Rediscovery of Fexinidazole

Total Page:16

File Type:pdf, Size:1020Kb

Rediscovery of Fexinidazole New Drugs against Trypanosomatid Parasites: Rediscovery of Fexinidazole INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Marcel Kaiser aus Obermumpf, Aargau Basel, 2014 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Dieses Werk ist unter dem Vertrag „Creative Commons Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz“ (CC BY-NC-ND 3.0 CH) lizenziert. Die vollständige Lizenz kann unter creativecommons.org/licenses/by-nc-nd/3.0/ch/ eingesehen werden. 1 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel auf Antrag von Prof. Reto Brun, Prof. Simon Croft Basel, den 10. Dezember 2013 Prof. Dr. Jörg Schibler, Dekan 2 3 Table of Contents Acknowledgement .............................................................................................. 5 Summary ............................................................................................................ 6 Zusammenfassung .............................................................................................. 8 CHAPTER 1: General introduction ................................................................. 10 CHAPTER 2: Fexinidazole - A New Oral Nitroimidazole Drug Candidate Entering Clinical Development for the Treatment of Sleeping Sickness ........ 26 CHAPTER 3: Anti-trypanosomal activity of Fexinidazole – A New Oral Nitroimidazole Drug Candidate for the Treatment of Sleeping Sickness ....... 66 CHAPTER 4: 1-Aryl-4-nitro-1H-imidazoles, a new promising series for the treatment of Human African Trypanosomiasis .................................... 84 CHAPTER 5: Novel 3-Nitro-1H-1,2,4-triazole-based Aliphatic and AromaticAmines as anti-Chagasic Agents .................................................... 119 CHAPTER 6: Novel 3-Nitro-1H-1,2,4-triazole-based Amides and Sulfonamides as Potential anti-Trypanosomal Agents .................................. 145 CHAPTER 7: Novel 3-nitro-1H-1,2,4-triazole-based compounds as potential anti-Chagasic drugs: in vivo studies .............................................................. 175 CHAPTER 8: Agrochemicals against Malaria, Sleeping Sickness, Leishmaniasis and Chagas Disease ................................................................ 200 CHAPTER 9: Antiprotozoal activity profiling of approved drugs: a starting point toward drug repositioning ..................................................... 222 CHAPTER 10: General Discussion ............................................................... 263 4 Acknowledgement This thesis would not have been possible without the help and support of a number of people whom I would like to acknowledge. My first and foremost gratitude goes to my supervisor Reto Brun and the Swiss TPH director Marcel Tanner who encouraged me to my PhD. They gave me the roots for my fruits, to us the words of Marcel Tanner. I owe a debt of gratitude to Reto Brun for his constant trust and support since I joined the parasite chemotherapy group 13 years ago. I particular thank him for the trips to Africa and the introduction into the drug screening network. Swiss TPH is a great place to work and I would like to thank Marcel Tanner for his positive spirit, his outstanding enthusiasm and leadership. My thanks go also to Pascal for his openness and advice. I thank Simon Croft (LSHTM) for joining my thesis committee. My gratitude is also addressed to all former and present Parasite Chemotherapy Unit members. Particularly I thank Monica Cal for their hard work, our fruitful discussions and the implementation of my ideas. A big thank you to Sonja Keller, Sibylle Sax, Christiane Braghiroli and Guy Riccio, for your expertise and support in carrying out all the in vitro and in vivo studies. I thank Christina Kunz for sharing her knowledge of parasite cultivation and our good discussions. Many thanks to DNDi especially to Jean-Robert Ioset, for the constant support and exchange. My thanks go to Els Torreele and Bernadette Bourdin Trunz, who initiated the project of nitroimidazoles by researching the literature and collecting all the compounds. My warmest thanks go to my wife, Erika and to my sons Simon and Oliver; you are my oasis of peace and a place of inspiration. 5 Summary Neglected tropical diseases (NTDs) are a group of communicable diseases mostly affecting people in developing countries. These diseases are responsible for a major part of the global morbidity, mortality and poverty. There is no doubt that the well-being of people in the developing world can only be improved if the NTDs are controlled. An important tool for disease control is the drug treatment. The few available drugs are unsatisfactory because of the limited efficacy, adverse effects and the high price. Chagas disease, leishmaniasis and human African trypanosomiasis belong to this group of NTDs. They are caused by infections with protozoa of the family Trypanosomatidae. For these three diseases new drugs are urgently needed. By definition there is no commercial market for drugs against NTDs. Drug research and development (R&D) for NTDs is mainly driven by the public sector, the so-called product development partnerships (PDPs). Drug R&D is a very long (10-15 years), risky and therefore expensive process. Three different series of compounds (agrochemicals, marketed drugs and nitro-heterocyclic compounds) were tested for their antiparasitic effects, with the aim to identify new lead compounds or even clinical candidates against leishmaniasis, sleeping sickness, and Chagas disease. Agrochemicals are used worldwide on a large scale in food production. They undergo a rigorous toxicological testing prior to launch. Over 600 compounds were screened for their antiparasitic activity. Agrochemicals are not optimized for use in mammals, yet a significant number of molecules were found with good and selective in vitro activity. Some of them showed also efficacy in the corresponding rodent model. These results indicate that agrochemicals can provide very interesting starting structures for drug research against parasitic diseases. Drugs or drug-like compounds are an ideal starting point for antiparasitic drug discovery, because very often pharmacokinetic and toxicological data are available. A number of drugs, including antibiotics, antivirals, antifungals, and anti-psychotics were assayed for antiparasitic activity. Some of the drugs tested showed selective antiparasitic activity. These compounds can be regarded as new lead structures and should be further investigated. 6 Nitroheterocycles belong to a well- known class of compounds with the stigma of being mutagenic or genotoxic. Over 700 compounds, mainly nitroimidazoles, have been systematically tested for their antiparasitic activity, and their pharmacokinetics and mutagenicity was investigated. A number of effective, non-mutagenic and non- genotoxic compounds was identified. So fexinidazole was rediscovered, a drug that had been in clinical development already in the 70’s as a broad-spectrum antimicrobial drug. Fexinidazole is rapidly metabolized to fexinidazole-sulfoxide and -sulfone. The parent compound and the two principle metabolites showed in vitro trypanocidal activity against all (sensitive and resistant) tested T. brucei strains (IC50 of 0.2 - 0.9 g / ml). Fexinidazole cured the first stage mouse model with a 4-day oral treatment of 100 mg/kg/day and the 2nd stage mouse model with a 5-day oral treatment of 200 mg/kg/day. The two metabolites are mainly responsible for the good efficacy in animal models. Both reach very high concentrations in blood and brain tissue. Fexinidazole has successfully completed preclinical development and Phase I clinical trials and is currently in a clinical phase II / III study. With the approach of phenotypic screening of compounds that have been developed for other purposes, new leads for drug R&D against Chagas’ disease, leishmaniasis and human African trypanosomiasis were identified. Fexinidazole is the first drug candidate in clinical Phase II / III trials since decades. It would be the first oral drug for the treatment of stage 1 and 2 of human African sleeping sickness. If fexinidazole overcomes all obstacles, this would be a major breakthrough in the fight against African sleeping sickness. With a well tolerated, orally active drug like Fexinidazole the elimination of sleeping sickness seems finally tangible. 7 Zusammenfassung Vernachlässigte Tropenkrankheiten („Neglected Tropical Diseases“ NTDs) sind eine Gruppe von übertragbaren Krankheiten, welche vor allem die Bevölkerung der Entwicklungsländer betreffen. Diese Krankheiten verursachen einen großen Teil der weltweiten Morbidität, Mortalität und Armut. Es besteht kein Zweifel, dass das Wohlergehen der Menschen in Entwicklungsländern nur verbessert werden kann, wenn diese Krankheiten unter Kontrolle gebracht werden. Ein wichtiges Instrument dafür ist die medikamentöse Behandlung. Die wenigen verfügbaren Medikamente sind unbefriedigend, aufgrund ihrer beschränkten Wirksamkeit, Nebenwirkungen und des hohen Preises. Chagas-Krankheit, Leishmaniose und die menschliche afrikanische Schlafkrankheit gehören zu dieser Gruppe von NTDs. Sie werden durch eine Infektion mit Protozoen aus der Familie Trypanosomatidae verursacht. Für diese drei Krankheiten werden dringend neue Medikamente benötigt. Es gibt keinen kommerziell interessanten Markt für Medikamente gegen vernachlässigten Krankheiten. Die Medikamentenforschung
Recommended publications
  • Fexinidazole – New Orphan Drug Approval
    Fexinidazole – New orphan drug approval • On July 19, 2021, Sanofi announced the FDA approval of fexinidazole, for the treatment of both the first-stage (hemolymphatic) and second-stage (meningoencephalitic) human African trypanosomiasis (HAT) due to Trypanosoma brucei gambiense (T. brucei gambiense) in patients 6 years of age and older and weighing at least 20 kg. — Due to the decreased efficacy observed in patients with severe second stage HAT (cerebrospinal fluid white blood cell count > 100 cells/µL) due to T. brucei gambiense disease, fexinidazole should only be used in these patients if there are no other available treatment options. • Sleeping sickness is a parasitic disease transmitted by the bite of an infected tse-tse fly. It affects mostly populations living in remote rural areas of sub-Saharan Africa. Left untreated, sleeping sickness is almost always fatal. — According to the CDC, less than 100 cases of sleeping sickness have been reported annually to the World Health Organization. Infection of international travelers is rare, but it occasionally occurs and most cases of sleeping sickness imported into the U.S. have been in travelers who were on safari in East Africa. • The efficacy of fexinidazole was established in a randomized, comparative open-label trial in 394 adult patients with late second-stage HAT due to T. brucei gambiense. Patients were randomized to a 10-day treatment regimen of either fexinidazole or nifurtimox-eflornithine combination therapy (NECT). The outcome at 18 months was considered a success if patients were classified as a cure or probable cure. — Success at 18 months was achieved in 91.2% of patients treated with fexinidazole vs.
    [Show full text]
  • Mrna Expression of SMPD1 Encoding Acid Sphingomyelinase Decreases Upon Antidepressant Treatment
    International Journal of Molecular Sciences Article mRNA Expression of SMPD1 Encoding Acid Sphingomyelinase Decreases upon Antidepressant Treatment Cosima Rhein 1,2,* , Iulia Zoicas 1 , Lena M. Marx 1, Stefanie Zeitler 1, Tobias Hepp 2,3, Claudia von Zimmermann 1, Christiane Mühle 1 , Tanja Richter-Schmidinger 1, Bernd Lenz 1,4 , Yesim Erim 2, Martin Reichel 1,† , Erich Gulbins 5 and Johannes Kornhuber 1 1 Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; [email protected] (I.Z.); [email protected] (L.M.M.); [email protected] (S.Z.); [email protected] (C.v.Z.); [email protected] (C.M.); [email protected] (T.R.-S.); [email protected] (B.L.); [email protected] (M.R.); [email protected] (J.K.) 2 Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; [email protected] (T.H.); [email protected] (Y.E.) 3 Institute of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany 4 Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, D-68159 Mannheim, Germany 5 Department of Molecular Biology, University Hospital, University of Duisburg-Essen, D-45147 Essen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-9131-85-44542 Citation: Rhein, C.; Zoicas, I.; Marx, † Current address: Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin L.M.; Zeitler, S.; Hepp, T.; von Berlin, Berlin, Germany.
    [Show full text]
  • Specifications of Approved Drug Compound Library
    Annexure-I : Specifications of Approved drug compound library The compounds should be structurally diverse, medicinally active, and cell permeable Compounds should have rich documentation with structure, Target, Activity and IC50 should be known Compounds which are supplied should have been validated by NMR and HPLC to ensure high purity Each compound should be supplied as 10mM solution in DMSO and at least 100µl of each compound should be supplied. Compounds should be supplied in screw capped vial arranged as 96 well plate format.
    [Show full text]
  • R&D UNICANCER Annual Report 2016
    Going further, innovating together R&D UNICANCER Annual Report 2016 Summary Presentation and organisation Regulatory affairs, pharmaco- PAGE 01 vigilance, quality assurance – Ensuring quality and safety 2016 clinical activity in clinical trials. PAGE 08 PAGE 25 Expert groups Epidemiological Strategy and PAGE 16 Medical Economics (ESME) 2016 publications Programme – Harnessing PAGE 21 real-life data in oncology to improve patient care. Clinical operations PAGE 27 PAGE 23 Development Biological Resource and partnerships – Centre (BRC) Optimising collaborations PAGE 24 to foster innovation PAGE 30 Research in the FCCC PAGE 32 Appendices PAGE 33 Contacts, Follow us PAGE 45 GOING FURTHER, INNOVATING TOGETHER R&D ANNUAL REPORT 2016 Presentation and organisation UNICANCER, a major French player in oncology, Acteur majeur de la cancérologie française, groups together 20 French Comprehensive Cancer UNICANCER regroupe les 20 Centres de lutte contre Centers (FCCC). They are private, non-profit health la cancérologie (CLCC), établissements de santé establishments exclusively dedicated to care, research privés à but non lucratif exclusivement dédiés aux and education in cancer. UNICANCER’s R&D soins, à la recherche et à l’enseignement en cancéro- department is the driving force of UNICANCER’s logie. R&D UNICANCER en tant que promoteur research and, as an academic sponsor, it works direc- aca démi que, travaille en direct avec les unités de tly with the research units of the FCCC and other recherche des CLCC et d’autres établissements health establishments (university hospitals, hospitals de santé (CHU, CH, cliniques) en France et à l’inter- and clinics) in France and abroad. The mission of R&D national.
    [Show full text]
  • K+ Channel Modulators Product ID Product Name Description D3209 Diclofenac Sodium Salt NSAID; COX-1/2 Inhibitor, Potential K+ Channel Modulator
    K+ Channel Modulators Product ID Product Name Description D3209 Diclofenac Sodium Salt NSAID; COX-1/2 inhibitor, potential K+ channel modulator. G4597 18β-Glycyrrhetinic Acid Triterpene glycoside found in Glycyrrhiza; 15-HPGDH inhibitor, hERG and KCNA3/Kv1.3 K+ channel blocker. A4440 Allicin Organosulfur found in garlic, binds DNA; inwardly rectifying K+ channel activator, L-type Ca2+ channel blocker. P6852 Propafenone Hydrochloride β-adrenergic antagonist, Kv1.4 and K2P2 K+ channel blocker. P2817 Phentolamine Hydrochloride ATP-sensitive K+ channel activator, α-adrenergic antagonist. P2818 Phentolamine Methanesulfonate ATP-sensitive K+ channel activator, α-adrenergic antagonist. T7056 Troglitazone Thiazolidinedione; PPARγ agonist, ATP-sensitive K+ channel blocker. G3556 Ginsenoside Rg3 Triterpene saponin found in species of Panax; γ2 GABA-A agonist, Kv7.1 K+ channel activator, α10 nAChR antagonist. P6958 Protopanaxatriol Triterpene sapogenin found in species of Panax; GABA-A/C antagonist, slow-activating delayed rectifier K+ channel blocker. V3355 Vindoline Semi-synthetic vinca alkaloid found in Catharanthus; Kv2.1 K+ channel blocker and H+/K+ ATPase inhibitor. A5037 Amiodarone Hydrochloride Voltage-gated Na+, Ca2+, K+ channel blocker, α/β-adrenergic antagonist, FIASMA. B8262 Bupivacaine Hydrochloride Monohydrate Amino amide; voltage-gated Na+, BK/SK, Kv1, Kv3, TASK-2 K+ channel inhibitor. C0270 Carbamazepine GABA potentiator, voltage-gated Na+ and ATP-sensitive K+ channel blocker. C9711 Cyclovirobuxine D Found in Buxus; hERG K+ channel inhibitor. D5649 Domperidone D2/3 antagonist, hERG K+ channel blocker. G4535 Glimepiride Sulfonylurea; ATP-sensitive K+ channel blocker. G4634 Glipizide Sulfonylurea; ATP-sensitive K+ channel blocker. I5034 Imiquimod Imidazoquinoline nucleoside analog; TLR-7/8 agonist, KCNA1/Kv1.1 and KCNA2/Kv1.2 K+ channel partial agonist, TREK-1/ K2P2 and TRAAK/K2P4 K+ channel blocker.
    [Show full text]
  • WO 2018/009638 Al 11 January 2018 (11.01.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/009638 Al 11 January 2018 (11.01.2018) W !P O PCT (51) International Patent Classification: Published: C07D 413/14 (2006.01) A61K 31/553 (2006.01) — with international search report (Art. 21(3)) C07D 403/14 (2006.01) A61P 35/00 (2006.01) — before the expiration of the time limit for amending the (21) International Application Number: claims and to be republished in the event of receipt of PCT/US20 17/040866 amendments (Rule 48.2(h)) (22) International Filing Date: 06 July 2017 (06.07.2017) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/359,001 06 July 2016 (06.07.2016) 62/454,163 03 February 2017 (03.02.2017) (71) Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN [US/US]; Office Of Technology Tran s fer, 1600 Huron Parkway, 2nd Floor, Ann Arbor, MI 48109-2590 (US). (72) Inventors: ROSS, Brian, D.; 2410 Foxway, Ann Arbor, MI 48105 (US). VAN DORT, Marcian; 643 Dornoch Dr., Ann Arbor, MI 48103 (US). (74) Agent: NAPOLI, James, J.; Marshall, Gerstein & Borun LLP, 233 S. Wacker Drive, 6300 Willis Tower, Chicago, IL 60606-6357 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Efficacy of Spironolactone Treatment in Murine Models of Cutaneous and Visceral Leishmaniasis
    ORIGINAL RESEARCH published: 13 April 2021 doi: 10.3389/fphar.2021.636265 Efficacy of Spironolactone Treatment in Murine Models of Cutaneous and Visceral Leishmaniasis Valter Viana Andrade-Neto 1, Juliana da Silva Pacheco 1,2, Job Domingos Inácio 1, Elmo Eduardo Almeida-Amaral 1, Eduardo Caio Torres-Santos 1* and Edezio Ferreira Cunha-Junior 1,3* 1Laboratorio de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil, 2Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom, 3Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociencias,ˆ Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, Brazil Translational studies involving the reuse and association of drugs are approaches that can result in higher success rates in the discovery and development of drugs for serious public health problems, including leishmaniasis. If we consider the number of pathogenic species in relation to therapeutic options, this arsenal is still small, and Edited by: each drug possesses a disadvantage in terms of toxicity, efficacy, price, or treatment Paula Gomes, regimen. In the search for new drugs, we performed a drug screening of L. University of Porto, Portugal amazonensis promastigotes and intracellular amastigotes of fifty available drugs Reviewed by: Manoj Kumar Singh, belonging to several classes according to their pharmacophoric group. Adamas University, India Spironolactone, a potassium-sparing diuretic, proved to be the most promising Adnan Ahmed Bekhit, Alexandria University, Egypt drug candidate. After demonstrating the in vitro antileishmanial activity, we fi *Correspondence: evaluated the ef cacy on a murine experimental model with L.
    [Show full text]
  • List of Union Reference Dates A
    Active substance name (INN) EU DLP BfArM / BAH DLP yearly PSUR 6-month-PSUR yearly PSUR bis DLP (List of Union PSUR Submission Reference Dates and Frequency (List of Union Frequency of Reference Dates and submission of Periodic Frequency of submission of Safety Update Reports, Periodic Safety Update 30 Nov. 2012) Reports, 30 Nov.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Effects of the Antitussive Drug Cloperastine on Ventricular Repolarization in Halothane-Anesthetized Guinea Pigs
    J Pharmacol Sci 120, 000 – 000 (2012) Journal of Pharmacological Sciences © The Japanese Pharmacological Society Full Paper Effects of the Antitussive Drug Cloperastine on Ventricular Repolarization in Halothane-Anesthetized Guinea Pigs Akira Takahara1,*, Kaori Fujiwara1, Atsushi Ohtsuki2, Takayuki Oka2, Iyuki Namekata2, and Hikaru Tanaka2 1Department of Pharmacology and Therapeutics, 2Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan Received May 13, 2012; Accepted August 29, 2012 Abstract. Cloperastine is an antitussive drug, which can be received as an over-the-counter cold medicine. The chemical structure of cloperastine is quite similar to that of the antihistamine drug diphenhydramine, which is reported to inhibit hERG K+ channels and clinically induce long QT syndrome after overdose. To analyze its proarrhythmic potential, we compared effects of cloperas- tine and diphenhydramine on the hERG K+ channels expressed in HEK293 cells. We further as- sessed their effects on the halothane-anesthetized guinea-pig heart under the monitoring of mono- phasic action potential (MAP) of the ventricle. Cloperastine inhibited the hERG K+ currents in a concentration-dependent manner with an IC50 value of 0.027 μM, whose potency was 100 times greater than that of diphenhydramine (IC50; 2.7 μM). In the anesthetized guinea pigs, cloperastine at a therapeutic dose of 1 mg/kg prolonged the QT intervalPROOF and MAP duration without affecting PR interval or QRS width. Diphenhydramine at a therapeutic dose of 10 mg/kg prolonged the QT interval and MAP duration together with increase in PR interval and QRS width. The present re- sults suggest that cloperastine may be categorized as a QT-prolonging drug that possibly induces arrhythmia at overdoses like diphenhydramine does.
    [Show full text]
  • Australian Public Assessment Report for Tafenoquine (As Succinate)
    Australian Public Assessment Report for Tafenoquine (as succinate) Proprietary Product Name: Kozenis Sponsor: GlaxoSmithKline Australia Pty Ltd November 2018 Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) • The Therapeutic Goods Administration (TGA) is part of the Australian Government Department of Health and is responsible for regulating medicines and medical devices. • The TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance) when necessary. • The work of the TGA is based on applying scientific and clinical expertise to decision- making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. • The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. TGA investigates reports received by it to determine any necessary regulatory action. • To report a problem with a medicine or medical device, please see the information on the TGA website <https://www.tga.gov.au>. About AusPARs • An Australian Public Assessment Report (AusPAR) provides information about the evaluation of a prescription medicine and the considerations that led the TGA to approve or not approve a prescription medicine submission. • AusPARs are prepared and published by the TGA. • An AusPAR is prepared for submissions that relate to new chemical entities, generic medicines, major variations and extensions of indications. • An AusPAR is a static document; it provides information that relates to a submission at a particular point in time. • A new AusPAR will be developed to reflect changes to indications and/or major variations to a prescription medicine subject to evaluation by the TGA.
    [Show full text]