 years and can reach a maximum size of used. A chisel shaped abalone iron is used to 22 cm shell length (SL) and a weight of over pry the abalone away from the rock surface. -
Status Review of the Pinto Abalone - Decision
Status Review of the Pinto Abalone - Decision TABLE OF CONTENTS Page Summary Sheet ............................................................................................................. 1 of 42 CR-102 ......................................................................................................................... 3 of 42 WAC 220-330-090 Crawfish, ((abalone,)) sea urchins, sea cucumbers, goose barnacles—Areas and seasons, personal-use fishery ........................................ 6 of 42 WAC 220-320-010 Shellfish—Classification .................................................................. 7 of 42 WAC 220-610-010 Wildlife classified as endangered species ....................................... 9 of 42 Status Report for the Pinto Abalone in Washington .................................................... 10 of 42 Summary Sheet Meeting dates: May 31, 2019 Agenda item: Status Review of the Pinto Abalone (Decision) Presenter(s): Chris Eardley, Puget Sound Shellfish Policy Coordinator Henry Carson, Fish & Wildlife Research Scientist Background summary: Pinto abalone are iconic marine snails prized as food and for their beautiful shells. Initially a state recreational fishery started in 1959; the pinto abalone fishery closed in 1994 due to signs of overharvest. Populations have continued to decline since the closure, most likely due to illegal harvest and densities too low for reproduction to occur. Populations at monitoring sites declined 97% from 1992 – 2017. These ten sites originally held 359 individuals and now hold 12. The average size of the remnant individuals continues to increase and wild juveniles have not been sighted in ten years, indicating an aging population with little reproduction in the wild. The species is under active restoration by the department and its partners to prevent local extinction. Since 2009 we have placed over 15,000 hatchery-raised juvenile abalone on sites in the San Juan Islands. Federal listing under the Endangered Species Act (ESA) was evaluated in 2014 but retained the “species of concern” designation only. -
Quarantine Requirements for the Importation of Live Crustaceans
Quarantine Requirements for the Importation of Live Crustaceans and Molluscs (In case of any discrepancy between the English version and the Chinese text of these Requirements, the Chinese text shall govern.) Promulgated by Council of Agriculture on April 12, 2004 Amendment by Council of Agriculture on February 16, 2011 Amendment by Council of Agriculture on March 25, 2014 Amendment by Council of Agriculture on August 25, 2014 Amendment by Council of Agriculture on August 25, 2014 Amendment by Council of Agriculture on June 30, 2018 and become effective on September 1, 2018 1. The scope of species and pertinent diseases of concern of crustaceans and molluscs to which these Requirements apply is shown in the attached Tables 1 and 2. 2. Sample collection, testing and surveillance as referred to in these Requirements must be conducted in accordance with relevant provisions in the Manual of Diagnostic Tests for Aquatic Animals of the World Organisation for Animal Health (hereinafter referred to as the OIE Aquatic Manual). For diseases with no sampling, testing or surveillance methods prescribed in the OIE Aquatic Manual, methods that have been published in international scientific journals are to be used. Disease incubation periods referred to in these Requirements are those specified in the OIE Aquatic Manual or the Aquatic Animal Health Code of the OIE (hereinafter referred to as the OIE Aquatic Code). For diseases with incubation periods not specified in the OIE Aquatic Manual or OIE Aquatic Code, incubation periods stated in articles published in international scientific journals shall apply. If no such information can be found either in the OIE Aquatic Manual, OIE Aquatic Code or international scientific journals, the incubation period will be 30 days. -
Growth-Related Gene Expression in Haliotis Midae
GROWTH‐RELATED GENE EXPRESSION IN HALIOTIS MIDAE Mathilde van der Merwe Dissertation presented for the degree of Doctor of Philosophy (Genetics) at Stellenbosch University Promoter: Dr Rouvay Roodt‐Wilding Co‐promoters: Dr Stéphanie Auzoux‐Bordenave and Dr Carola Niesler December 2010 Declaration By submitting this dissertation, I declare that the entirety of the work contained therein is my own, original work, that I am the authorship owner thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 09/11/2010 Copyright © 2010 Stellenbosch University All rights reserved I Acknowledgements I would like to express my sincere gratitude and appreciation to the following persons for their contribution towards the successful completion of this study: Dr Rouvay Roodt‐Wilding for her continued encouragement, careful attention to detail and excellent facilitation throughout the past years; Dr Stéphanie Auzoux‐Bordenave for valuable lessons in abalone cell culture and suggestions during completion of the manuscript; Dr Carola Niesler for setting an example and providing guidance that already started preparing me for a PhD several years ago; Dr Paolo Franchini for his patience and greatly valued assistance with bioinformatics; Dr Aletta van der Merwe and my fellow lab‐colleagues for their technical and moral support; My dear husband Willem for his love, support and enthusiasm, for sitting with me during late nights in the lab and for making me hundreds of cups of tea; My parents for their love and encouragement and for instilling the determination in me to complete my studies; All my family and friends for their sincere interest. -
The South African Commercial Abalone Haliotis Midae Fishery Began
S. Afr. J. mar. Sci. 22: 33– 42 2000 33 TOWARDS ADAPTIVE APPROACHES TO MANAGEMENT OF THE SOUTH AFRICAN ABALONE HALIOTIS MIDAE FISHERY C. M. DICHMONT*, D. S. BUTTERWORTH† and K. L. COCHRANE‡ The South African abalone Haliotis midae resource is widely perceived as being under threat of over- exploitation as a result of increased poaching. In this paper, reservations are expressed about using catch per unit effort as the sole index of abundance when assessing this fishery, particularly because of the highly aggregatory behaviour of the species. A fishery-independent survey has been initiated and is designed to provide relative indices of abundance with CVs of about 25% in most of the zones for which Total Allowable Catchs (TACs) are set annually for this fishery. However, it will take several years before this relative index matures to a time-series long enough to provide a usable basis for management. Through a series of simple simulation models, it is shown that calibration of the survey to provide values of biomass in absolute terms would greatly enhance the value of the dataset. The models show that, if sufficient precision (CV 50% or less) could be achieved in such a calibration exercise, the potential for management benefit is improved substantially, even when using a relatively simple management procedure to set TACs. This improvement results from an enhanced ability to detect resource declines or increases at an early stage, as well as from decreasing the time period until the survey index becomes useful. Furthermore, the paper demonstrates that basic modelling techniques could usefully indicate which forms of adaptive management experiments would improve ability to manage the resource, mainly through estimation of the level of precision that would be required from those experiments. -
White Abalone (Haliotis Sorenseni)
White Abalone (Haliotis sorenseni) Five-Year Status Review: Summary and Evaluation Photo credits: Joshua Asel (left and top right photos); David Witting, NOAA Restoration Center (bottom right photo) National Marine Fisheries Service West Coast Region Long Beach, CA July 2018 White Abalone 5- Year Status Review July 2018 Table of Contents EXECUTIVE SUMMARY ............................................................................................................. i 1.0 GENERAL INFORMATION .............................................................................................. 1 1.1 Reviewers ......................................................................................................................... 1 1.2 Methodology used to complete the review ...................................................................... 1 1.3 Background ...................................................................................................................... 1 2.0 RECOVERY IMPLEMENTATION ................................................................................... 3 2.2 Biological Opinions.......................................................................................................... 3 2.3 Addressing Key Threats ................................................................................................... 4 2.4 Outreach Partners ............................................................................................................. 5 2.5 Recovery Coordination ................................................................................................... -
Reproductive Challenges in Abalone Breeding 17 Natasha A
Breeding Focus 2021 - Improving Reproduction Edited by Susanne Hermesch Animal Genetics and Breeding Unit, University of New England, Armidale, Australia Sonja Dominik CSIRO Agriculture and Food, Armidale, Australia Published by Animal Genetics and Breeding Unit University of New England Armidale, NSW, Australia © Animal Genetics and Breeding Unit, 2021 All rights reserved except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retriev- al system or be transmitted in any form, or by any means, electronic, mechanical, photocopy- ing, recording, duplicating, or otherwise, without prior permission from the publisher: Animal Genetics and Breeding Unit University of New England Armidale NSW 2351 Australia http://agbu.une.edu.au ISBN: 978-1-921597-86-2 eISBN: 978-1-921597-87-9 Cover design by Susan Joyal Book design by Kathy Dobos First published, 2021 Contents Preface iii Review: Cattle fertility and genetic improvement of fertility in developing countries 5 Eva M. Strucken Reproductive challenges in abalone breeding 17 Natasha A. Botwright, Omar Mendoza-Porras, Roger Chong, Ya Zhang and Carmel McDougall Opportunities from understanding health and welfare of sows 37 Laura Vargovic, Jo Harper and Kim Bunter Saltwater crocodile (Crocodylus porosus) embryo survival: risk factors 49 Sally R. Isberg and Peter C. Thomson New phenotypes for genetic improvement of fertility in dairy cows 59 Irene van den Berg, Melissa Stephen, Phuong N. Ho, Mekonnen Haile-Mariam, Claire Phyn, Susanne Meier, Chris Burke, Nicole Steele and Jennie E. Pryce The influence of bull fertility on beef herd productivity 71 Laercio R Porto-Neto, John Bertram, Marina R S Fortes, Pamela Alexandre, Michael McGowan, Ben Hayes and Antonio Reverter Improving reproductive performance in pigs 85 Jo-Anne Harper, Kim Bunter and Laura Vargovic Breeding for improved fertility of honey bees 97 E.A.