Esperance Pink Lake Feasibility Study Technical Report of Major Findings

Total Page:16

File Type:pdf, Size:1020Kb

Esperance Pink Lake Feasibility Study Technical Report of Major Findings 2020 Esperance Pink Lake Feasibility Study Technical report of major findings By Tilo Massenbauer Prepared for the Shire of Esperance 6/18/2020 ESPER-855161 Esperance Pink Lake Feasibility Study Massenbauer T 2020416 1 Acknowledgements The Author thanks and acknowledges the following contributions to this document: • Cover Artwork: Tjaltjraak Mooraak, Walkabout at Kepa Kurl by Donna Beach (Ninnon) Donna Beach (Ninnon), artist and direct descendant of the Bullenbuk people of Esperance. Copywrite of the artwork is with the Department of Biodiversity Conservation and Activities (DBCA) © • Esperance Museum Archivists Jen Ford for providing access to Pink Lake Archive Information. • Peter Lister WA Salt Supplies for providing recorded information regarding annual salt harvest information • DBCA for providing access to wetland data, and permission to use Ninnon’s artwork. • John Curnow, Production Manager BASF Australia at Hutt Lagoon for insights and analysis on D. salina • John Simons, Senior Research Scientist, Department of Primary Industries and Regional Development for the provision of the Pink Lake Hydrological study and Geographic Variation of Salt Precipitation over Western Australia papers. • Community photos of Pink Lake provided by Patricia Birch (front cover, 1985), Steven Ellen, Kylie Ryan, John Lizamore, C. Green, and Wayne Foote. • Dan Paris, Bauhaus Films for providing professional drone captured images of Lake Warden during the March 2020 D. salina colouration bloom. • Collaborating partners John Lizamore and Selvarajah Marimuthu for technical support documentation, updated data during the 2020 summer period and editing input to this report. Photo courtesy of Dan Paris, March 2020 – Esperance, Lake Warden D. salina bloom Disclaimer • While the material in this document has been created with all due care, the Author does not warrant or represent that the material is free from errors or omission, or that it is exhaustive. • The material in this document is provided on the basis that the user is responsible for assessing the relevance of its content. • The Author will not accept liability for any loss, damage, cost, or expense that may occur as a result of the use of or reliance upon the material within this document. ESPER-855161 Esperance Pink Lake Feasibility Study Massenbauer T 2020416 a Contents Acknowledgements ....................................................................................................................................... a Disclaimer...................................................................................................................................................... a Executive Summary ....................................................................................................................................... 1 Introduction .................................................................................................................................................. 2 Document Scope ........................................................................................................................................... 2 Background ................................................................................................................................................... 3 Methodology ................................................................................................................................................. 7 Biology - colouration ................................................................................................................................... 10 Present day Lake Warden and Pink Lake colouration............................................................................. 14 Pink Lake versus Lake Warden – Pink versus Orange ............................................................................. 21 D. salina pink bloom threshold summary ............................................................................................... 22 Pink Lake and climate change ..................................................................................................................... 23 Pink Lake bathymetry volume model ......................................................................................................... 25 Measuring salinity correction ..................................................................................................................... 27 Pink Lake salt modelling .............................................................................................................................. 30 Critique of historic Pink Lake hydrology modelling ................................................................................ 30 Pink Lake pre 1980 surface salt loads. .................................................................................................... 31 Pink Lake salt inputs ................................................................................................................................ 33 Pink Lake D. salina salt requirements ..................................................................................................... 36 Pink Lake 30 per cent salinity increase scenario ................................................................................. 38 Pink Lake 50 per cent salinity increase scenario ................................................................................. 39 Pink Lake salt summary ........................................................................................................................... 41 Salt source – Lake Warden .......................................................................................................................... 42 Salt brine harvesting ............................................................................................................................... 47 Salt crust harvesting ................................................................................................................................ 50 Pink Lake salt target feasibility summary ............................................................................................... 53 Salt target scenarios – 1991, and 1983 ............................................................................................... 54 No nothing or pre-1900 full salt recovery ........................................................................................... 54 Pink Lake salt trial ....................................................................................................................................... 54 Esperance district coloured lakes tourist drive ........................................................................................... 56 Study Uncertainties ..................................................................................................................................... 56 ESPER-855161 Esperance Pink Lake Feasibility Study Massenbauer T 2020416 b Conclusions ................................................................................................................................................. 58 References .................................................................................................................................................. 60 Appendix1 Esperance Pink Lake historic salt harvesting research summary ................................................ i Appendix 2 Pink Lake historic biological pink colour research summary ..................................................... x Appendix 3 Pink Lake Depth Volume tables ...............................................................................................xiii Appendix 4 Pink Lake and Lake Warden Water quality Durov Diagrams explained (Lizamore 2020) ....... xv Appendix 5. Examples of D. salina light intensity and colour variation.................................................... xviii Appendix 6 Lake Warden Catchments nutrient export maps...................................................................... xx Appendix 7. Esperance district coloured Salt Lake tourist drive .............................................................. xxiii Figures Figure 1 The Lake Warden Wetland System and Lake Wheatfield pipeline route in red ............................. 2 Figure 2 Dunaliella salina cells in different culture conditions. (A) Green cell from a non-stressed culture. (B) Stressed cell turning orange. (C) (Ramos et.al 2011) ............................................................................ 12 Figure 3 Esperance annual rainfall totals from 1957 to 2019 and Power trendline line. (Raw data sources BOM SILO) ................................................................................................................................................... 23 Figure 4 Esperance monthly rainfall totals from 2014 to 2019 for lake water quality sampling period post Wheatfield Pipeline (Raw data sources BOM SILO) .................................................................................... 24 Figure 5 Pink Lake depth observed data (Raw data source DBCA) and calculated volume from 2014 to 2019 ............................................................................................................................................................ 24 Figure 6 Georeferenced 1986 contour map (Raw data source Hurle 1986) .............................................. 25 Figure 7 Pink Lake depth GIS DEM derived from 1986 contour information (Raw data source Hurle 1986) ...................................................................................................................................................................
Recommended publications
  • Identification of Early Salinity Stress-Responsive Proteins In
    International Journal of Molecular Sciences Article Identification of Early Salinity Stress-Responsive Proteins in Dunaliella salina by isobaric tags for relative and absolute quantitation (iTRAQ)-Based Quantitative Proteomic Analysis Yuan Wang 1,2,†, Yuting Cong 2,†, Yonghua Wang 3, Zihu Guo 4, Jinrong Yue 2, Zhenyu Xing 2, Xiangnan Gao 2 and Xiaojie Chai 2,* 1 Key Laboratory of Hydrobiology in Liaoning Province’s Universities, Dalian Ocean University, Dalian 116021, China; [email protected] 2 College of fisheries and life science, Dalian Ocean University, Dalian 116021, China; [email protected] (Y.C.); [email protected] (J.Y.); [email protected] (Z.X.); [email protected] (X.G.) 3 Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, China; [email protected] 4 College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China; [email protected] * Correspondence: [email protected] † These authors contribute equally to the work. Received: 22 November 2018; Accepted: 16 January 2019; Published: 30 January 2019 Abstract: Salt stress is one of the most serious abiotic factors that inhibit plant growth. Dunaliella salina has been recognized as a model organism for stress response research due to its high capacity to tolerate extreme salt stress. A proteomic approach based on isobaric tags for relative and absolute quantitation (iTRAQ) was used to analyze the proteome of D. salina during early response to salt stress and identify the differentially abundant proteins (DAPs). A total of 141 DAPs were identified in salt-treated samples, including 75 upregulated and 66 downregulated DAPs after 3 and 24 h of salt stress.
    [Show full text]
  • Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: a Critical Review of Current Knowledge
    Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 12-2013 Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge Danielle Barandiaran Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Soil Science Commons Recommended Citation Barandiaran, Danielle, "Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge" (2013). All Graduate Plan B and other Reports. 332. https://digitalcommons.usu.edu/gradreports/332 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. METHYLMERCURY FATE IN THE HYPERSALINE ENVIRONMENT OF THE GREAT SALT LAKE: A CRITICAL REVIEW OF CURRENT KNOWLEDGE By Danielle Barandiaran A paper submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Soil Science Approved: Astrid Jacobson Jeanette Norton Major Professor Committee Member - Paul Grossl Teryl Roper Committee Member Department Head UTAH STATE UNIVERSITY Logan, Utah 2013 Copyright © Danielle Barandiaran 2013 All Rights Reserved iii ABSTRACT Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge by Danielle Barandiaran, Master of Science Utah State University, 2013 Major Professor: Dr. Astrid R. Jacobson Department: Plants, Soils & Climate Methylmercury (MeHg) is a highly potent neurotoxic form of the environmental pollutant Mercury (Hg).
    [Show full text]
  • A Mini Review-Effect of Dunaliella Salina on Growth and Health of Shrimps
    International Journal of Fisheries and Aquatic Studies 2020; 8(5): 317-319 E-ISSN: 2347-5129 P-ISSN: 2394-0506 (ICV-Poland) Impact Value: 5.62 A mini review-effect of Dunaliella salina on growth and (GIF) Impact Factor: 0.549 IJFAS 2020; 8(5): 317-319 health of shrimps © 2020 IJFAS www.fisheriesjournal.com Received: 08-07-2020 Dian Yuni Pratiwi Accepted: 14-08-2020 Dian Yuni Pratiwi Abstract Lecturer of Faculty, Department Dunaliella salina is a unicellular green algae that can be used as a natural food for shrimp. This of Fisheries and Marine Science, microalgae provides various nutrients such as protein, carbohydrates, lipids, pigments and others. Several Universitas Padjadjaran, studies have shown that Dunaliella salina can increase the growth performance of shrimps. Not only that, Indonesia Dunaliella salina also grant various health effects. High β-carotene and phenol in Dunaliella salina can increase immune system. This review was examined the optimum growth condition for Dunaliellla salina, nutrition contained in Dunaliella salina, and effect of Dunaliella salina for growth and health of shrimps such as Fenneropenaeus indicus, Penaeus monodon, and Litopenaeus vannamei. This review recommendation for Dunaliella salina as a potential feed for other. Keywords: Dunaliella salina, Fenneropenaeus indicus, Penaeus monodon, Litopenaeus vannamei, growth, health 1. Introduction Shrimp is one of popular seafood in the world community. The United States, China, Europe, and Japan are the major consuming regions, while Indonesia, China, India, Vietnam are major producing regions. In 2019, the global shrimp market size reached a volume of 5.10 Million [1] Tons . Popular types of shrimp for consumption are Litopenaeus vannamei, Penaeus monodon [1] and Fenneropenaeus indicus [2].
    [Show full text]
  • The Ecology of Dunaliella in High-Salt Environments Aharon Oren
    Oren Journal of Biological Research-Thessaloniki (2014) 21:23 DOI 10.1186/s40709-014-0023-y REVIEW Open Access The ecology of Dunaliella in high-salt environments Aharon Oren Abstract Halophilic representatives of the genus Dunaliella, notably D. salina and D. viridis, are found worldwide in salt lakes and saltern evaporation and crystallizer ponds at salt concentrations up to NaCl saturation. Thanks to the biotechnological exploitation of D. salina for β-carotene production we have a profound knowledge of the physiology and biochemistry of the alga. However, relatively little is known about the ecology of the members of the genus Dunaliella in hypersaline environments, in spite of the fact that Dunaliella is often the main or even the sole primary producer present, so that the entire ecosystem depends on carbon fixed by this alga. This review paper summarizes our knowledge about the occurrence and the activities of different Dunaliella species in natural salt lakes (Great Salt Lake, the Dead Sea and others), in saltern ponds and in other salty habitats where members of the genus have been found. Keywords: Dunaliella, Hypersaline, Halophilic, Great Salt Lake, Dead Sea, Salterns Introduction salt adaptation. A number of books and review papers When the Romanian botanist Emanoil C. Teodoresco have therefore been devoted to the genus [5-7]. How- (Teodorescu) (1866–1949) described the habitat of the ever, the ecological aspects of the biology of Dunaliella new genus of halophilic unicellular algae Dunaliella,it are generally neglected. A recent monograph did not was known from salterns and salt lakes around the devote a single chapter to ecological aspects, and con- Mediterranean and the Black Sea [1-3].
    [Show full text]
  • Draft ASMA Plan for Dry Valleys
    Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation.
    [Show full text]
  • Preserving the World Second Largest Hypersaline Lake Under Future Irrigation and Climate Change
    Preserving the World Second Largest Hypersaline Lake under Future Irrigation and Climate Change Somayeh Shadkam1, Fulco Ludwig1, Michelle T.H. van Vliet1,2, Amandine Pastor1,2, Pavel Kabat1,2 [1] Earth System Science, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands [2] International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A‐2361 Laxenburg, Austria E-mail: [email protected] Abstract. Urmia Lake, the world second largest hypersaline lake, has been largely desiccated over the last two decades resulting in socio-environmental consequences similar or even larger than the Aral Sea disaster. To rescue the lake a new water management plan has been proposed, a rapid 40% decline in irrigation water use replacing a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socio-economic impacts, have been assessed under future changes in climate and water availability. By adapting a method of environmental flow requirements (EFRs) for hypersaline lakes, we estimated annually 3.7∙109 m3 water is needed to preserve Urmia Lake. Then, the Variable Infiltration Capacity (VIC) hydrological model was forced with bias-corrected climate model outputs for both the lowest (RCP2.6) and highest (RCP8.5) greenhouse-gas concentration scenarios to estimate future water availability and impacts of water management strategies. Results showed a 10% decline in future water availability in the basin under RCP2.6 and 27% under RCP8.5. Our results showed that if future climate change is highly limited (RCP2.6) inflow can be just enough to meet the EFRs by implementing the reduction irrigation plan.
    [Show full text]
  • The Sources and Evolution of Sulfur in the Hypersaline Lake Lisan (Paleo-Dead Sea)
    Earth and Planetary Science Letters 236 (2005) 61–77 www.elsevier.com/locate/epsl The sources and evolution of sulfur in the hypersaline Lake Lisan (paleo-Dead Sea) Adi Torfsteina,b,*, Ittai Gavrielia,1, Mordechai Steina,2 aGeological Survey of Israel, 30 Malkhe Yisrael St., Jerusalem 95501, Israel bInstitute of Earth Sciences, the Hebrew University of Jerusalem, Giv’at-Ram Campus, Jerusalem 91904, Israel Received 18 October 2004; received in revised form 19 April 2005; accepted 25 April 2005 Available online 17 June 2005 Editor: E. Bard Abstract d34S values in gypsum are used to evaluate the fate of sulfur in the hypersaline Lake Lisan, the late Pleistocene precursor of the Dead Sea (70–14 ka BP), and applied as a paleo-limnological tracer. The Ca-chloride Lake Lisan evolved through meromictic periods characterized by precipitation of authigenic aragonite and holomictic episodes characterized by enhanced gypsum precipitation. The lake deposited two major gypsum units: the bLower Gypsum unitQ (deposited at ~56 ka) showing d34S values of 18–20x, and the bUpper Gypsum unitQ (deposited at 17 ka) displaying significantly higher d34S values of 26– 28x. Laminated and disseminated gypsum, residing within the aragonite, exhibit d34S values in the range of À26x to 1x. The isotopic composition of the gypsum was dictated by freshwater sulfate input that replenished the upper layer of the lake (the mixolimnion), bacterial sulfate reduction (BSR) that occurred under the anoxic conditions of the lower brine (the monimolimnion), and mixing between these two layers. During meromictic periods, the sulfate reservoir in the lower brine was replenished by precipitation of gypsum from the upper layer, and its subsequent dissolution due to sulfate deficiency induced by BSR activity.
    [Show full text]
  • MICROBIOLOGICAL and ECOPHYSIOLOGICAL CHARACTERIZATION of GREEN ALGAE Dunaliella Sp
    MICROBIOLOGICAL AND ECOPHYSIOLOGICAL CHARACTERIZATION OF GREEN ALGAE Dunaliella sp. FOR IMPROVEMENT OF CAROTENOID PRODUCTION Muhammad Zainuri 1) Hermin Pancasakti Kusumaningrum*2 ), and Endang Kusdiyantini 2), 1) Laboratory of Biological Oceanography, Department of marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University 2) Microbiogenetics Laboratory, Faculty of Mathematics and Natural Sciences, Diponegoro University, Jl. Prof. Soedarto, UNDIP, Tembalang, Semarang. 50275. e-mail : [email protected] Abstract An isolate of green algae Dunaliella sp. from BBAP Jepara is usually used as a source for carotenoid supplement for marine animal cultivation in the local area. In order to improve carotenoid production especially detection of biosynthetic pathway from the organisms investigated in this study, the main purpose of this study is characterizing Dunaliella sp. based on it’s microbiological and ecophysiological characters. The research was done by characterize the growth, the cell and colonies microbiologically, total pigment production, and also characterize all of the ecophysiological factors affecting the algal growth and survival. The results of this research showed that Dunaliella sp. posseses typical characteristic of green eucaryote alga, in their growth and ecological condition. The extreme characters which was toleration ability to high salinity environment of was used to conclude Dunaliella sp. as Dunaliella salina. Key words : algae, Dunaliella sp. , microbiological, ecophysiological, characterization Introduction serve as precursors of many hormones Green algae are simple (Vershinin, 1999 in Lee and Schmidt- photosynthetic eukaryotes which are Dannert, 2002). Carotenoids are used responsible for up to 50% of the planet's commercially as food colorants, animal atmospheric carbon fixation. The recent feed supplements and, more recently, as discoveries of health related beneficial nutraceuticals for cosmetic and properties attributed to algal carotenoids pharmaceutical purposes.
    [Show full text]
  • Origin of Arsenolipids in Sediments from Great Salt Lake
    CSIRO PUBLISHING Environ. Chem. 2019, 16, 303–311 Rapid Communication https://doi.org/10.1071/EN19135 Origin of arsenolipids in sediments from Great Salt Lake Ronald A. Glabonjat, A,D Georg Raber,A Kenneth B. Jensen,A Florence Schubotz,B Eric S. Boyd C and Kevin A. FrancesconiA AInstitute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria. BMARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, 28359 Bremen, Germany. CDepartment of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA. DCorresponding author. Email: [email protected] Environmental context. Arsenic is a globally distributed element, occurring in various chemical forms with toxicities ranging from harmless to highly toxic. We examined sediment samples from Great Salt Lake, an extreme salt environment, and found a variety of organoarsenic species not previously recorded in nature. These new compounds are valuable pieces in the puzzle of how organisms detoxify arsenic, and in our understanding of the global arsenic cycle. Abstract. Arsenic-containing lipids are natural products found predominantly in marine organisms. Here, we report the detection of known and new arsenolipids in sediment samples from Great Salt Lake, a hypersaline lake in Utah, USA, using high-performance liquid chromatography in combination with both elemental and molecular mass spectrometry. Sediments from four investigated sites contained appreciable quantities of arsenolipids (22–312 ng As gÀ1 sediment) comprising several arsenic-containing hydrocarbons and 20 new compounds shown to be analogues of phytyl 2-O-methyl dimethylarsinoyl riboside. We discuss potential sources of the detected arsenolipids and find a phytoplanktonic origin most plausible in these algal detritus-rich salt lake sediments.
    [Show full text]
  • Accumulation of Lipid in Dunaliella Salina Under Nutrient Starvation Condition
    American Journal of Food and Nutrition, 2017, Vol. 5, No. 2, 58-61 Available online at http://pubs.sciepub.com/ajfn/5/2/2 ©Science and Education Publishing DOI:10.12691/ajfn-5-2-2 Accumulation of lipid in Dunaliella salina under Nutrient Starvation Condition Truc Mai1,2,*, Phuc Nguyen3, Trung Vo3,*, Hieu Huynh3, Son Tran3, Tran Nim3, Dat Tran3, Hung Nguyen3, Phung Bui3 1Department of Molecular Biology, New Mexico State University, New Mexico, USA 2Department of Plant and Environmental Sciences, New Mexico State University, New Mexico, USA 3Department of Biochemistry and Toxicology, Nguyen Tat Thanh University, Viet Nam *Corresponding author: [email protected] Abstract The effect of nutrient starvation on lipid accumulation of Dunaliella salina A9 was studied. In nutrient starvation, cell colour changed from green to yellow (or orange) and cell growth reached stationary phase after 9 days of the culture. The study showed that under nutrient stress, decreased in cell growth is accompanied by carotenoid biosynthesis and lipid content of Dunaliella salina. The results of this study can be used to increase carotenoid and lipid production in microalgae for functional food and biofuel in the future. Keywords: Dunaliell salina A9, Dunaliella bardawil and Sulfo-phospho-vanillin reagent Cite This Article: Truc Mai, Phuc Nguyen, Trung Vo, Hieu Huynh, Son Tran, Tran Nim, Dat Tran, Hung Nguyen, and Phung Bui, “Accumulation of lipid in Dunaliella salina under Nutrient Starvation Condition.” American Journal of Food and Nutrition, vol. 5, no. 2 (2017): 58-61. doi: 10.12691/ajfn-5-2-2. of β-carotene is suppressed when lipid metabolism pathway is inhibited [30].
    [Show full text]
  • Producing Natural Mixed Carotenoids from Dunaliella Salina
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.5, No.10, 2015 Producing Natural Mixed Carotenoids from Dunaliella salina Sabah I. Al-Muhteseb Al-Balqa Applied University, Zarka University College,Department of Allied Health, P.O. Box (313), Jordan Sadeq Emeish Al-Balqa Applied University, Faculty of Engineering Technology, Department of chemical engineering, P.O. Box (15008). 11134, Marka, Amman-Jordan. [email protected]; [email protected] Abstract The aim of this work was to cultivate the micro algae Dunaliella salina isolated from the Dead Sea by using a certain media. The cell number was found to be 6 million cells per ml after two weeks of cultivation. The micro algae was harvested and centrifuged, after that it was extracted using ethanol as a solvent. UV- spectrophotometry analysis was carried out for beta carotene and other carotenoids . The analysis showed the presence of different carotenoids, mainly beta carotene and a mixture of different compounds like astaxanthin, which can be considered as an added value.It is evident that this process should find its way for commercialization through a pilot plant at the first step, then by an industrial plant after verifying the results of the pilot plant. Keywords: Dunaliella salina , Beta Carotene, Cultivation, Cell counting, Astaxanthin, Extraction. 1. Introduction The microalgae which were found in the Dead Sea were 22 different types.
    [Show full text]
  • Saltern Evaporation Ponds As Model Systems for the Study of Primary Production Processes Under Hypersaline Conditions
    Vol. 56: 193–204, 2009 AQUATIC MICROBIAL ECOLOGY Printed September 2009 doi: 10.3354/ame01297 Aquat Microb Ecol Published online June 30, 2009 Contribution to AME Special 2 ‘Progress and perspectives in aquatic primary productivity’ OPENPEN ACCESSCCESS REVIEW Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions Aharon Oren Department of Plant and Environmental Sciences, The Institute of Life Sciences, and the Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, Jerusalem, Israel ABSTRACT: Multi-pond solar salterns, which are used worldwide for salt production along tropical and subtropical coastal areas, present an environment with increasing salt concentrations, from sea- water to NaCl saturation. Characteristic salt-adapted microbial communities are found along the salinity gradient. In ponds of intermediate salinity (100 to 250 g l–1), most of the primary production occurs in benthic microbial mats dominated by different types of unicellular and filamentous Cyanobacteria (Aphanothece, Microcoleus, Phormidium and others), sometimes in association with diatoms. In crystallizer ponds, the unicellular green alga Dunaliella is the sole primary producer that lives in association with dense communities of heterotrophic halophilic Archaea that color the brines red. This basic pattern is common to all saltern systems, in spite of local variations in climate and nutrient availability. Photosynthetic activities of benthic cyanobacterial mats in the evaporation ponds and of endoevaporitic microbial communities within the gypsum crust that precipitates at intermediate salinities have been extensively studied in salterns at different locations, using oxygen microelectrodes and other techniques adapted to the study of benthic communities. These environ- ments are generally highly productive, although most of the oxygen produced during daytime by the Cyanobacteria is recycled within the mats rather than exchanged with the overlying water and the atmosphere.
    [Show full text]