Injectable Anti-Malarials Revisited: Discovery and Development of New Agents to Protect Against Malaria

Total Page:16

File Type:pdf, Size:1020Kb

Injectable Anti-Malarials Revisited: Discovery and Development of New Agents to Protect Against Malaria Macintyre et al. Malar J (2018) 17:402 https://doi.org/10.1186/s12936-018-2549-1 Malaria Journal REVIEW Open Access Injectable anti‑malarials revisited: discovery and development of new agents to protect against malaria Fiona Macintyre1, Hanu Ramachandruni1, Jeremy N. Burrows1, René Holm2,3, Anna Thomas1, Jörg J. Möhrle1, Stephan Duparc1, Rob Hooft van Huijsduijnen1 , Brian Greenwood4, Winston E. Gutteridge1, Timothy N. C. Wells1* and Wiweka Kaszubska1 Abstract Over the last 15 years, the majority of malaria drug discovery and development eforts have focused on new mol- ecules and regimens to treat patients with uncomplicated or severe disease. In addition, a number of new molecular scafolds have been discovered which block the replication of the parasite in the liver, ofering the possibility of new tools for oral prophylaxis or chemoprotection, potentially with once-weekly dosing. However, an intervention which requires less frequent administration than this would be a key tool for the control and elimination of malaria. Recent progress in HIV drug discovery has shown that small molecules can be formulated for injections as native molecules or pro-drugs which provide protection for at least 2 months. Advances in antibody engineering ofer an alternative approach whereby a single injection could potentially provide protection for several months. Building on earlier profles for uncomplicated and severe malaria, a target product profle is proposed here for an injectable medicine providing long-term protection from this disease. As with all of such profles, factors such as efcacy, cost, safety and tolerability are key, but with the changing disease landscape in Africa, new clinical and regulatory approaches are required to develop prophylactic/chemoprotective medicines. An overall framework for these approaches is sug- gested here. Keywords: Malaria, Plasmodium, Chemoprotection, Prophylaxis, Liver schizont, Intra-muscular, Target candidate profle, Target product profle Introduction way to new approaches against this disease. In addition, One of the challenges of malaria control is to be able recent developments in monoclonal antibody technology to provide protection for vulnerable populations. In may be applicable to protect against malaria, especially recent years, there has been great progress in the use of in vulnerable populations. Tis paper discusses how drug regimens to prevent infections in children. How- such treatments would ft the target product profles for ever, these require frequent drug administration. One malaria, and a regulatory pathway for their development. alternative that has been tested is the use of long-acting Since they pose similar challenges and possibilities from injectable formulations. Although there are currently this perspective, the discussion of small molecules and no long-acting injectable medicines in development for antibodies was combined. malaria, new formulation technologies, similar to those developed for prophylaxis against HIV, might point the Background Over the last decade, there has been a consider- able increase in the portfolio of new molecules which *Correspondence: [email protected] 1 Medicines for Malaria Venture, Route de Pré Bois 20, 1215 Geneva, are being developed for the treatment of malaria [1, Switzerland 2]. New paradigms of screening [3–8] have led to Full list of author information is available at the end of the article another generation of molecules progressing to clinical © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Macintyre et al. Malar J (2018) 17:402 Page 2 of 18 development, aimed at producing new medicines which highly efective vaccination regimen for malaria remains overcome the current problems of multi-drug resist- very high. ant malaria [9–11] and which also simplify therapy Identifying new classes of anti-malarial chemoprotec- from the current 3-day therapy, to single exposure tive molecules targeting either blood- or liver-stage has cures. Protecting vulnerable populations from clinically historically been limited by the lack of known molecu- signifcant infections is also a key aspect of malaria lar targets and of high-throughput screening methods. control and elimination [12]. Although a highly efec- However, in the last 10 years there has been a dramatic tive vaccine is the ultimate goal of much basic malaria increase in the deployment of high density, phenotypic, research, the absence of a sterilizing immune response cell-based high-throughput screens of Plasmodium blood to naturally acquired disease shows how difcult such stages [24] and new chemotypes, which are active against a target is likely to be [13]; current candidate vaccines the blood stages of Plasmodium infection, have been provide a protective efcacy in the range of 30–50% identifed [25]. Tese families of molecules can then be [14]. tested for activity against other stages of the parasite life Malaria chemoprophylaxis can be achieved by a vari- cycle including hepatic schizonts. Examples in the Medi- ety of diferent mechanisms. Causal prophylactics tar- cines for Malaria Venture (MMV) pipeline of compounds get the asexual hepatic stages of malaria. Atovaquone (a having both blood and liver stage activity [1] include: Plasmodium mitochondrial bc1 inhibitor binding to the the DHODH (dihydroorotate dehydrogenase) inhibi- Q0 site of the complex), pyrimethamine and cycloguanil tor DSM265 [26, 27], the PI-4 kinase inhibitor MMV048 and its prodrug proguanil (selective inhibitors of dihy- (MMV390048; [28]) and the EF2 (Elongation Factor 2) drofolate reductase, DHFR), sulfadoxine (an inhibitor of inhibitor DDD498 (DDD107498; [29]), now also known Plasmodium dihydropteroate synthase, DHPS) and the as M5717. Tese molecules have helped identify new 8-aminoquinolines primaquine and tafenoquine are the molecular targets in liver schizonts. Other scafolds such only causal prophylactics with proven clinical efcacy. In as KAF156 [30] have good activity against hepatic schiz- suppressive chemoprophylaxis, the parasite is killed once onts. However, although the main mechanism of resist- it enters the erythrocytic stages of the lifecycle, stop- ance generation involves PfCARL, KAF156’s molecular ping the infection at a low level of parasitaemia before site of action is still to be elucidated [31]. More recently, it becomes clinically signifcant. Inhibitors of beta-hae- high-throughput screens of the hepatic schizont stages matin formation, such as chloroquine and mefoquine, have been carried out for murine parasites [32], increas- and (plastid) ribosomal inhibitors, such as doxycycline, ing the possibility of the identifcation of compounds are suppressive chemoprophylactics, and must be given which are selectively active against hepatic schizonts. for at least 2 weeks after leaving a malaria-endemic area Te immediate challenge is to develop high-throughput to clear any parasites that emerge from the liver after a hepatic schizont stage assays using sporozoites from person has left the endemic area. Currently, the pre- Plasmodium falciparum, and progress in this direction dominant oral prophylactics used by travelers are (rarely) is being made. Tis is particularly important in order to mefoquine, doxycycline and atovaquone–proguanil. confrm activity of compounds without asexual blood Tese were initially developed as treatments for uncom- stage activity, and to avoid a focus on murine-malaria plicated malaria [15, 16]. Tey were subsequently shown specifc prophylaxis. to have good protective efcacy when delivered at lower Work on injectable depot anti-malarials was a key part doses on a weekly basis, in the case of mefoquine, and a of the previous malaria eradication campaign with the daily basis in the case of atovaquone–proguanil, respec- development of 4-4′-diacetylaminosulphone (DADDS), tively [17, 18]. a long-acting prodrug of the DHPS inhibitor dapsone, Protective vaccine strategies have focused on develop- and cycloguanil pamoate (CI-501; [33, 34]). Clinical pro- ing an immune response which blocks the initial infec- tection over 3–5 months was achieved in the published tion, using the parasite antigen CSP-1 (circumsporozoite clinical trial, but the dose had to be delivered deep into protein; [19]). Although a high level of protection has the gluteal muscle tissues (350 mg in adults) and caused not currently been achieved with such vaccine candi- local discomfort and abscesses [35]. Failure to protect date approaches, they have provided a proof of concept was assumed to be due to cross resistance with pyrimeth- that antibodies can be generated that prevent the initial amine, which was emerging at the time. Interest in long- infection of the hepatocyte by sporozoites [20–23]. Ef- lasting anti-malarials was renewed in 1976, supported cacious vaccines would hold tremendous promise for by the UNDP/World Bank/WHO special program for prophylaxis, but unlike many viral infections, malaria is Research and Training in Tropical Disease [WHO CHE- not a disease
Recommended publications
  • Rediscovery of Fexinidazole
    New Drugs against Trypanosomatid Parasites: Rediscovery of Fexinidazole INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Marcel Kaiser aus Obermumpf, Aargau Basel, 2014 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Dieses Werk ist unter dem Vertrag „Creative Commons Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz“ (CC BY-NC-ND 3.0 CH) lizenziert. Die vollständige Lizenz kann unter creativecommons.org/licenses/by-nc-nd/3.0/ch/ eingesehen werden. 1 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel auf Antrag von Prof. Reto Brun, Prof. Simon Croft Basel, den 10. Dezember 2013 Prof. Dr. Jörg Schibler, Dekan 2 3 Table of Contents Acknowledgement .............................................................................................. 5 Summary ............................................................................................................ 6 Zusammenfassung .............................................................................................. 8 CHAPTER 1: General introduction ................................................................. 10 CHAPTER 2: Fexinidazole - A New Oral Nitroimidazole Drug Candidate Entering Clinical Development for the Treatment of Sleeping Sickness ........ 26 CHAPTER 3: Anti-trypanosomal activity of Fexinidazole – A New Oral Nitroimidazole Drug Candidate for the Treatment
    [Show full text]
  • Australian Public Assessment Report for Tafenoquine (As Succinate)
    Australian Public Assessment Report for Tafenoquine (as succinate) Proprietary Product Name: Kozenis Sponsor: GlaxoSmithKline Australia Pty Ltd November 2018 Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) • The Therapeutic Goods Administration (TGA) is part of the Australian Government Department of Health and is responsible for regulating medicines and medical devices. • The TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance) when necessary. • The work of the TGA is based on applying scientific and clinical expertise to decision- making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. • The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. TGA investigates reports received by it to determine any necessary regulatory action. • To report a problem with a medicine or medical device, please see the information on the TGA website <https://www.tga.gov.au>. About AusPARs • An Australian Public Assessment Report (AusPAR) provides information about the evaluation of a prescription medicine and the considerations that led the TGA to approve or not approve a prescription medicine submission. • AusPARs are prepared and published by the TGA. • An AusPAR is prepared for submissions that relate to new chemical entities, generic medicines, major variations and extensions of indications. • An AusPAR is a static document; it provides information that relates to a submission at a particular point in time. • A new AusPAR will be developed to reflect changes to indications and/or major variations to a prescription medicine subject to evaluation by the TGA.
    [Show full text]
  • Data Sheet of Clinical Trial C.T
    DATA SHEET OF CLINICAL TRIAL C.T. No 048-14 CLINICAL TRIAL REGISTRATION (EC) I. SPONSOR INFORMATION Foreign National 2. LEGAL PERSON 2.1 FOREIGN SPONSOR Registered Name: GlaxoSmithKline Registered Tradename: GlaxoSmithKline FOREIGN SPONSOR REPRESENTATIVE IN PERU SUBSIDIARY: BRANCH: CRO: OTHER: _________ Tradename: N/A TYPE OF INSTITUTION Laboratorio (Industria Farmacéutica) II. CLINICAL TRIAL GENERAL INFORMATION 1. CLINICAL TRIAL IDENTIFICATION Scientific Title: A RANDOMIZED, DOUBLE-BLIND, DOUBLE DUMMY, COMPARATIVE, MULTICENTER STUDY TO ASSESS THE INCIDENCE OF HEMOLYSIS, SAFETY, AND EFFICACY OF TAFENOQUINE (SB-252263, WR238605) VERSUS PRIMAQUINE IN THE TREATMENT OF SUBJECTS WITH PLASMODIUM VIVAX MALARIA Public Title: A RANDOMIZED, DOUBLE-BLIND, DOUBLE DUMMY, COMPARATIVE, MULTICENTER STUDY TO ASSESS THE INCIDENCE OF HEMOLYSIS, SAFETY, AND EFFICACY OF TAFENOQUINE (SB-252263, WR238605) VERSUS PRIMAQUINE IN THE TREATMENT OF SUBJECTS WITH PLASMODIUM VIVAX MALARIA Secundary ID(s): WHO UTN: PER-048-14 Protocol Code: TAF116564 Clinicaltrials.gov: NA EUDRACT N°: NA 1 1-2 2 2-3 Study clinical phase: 3 4 Clinical Trial Total Duration: 24 months No Aplica 0(exploratory trials) Enrolment start date in Peru (Initial) 30/12/2014 Worldwide enrolment start date (dd/ (dd/mm/aaaa): 18/09/2014 mm/aaaa): Enrolment start date in Peru (Posterior) (dd/mm/aaaa): Without starting enrollment In enrollment Peru enrolment status : Enrollment stopped Enrollment closed Other 2. CLINICAL TRIAL GOALS AND DESIGN Randomnized Simple Non randomnized Double Assignation method Type of blinding No aplica Triple Open Single arm Parallel Crossed Factorial Assignation Others: ____________________ Study Design In this prospective, double-blind, double-dummy design, a total of 300 subjects will be randomized to treatment on Day 1, of which a minimum of 50 female subjects must be enrolled that display moderate G6PD deficiency (&#8805;40% - <70% of the site median G6PD value).
    [Show full text]
  • Press Release Tafenoquine Approved in Peru
    PRESS RELEASE TAFENOQUINE APPROVED IN PERU Perú becomes second malaria-endemic country in Latin America to approve single- dose tafenoquine for radical cure of P. vivax malaria • Tafenoquine is the first drug approved for the radical cure (relapse prevention) of P. vivax malaria in more than 60 years. • As a single dose, tafenoquine offers a much shorter treatment regimen compared to current standard of care, with the benefit of increasing patient compliance and helping to advance malaria elimination efforts. Lima, January 2021. GSK and Medicines for Malaria Venture (MMV) announced that the General Directorate of Medicines, Supplies and Drugs (DIGEMID) has issued marketing authorization for single-dose tafenoquine for radical cure (prevention relapse) of Plasmodium vivax (P. vivax) malaria in patients 16 years of age or older receiving chloroquine for acute P. vivax infection (blood-stage). Peru becomes the second malaria endemic country in Latin America after Brazil to approve single dose tafenoquine for the prevention of relapse of P. vivax malaria. As a single-dose treatment, tafenoquine facilitates compliance and thus overcomes one of the major limitations of the only other drug approved for the prevention of relapse of P. vivax malaria, primaquine, which needs to be taken for 7 days. “The history of Peru and malaria are deeply entwined. In the nineteenth century, the famous writer Ricardo Palma, made malaria part of his narratives in the book Tradiciones Peruanas. In the same way, the cinchona tree, formerly known to be effective against malaria and from which quinine is derived, is part of the National Emblem”, said Dr José Sandoval, GSK Peru’s Medical Director.
    [Show full text]
  • ARAKODA (Tafenoquine)
    HIGHLIGHTS OF PRESCRIBING INFORMATION • G6PD Deficiency in Pregnancy or Lactation: ARAKODA may cause These highlights do not include all the information needed to use fetal harm when administered to a pregnant woman with a G6PD- ARAKODA™ safely and effectively. See full prescribing information for deficient fetus. ARAKODA is not recommended during pregnancy. A ARAKODA™. G6PD-deficient infant may be at risk for hemolytic anemia from exposure to ARAKODA through breast milk. Check infant’s G6PD ARAKODA™ (tafenoquine) tablets, for oral use status before breastfeeding begins. (5.2, 8.1, 8.2) Initial U.S. Approval: 2018 • Methemoglobinemia: Asymptomatic elevations in blood methemoglobin have been observed. Initiate appropriate therapy if signs or symptoms of ----------------------------INDICATIONS AND USAGE--------------------------- methemoglobinemia occur. (5. 3) ARAKODA is an antimalarial indicated for the prophylaxis of malaria in • Psychiatric Effects: Serious psychotic adverse reactions have been patients aged 18 years and older. (1) observed in patients with a history of psychosis or schizophrenia, at doses different from the approved dose. If psychotic symptoms ----------------------DOSAGE AND ADMINISTRATION----------------------- (hallucinations, delusions, or grossly disorganized thinking or behavior) • All patients must be tested for glucose-6-phosphate dehydrogenase (G6PD) occur, consider discontinuation of ARAKODA therapy and, evaluation deficiency prior to prescribing ARAKODA. (2.1) by a mental health professional as soon as possible.
    [Show full text]
  • Synthesis, in Vitro Characterization and Applications of Novel 8-Aminoquinoline Fluorescent Probes Adonis Mcqueen University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School October 2017 Synthesis, in vitro Characterization and Applications of Novel 8-Aminoquinoline Fluorescent Probes Adonis McQueen University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Medicine and Health Sciences Commons, Organic Chemistry Commons, and the Parasitology Commons Scholar Commons Citation McQueen, Adonis, "Synthesis, in vitro Characterization and Applications of Novel 8-Aminoquinoline Fluorescent Probes" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/7062 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Synthesis, in vitro Characterization and Applications of Novel 8-Aminoquinoline Fluorescent Probes by Adonis McQueen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Molecular Medicine Department of Molecular Medicine College of Medicine University of South Florida Major Professor: Dennis E. Kyle, Ph.D. Burt Anderson, Ph.D. Yu Chen, Ph.D. Lynn Wecker, Ph.D. Date of Approval: October 13, 2017 Keywords: Malaria, Primaquine, Drug Discovery, Mechanism of Action, Parasitology, Medicinal Chemistry Copyright © 2017, Adonis McQueen ACKNOWLEDGMENTS This research is a culmination of everyone I’ve interacted with, everyone who’s taught me and everyone I’ve ever taught. I thank my Creator for allowing me to make it this far. As far as people go, I owe my first thanks to Dr.
    [Show full text]
  • Plasmodium Vivax from South Asia and East Africa
    ARTICLE https://doi.org/10.1038/s41467-021-23422-3 OPEN Distinctive genetic structure and selection patterns in Plasmodium vivax from South Asia and East Africa Ernest Diez Benavente 1,9, Emilia Manko 1,9, Jody Phelan 1, Monica Campos1, Debbie Nolder1,2, Diana Fernandez3, Gabriel Velez-Tobon3, Alberto Tobón Castaño 3, Jamille G. Dombrowski 4, Claudio R. F. Marinho4, Anna Caroline C. Aguiar4, Dhelio Batista Pereira 5, Kanlaya Sriprawat6, ✉ Francois Nosten 6,7, Robert Moon1, Colin J. Sutherland 1,2, Susana Campino 1,10 & ✉ Taane G. Clark 1,8,10 1234567890():,; Despite the high burden of Plasmodium vivax malaria in South Asian countries, the genetic diversity of circulating parasite populations is not well described. Determinants of anti- malarial drug susceptibility for P. vivax in the region have not been characterised. Our genomic analysis of global P. vivax (n = 558) establishes South Asian isolates (n = 92) as a distinct subpopulation, which shares ancestry with some East African and South East Asian parasites. Signals of positive selection are linked to drug resistance-associated loci including pvkelch10, pvmrp1, pvdhfr and pvdhps, and two loci linked to P. vivax invasion of reticulocytes, pvrbp1a and pvrbp1b. Significant identity-by-descent was found in extended chromosome regions common to P. vivax from India and Ethiopia, including the pvdbp gene associated with Duffy blood group binding. Our investigation provides new understanding of global P. vivax population structure and genomic diversity, and genetic evidence of recent directional selection in this important human pathogen. 1 Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
    [Show full text]
  • Guidelines for Treatment of Malaria in the United States 1 (Based on Drugs Currently Available for Use in the United States — October 1, 2019)
    Guidelines for Treatment of Malaria in the United States 1 (Based on drugs currently available for use in the United States — October 1, 2019) CDC Malaria Hotline: (770) 488-7788 or (855) 856-4713 (toll free) Monday–Friday, 9 am to 5 pm EST; (770) 488-7100 after hours, weekends, and holidays Clinical Diagnosis/ Drug Susceptibility (Based on Recommended Regimen and Adult Dose1 Recommended Regimen and Pediatric Dose1 Plasmodium Species Region Infection Was Acquired) Pediatric dose should NEVER exceed adult dose Uncomplicated malaria/ Chloroquine resistance or unknown A. Artemether-lumefantrine (Coartem™)3,4 P. falciparum, or resistance2 Tablet=20mg artemether/ 120 mg lumefantrine species not identified All malarious regions except those specified A 3-day treatment schedule with a total of 6 oral doses is recommended for both adult and pediatric patients based on as chloroquine sensitive listed in the box weight. The patient should receive the initial dose, followed by the second dose 8 hours later, then 1 dose bid for the If “species not identified” below following 2 days. Dosing as follows: is later diagnosed as P. 5–<15 kg: 1 tablet per dose vivax or P. ovale, please 15–<25 kg: 2 tablets per dose see P. vivax and P. ovale 25–<35 kg: 3 tablets per dose (below) re: treatment with ≥35 kg: 4 tablets per dose primaquine or tafenoquine B. Atovaquone-proguanil (Malarone™)4,5 B. Atovaquone-proguanil (Malarone™)4,5 Adult tablet= 250 mg atovaquone/ 100 mg proguanil Adult tab=250 mg atovaquone/ 100 mg proguanil 4 adult tabs po qd x 3 days Peds tab=62.5 mg atovaquone/ 25 mg proguanil 5–<8 kg: 2 peds tabs po qd x 3 days 8–<10 kg: 3 peds tabs po qd x 3 days 10–<20 kg: 1 adult tab po qd x 3 days 20–<30 kg: 2 adult tabs po qd x 3 days 30–<40 kg: 3 adult tabs po qd x 3 days ≥40 kg: 4 adult tabs po qd x 3 days C.
    [Show full text]
  • A Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Trial of Tafenoquine for Weekly Prophylaxis Against Plasmodium Falciparum
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Navy Research U.S. Department of Defense 2003 A Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Trial of Tafenoquine for Weekly Prophylaxis against Plasmodium falciparum Braden R. Hale U.S. Navy Medical Research Unit # 3 Seth Owusu-Agyei Navrongo Health Research Center David J. Fryauff Naval Medical Research Center, [email protected] Kwadwo A. Koram Noguchi Memorial Institute of Medical Research Martin Adjuik Navrongo Health Research Center See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usnavyresearch Hale, Braden R.; Owusu-Agyei, Seth; Fryauff, David J.; Koram, Kwadwo A.; Adjuik, Martin; Oduro, Abraham R.; Prescott, W. Roy; Baird, J. Kevin; Nkrumah, Francis; Ritchie, Thomas L.; Franke, Eileen D.; Binka, Fred N.; Horton, John; and Hoffman, Stephen L., "A Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Trial of Tafenoquine for Weekly Prophylaxis against Plasmodium falciparum" (2003). U.S. Navy Research. 81. https://digitalcommons.unl.edu/usnavyresearch/81 This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Navy Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Braden R. Hale, Seth Owusu-Agyei, David J. Fryauff, Kwadwo A. Koram, Martin Adjuik, Abraham R. Oduro, W. Roy Prescott, J. Kevin Baird, Francis Nkrumah, Thomas L. Ritchie, Eileen D. Franke, Fred N. Binka, John Horton, and Stephen L. Hoffman This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usnavyresearch/81 MAJOR ARTICLE A Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Trial of Tafenoquine for Weekly Prophylaxis against Plasmodium falciparum Braden R.
    [Show full text]
  • Report: Use of the Quinoline Anti-Malarial Drugs Mefloquine and Tafenoquine in the Australian Defence Force
    Chapter 1 Introduction Referral 1.1 On 19 June 2018, the Senate referred the following matter to the Senate Foreign Affairs, Defence and Trade References Committee for inquiry and report by 17 September 2018: (a) the current and past policies and practices for: (i) prescribing Quinoline anti-malarial drugs to ADF personnel, and (ii) identifying and reporting adverse drug reactions from Quinoline anti-malarial drugs among ADF personnel; (b) the nature and extent of any adverse health effects of those who have taken Mefloquine/Tafenoquine on serving and former ADF personnel; (c) the support available for partners, carers and families of personnel who experience any adverse health effects of Quinoline anti-malarial drugs; (d) a comparison of international evidence/literature available on the impact of Quinoline anti-malarials; (e) how other governments have responded to claims regarding Quinoline anti-malarials; and (f) any other related matters.1 1.2 On 20 August 2018, the Senate agreed a reporting extension until 29 November 2018.2 On 29 November 2018 the Senate agreed to a further extension until 6 December 2018.3 The committee decided to table on 4 December 2018. Conduct of the inquiry 1.3 Details of the inquiry were placed on the committee's website at http://www.aph.gov.au/senate_fadt. The committee also contacted a number of relevant individuals and organisations to notify them of the inquiry and invite submissions by 31 July 2018. The committee continued to receive submissions after the closing date. Submissions received are listed at Appendix 1. 1.4 The committee held six public hearings: Brisbane on 30 August; Townsville on 31 August; Melbourne on 5 November and Canberra on 11 October, 15 October and 8 November 2018.
    [Show full text]
  • Artesunate-Tafenoquine Combination Therapy Promotes Clearance And
    Veterinary Parasitology 233 (2017) 97–106 Contents lists available at ScienceDirect Veterinary Parasitology jou rnal homepage: www.elsevier.com/locate/vetpar Research paper Artesunate-tafenoquine combination therapy promotes clearance and abrogates transmission of the avian malaria parasite Plasmodium gallinaceum a a b b Suchada Tasai , Tawee Saiwichai , Morakot Kaewthamasorn , Sonthaya Tiawsirisup , a c d,∗ Prayute Buddhirakkul , Sirintip Chaichalotornkul , Sittiporn Pattaradilokrat a Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand b Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand c Department of Dermatology, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University Hospital, Bangkok 10100, Thailand d Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand a r t a b i c l e i n f o s t r a c t Article history: Clinical manifestations of malaria infection in vertebrate hosts arise from the multiplication of the asexual Received 12 August 2016 stage parasites in the blood, while the gametocytes are responsible for the transmission of the disease. Received in revised form 2 December 2016 Antimalarial drugs that target the blood stage parasites and transmissible gametocytes are rare, but are Accepted 12 December 2016 essentially needed for the effective control of malaria and for limiting the spread of resistance. Artemisinin and its derivatives are the current first-line antimalarials that are effective against the blood stage par- Keywords: asites and gametocytes, but resistance to artemisinin has now emerged and spread in various malaria Aedes aegypti endemic areas. Therefore, a novel antimalarial drug, or a new drug combination, is critically needed to 8-Aminoquinoline Artesunate overcome this problem.
    [Show full text]
  • Drug Repurposing: a Review of Old and New Antibiotics for the Treatment of Malaria: Identifying Antibiotics with a Fast Onset of Antiplasmodial Action
    molecules Review Drug Repurposing: A Review of Old and New Antibiotics for the Treatment of Malaria: Identifying Antibiotics with a Fast Onset of Antiplasmodial Action Lais Pessanha de Carvalho 1, Andrea Kreidenweiss 1,2 and Jana Held 1,2,* 1 Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; [email protected] (L.P.d.C.); [email protected] (A.K.) 2 Centre de Recherches Medicales de Lambaréné (CERMEL), Lambaréné BP 242, Gabon * Correspondence: [email protected] Abstract: Malaria is one of the most life-threatening infectious diseases and constitutes a major health problem, especially in Africa. Although artemisinin combination therapies remain efficacious to treat malaria, the emergence of resistant parasites emphasizes the urgent need of new alternative chemotherapies. One strategy is the repurposing of existing drugs. Herein, we reviewed the antimalarial effects of marketed antibiotics, and described in detail the fast-acting antibiotics that showed activity in nanomolar concentrations. Antibiotics have been used for prophylaxis and treatment of malaria for many years and are of particular interest because they might exert a different mode of action than current antimalarials, and can be used simultaneously to treat concomitant bacterial infections. Citation: Pessanha de Carvalho, L.; Keywords: antibiotics; drug repurposing; malaria; Plasmodium; slow and fast-acting drugs Kreidenweiss, A.; Held, J. Drug Repurposing: A Review of Old and New Antibiotics for the Treatment of Malaria: Identifying Antibiotics with a 1. Introduction Fast Onset of Antiplasmodial Action. Malaria is a vector-borne disease caused by protozoan parasites of the genus Plasmod- Molecules 2021, 26, 2304. https:// ium and is a major public health problem, mainly in Sub-Saharan Africa.
    [Show full text]