Thrips Obscuratus in New Zealand Vineyards: It's Biology and Effects On

Total Page:16

File Type:pdf, Size:1020Kb

Thrips Obscuratus in New Zealand Vineyards: It's Biology and Effects On Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Thrips obscuratus in New Zealand vineyards: its biology and effects on Botrytis cinerea infection A thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy At Lincoln University By K. Schmidt Lincoln University 2007 Scientific publications of this thesis Chapter 2 Section 1 K. Schmidt, D.A.J. Teulon, M. V. Jaspers (2006). Phenology of the New Zealand flower thrips (Thrips obscuratus) in two vineyards. New Zealand Plant Protection 59, 323-329. Chapter 6 Submitted to 'Molecular Ecology Notes' Katrin Schmidt, Shelley L. Ball, Steve D. Wratten, Marlene V. Jaspers: Molecular identification of T. obscuratus (Thysanoptera) using DNA barcoding. Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy Thrips obscuratus in New Zealand vineyards: its biology and effects on Botrytis cinerea infection. By Katrin Schmidt This research project investigated aspects of Thrips obscuratus biology and its interaction with grapevines and botrytis bunch rot in two New Zealand vineyards. Flight activity, phenology and short-distance movement of T. obscuratus were assessed in the field and the influences of the fungus and the insect on B. cinerea incidence and severity, skin scarring and phenolics and grape yield were investigated in greenhouse and field experiments. The numbers of airborne adult thrips were monitored at Canterbury House Vineyard (now Waipara Hills Vineyard), Waipara, and at Neudorf Vineyard, Nelson, from spring to autumn in the 2003/04 and 2004/05 season. Thrips numbers were highest during the grapevine flowering period, being mostly T. obscuratus (90%), and higher at Neudorf Vineyard than at Canterbury House Vineyard. In the latter vineyard, thrips numbers per inflorescence at full bloom were higher in the later flowering Sauvignon Blanc than in Riesling. T. obscuratus numbers at different life-cycle stages were also monitored in the two vineyards, from two weeks before full bloom amongst Sauvignon Blanc and Riesling varieties. Flowers from grapevines in both regions were stained to show thrips eggs, which were commonly observed in the pedicels of flowers. Only small numbers of larvae were found in the traps underneath the vine canopy and no emerging adults were caught in the emergence traps placed on the ground, indicating that little reproduction had occurred in the vineyards. At Canterbury House Vineyard in spring 2005, T. obscuratus movement from three flowering inter-row plant species, buckwheat (Fagopyrum escu[entum), phacelia (PhaceUa tanacetifoUa) and alyssum (Lobu[aria maritima), to grape flowers was investigated to determine whether such floral resources could be alternative hosts of T. obscuratus, or act as trap plants. Thrips on these plants were marked with a foliar spray of 2000 ppm rubidium chloride once during full bloom of the grapevines. Numbers of marked T. obscuratus adults collected from grape flowers on adjacent vines were very low for all inter-row species, indicating little movement between them. An investigation into the potential role of T. obscuratus in vectoring B. cinerea conidia to grapevine flowers showed that 20 thrips exposed to sporulating B. cinerea deposited 800 viable conidia per inflorescence and caused 88% flower rot. Scanning electron microscopy of T. obscuratus revealed that many conidia were distributed over the cuticle of the insect, most being trapped between the cilia on the wings or attached to the numerous setae of the body. The behaviour of T. obscuratus on grape flowers, observed in the laboratory by continuous video recording over 10 minute periods, showed that T. obscuratus spent most time walking and feeding on nectar, pollen and stigma tissues. The grooming behaviour between feeding and walking events and the feeding positions were considered sufficient for it to deposit B. cinerea conidia on the naturally susceptible and wounded areas of the flowers. Greenhouse experiments conducted in 2004/05 and 2005/06 used Mullins' plants of the white varieties Riesling and Sauvignon Blanc in both seasons and Pinot Noir in the first season only. Silk bags enclosed 10 T. obscuratus collected from the field and conidia of the pathogenic B. cinerea marker strain 879-1 nit1 around each inflorescence for 7 days. In 2004/05, Pinot Noir berries had much lower incidence of B. cinerea infection than did the white varieties, whose overall incidence increased from fruit set to harvest in both seasons. Presence of T. obscuratus increased infection of grape inflorescences of both white varieties in both seasons but not of Pinot Noir. The presence of T. obscuratus and B. cinerea at flowering also caused significantly lower bunch weights in some treatments, lower numbers of berries per bunch and higher incidences and severity of B. cinerea, with Riesling being most susceptible. ii Field experiments conducted at Canterbury House Vineyard and Neudorf Vineyard in 2004/05 and 2005/06 with the same treatments demonstrated similar effects on infection incidence, severity and bunch sizes. In 2005/06, assessment of grape bunch scarring by T. obscuratus and B. cinerea in greenhouse and field experiments showed increased scarring for some B. cinerea treatments and more consistent increases with T. obscuratus treatments in both varieties. Analysis of total phenolics in berry skins of Riesling reflected the trends in scarring, being higher in the B. cinerea and T. obscuratus treatments than in the control. When one application of the insecticide pyrethrum was made in the field at full bloom, there were fewer B. cinerea infections higher yields and lower percentages of scars than when flowers were untreated. An identification method was developed for T. obscuratus by DNA sequencing of the 'Folmer' fragment of the mitochondrial gene COL DNA sequences of larvae and adults were established that could allow them to be distinguished from other thrips, which could formerly be done only for the adults using traditional morphological identification methods. This study has provided information about the interaction between T. obscuratus and B. cinerea infection pathways in grapevines under laboratory, greenhouse and field conditions, which may improve the developments of control strategies in the future. Keywords: Botrytis cinerea, Thrips obscuratus, grapevine, phenology, population dynamics, rubidium chloride, small-scale video analysis, scarring, total phenolics, DNA barcoding iii Table of Contents Abstract Table of contents iv List of Tables ix List of Figures xiii List of Plates xvi CHAPTER 1 General Introduction 1 1.1. The grapevine 1 1. 1. 1. History and taxa 1 1.1.2. Grapevine growth stages 3 1.2. Grapevine pests 5 1.2.1. Mites 5 1.2.2. Mealybug 5 1.2.3. Phyloxera 5 1.2.4. Leafroller 6 1.3. Thrips 7 1.3.1. Thrips obscuratus taxonomy 7 1.3.2. Distribution 8 1.3.3. Life cycle 8 1.3.4. Ecology of Thrips obscuratus 10 1.3.5. Damage and economic importance 12 1.3.6. Control practices 14 1.4. Grapevine diseases 15 1.4.1. Downy mildew 15 1.4.2. Powdery mildew 15 ~4.3. Bunch rot 15 1.5. Botrytis cinerea 16 1.5.1. Taxonomy 16 1.5.2. Morphology 17 1.5.3. Disease cycle 18 1.5.4. Symptoms on the grapevine 19 1.5.5. Economic importance 21 1.5.6. Control practices 21 1.6. Interactions between T. obscuratus and B. cinerea on grapevine 23 1.7. Aims and objectives of this study 25 1.7.1. Thesis structure 26 1.8. References 29 CHAPTER 2 The biology of Thrips obscuratus in two vineyards in the South Island of New Zealand 34 2.1. Chapter introduction 34 iv SECTION 1 Seasonal flight activity and infestation levels of the New Zealand Flower Thrips (Thrips obscuratus) in two South Island vineyards 35 2.2. Introduction 35 2.3. Materials and methods 36 2.3.1. Flower sampling 37 2.3.2. Sampling with water traps 37 2.3.3. Data analysis 38 2.4. Results 39 2.4.1. Flower sampling 39 2.4.2. Sampling with water traps 39 2.5. Discussion 43 2.6. References 45 SECTION 2 Population dynamics of Thrips obscuratus in vineyards 47 2.7. Introduction 47 2.8. Materials and methods 47 2.8.1. Monitoring of different life stages in the vineyard 47 2.8.2. Data analysis 50 2.9. Results 50 2.9.1. Monitoring of different life stages in the vineyard 50 2.10. Discussion 53 2.11. References 56 SECTION 3 Movement of Thrips obscuratus between flowering inter-row plants and grapevines 58 2.12. Introduction 58 2.13. Materials and methods 60 2.13.1. Study site 60 2.13.2. Application of rubidium chloride and collection of insect and plant material 60 2.13.3. Sample preparation and rubidium analysis 62 2.13.4. Data analysis 63 2.14. Results 63 2.14.1. Background concentrations of rubidium 63 2.14.2. Labelled insects and plants 63 2.15. Discussion 64 2.16. References 67 CHAPTER 3 Interactions between Thrips obscuratus and Botrytis cinerea in two South Island vineyards 71 3.1. Chapter introduction 71 v SECTION 1 T. obscuratus and B. cinerea infestation of grape flowers in greenhouse experiments 74 3.2. Introduction 74 3.3. Materials and methods 75 3.3.1.
Recommended publications
  • Effective Management of Botrytis Bunch Rot for Cool Climate Viticulture
    Effective management of botrytis bunch rot for cool climate viticulture. Prediction systems Irrigation (inputs, harvest date) Nutrition Wound control Spray coverage Canopy management Spray timing Crop load manipulation FINAL REPORT to GRAPE AND WINE RESEARCH & DEVELOPMENT CORPORATION Project Number: UT0601 Principal Investigator: Dr Katherine J. Evans Research Organisation: University of Tasmania Date: 30 December, 2010. Grape and Wine Research and Development Corporation Project Number: UT 06/01 Project Title: Effective management of botrytis bunch rot for cool climate viticulture Report Date: December 30, 2010. Key authors: Katherine J. Evans and Katie J. Dunne Perennial Horticulture Centre, Tasmanian Institute of Agricultural Research, University of Tasmania, 13 St Johns Avenue, New Town TAS 7008, Australia. David Riches and Jacqueline Edwards Biosciences Research Division, Department of Primary Industries, 621 Burwood Highway, Knoxfield, Victoria 3180, Australia. Robert M. Beresford and Gareth N. Hill The New Zealand Institute for Plant and Food Research Limited, Private Bag 92 169, Auckland 1142, New Zealand. Corresponding author: Katherine J. Evans email: [email protected] Phone: 61-3-6233 6878 Fax: 61-3-6233 6145 Acknowledgements The University of Tasmania thanks the Grape and Wine Research and Development Corporation for supporting the research presented in this report. Special thanks to Mr John Harvey, Mr Troy Fischer and staff at GWRDC, all of whom supported UTAS through the planning, implementation and reporting phases of the project. Tasmania Sincere thanks go to Mr Justin Direen of TIAR, who conducted field work diligently, made sharp observations and maintained excellent relations with our vineyard co-operators. Special thanks also to Mr Paul Schupp and Ms Alix Bramaud du Boucheron (visitor from University of Bordeaux) for technical assistance.
    [Show full text]
  • An Overview on Botrytized Wines Revisão: Vinhos Botritizados
    Ciência Téc. Vitiv. 35(2) 76-106. 2020 AN OVERVIEW ON BOTRYTIZED WINES REVISÃO: VINHOS BOTRITIZADOS Georgios Kallitsounakis1, Sofia Catarino1,2* 1LEAF (Linking Landscape Environment Agriculture and Food) Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal. 2CeFEMA (Centre of Physics and Engineering of Advanced Materials) Research Center, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal. * Corresponding author: Tel.: +351 21 3653246, e-mail: [email protected] (Received 08.06.2020. Accepted 29.08.2020) SUMMARY Noble rot wine is a specific type of sweet wine that derives from the infection of grape berries by a fungus called Botrytis cinerea. These wines are produced in specific wine regions around the world, with Sauternes region of France and Tokay region of Hungary being the most famous ones. The purpose of the current article is to provide a systematic review on the different stages of botrytized wines production, including a detailed analysis of the technical aspects involved. Specifically, it describes the process and development of berry infection by B. cinerea, and special emphasis is given to the main stages and operations of winemaking, conservation, aging and stabilization. A complex combination of a number of parameters (e.g., very specific environmental conditions) explains the rarity of noble rot occurrence and highlights the uniqueness of botrytized wines. RESUMO Os vinhos botritizados representam uma categoria específica de vinhos doces, sendo obtidos a partir de bagos de uva infectados pelo fungo Botrytis cinerea, através de um processo designado por podridão nobre. Estes vinhos são produzidos em regiões específicas do mundo, sendo Sauternes e Tokay, originários de França e Hungria respectivamente, os exemplos mais conhecidos a nível mundial.
    [Show full text]
  • Thrips Page 1
    Insect Order Identification Home Thysanoptera–Thrips Page 1 Life Cycle--Intermediate metamorphosis (between complete and simple). Winged adults mate and lay eggs. Larvae (nymphs) look similar to adults in form and shape but lack both wings and wingbuds. Larvae eat, molt, and grow larger until entering a non-feeding larval stage (pupa) in which wings form and a color change may occur but the form remains essentially the same. Some species have one or more non-feeding pre-pupal stages. The emerging winged adult looks similar to the larva. Adults--Minuscule insects (usually 1/16 inch or less). Magnification may be needed to see them. Adults are usually dark-colored, yellow to black. Shape elongated and slender. Two pairs of wings are long and narrow and held over the body. Edges of both forewings and hindwings are fringed or feathery. (Click images to enlarge.) Black dots are Feathery-edged wings Wings tube-tailed thrips long & narrow Brown dots are mixture of adults, larvae & damage One of the black dots above Feathery-edged One of the wings brown dots above Insect Order Identification Home Thysanoptera–Thrips Page 2 Eggs--Some female thrips lay their eggs in tiny slits cut into the surface of leaves, fruits, flowers, and stems. Indoors, the eggs can be laid any time of year and hatch within a few days in warm, indoor conditions. In some species the fertilized eggs are all parthenogenic females (able to reproduce without sex) and the unfertilized are males. (Click images to enlarge.) Thrips eggs Close-up of eggs Larvae (Nymphs)--Look similar to adults but entirely wingless and usually pale-colored, white to cream or pale green.
    [Show full text]
  • Microbial Characterization of Late Harvest Wines
    Joana Margarida Costa Fernandes Microbial Characterization of Late Harvest Wines Dissertação de mestrado em Bioquímica, realizada sob a orientação científica da Doutora Ana Catarina Gomes (Unidade de Genómica - Biocant) e do Professor Doutor António Veríssimo (Universidade de Coimbra) Julho, 2016 À minha Mãe, Irmã e Carlos Faim AGRADECIMENTOS A realização deste trabalho só foi possível com a colaboração de várias pessoas a quem desejo sinceramente agradecer. Em primeiro lugar, queria agradecer à Doutora Ana Catarina Gomes pela oportunidade de me integrar na sua equipa de laboratório na unidade de genómica do Biocant tornando possível a concretização da dissertação Mestrado, mas também pela sua disponibilidade e orientação científica. Ao Professor António Veríssimo, por ter aceite ser meu orientador e pela sua disponibilidade. À Susana Sousa pela sua dedicação, disponibilidade, motivação e preciosa cooperação ao longo deste trabalho. Aos meus colegas de laboratório Marisa Simões, Cátia Pinto, Raquel Santos, Joana Fernandes, André Melo e Daniel Duarte pelo acolhimento, simpatia, ajuda, e conselhos que me ofereceram para o bom desenrolar deste trabalho. Às minhas colegas de curso Patrícia, Márcia, Helga e Filipa. Estes últimos dois anos não teriam tido o mesmo encanto sem a vossa amizade. Um profundo agradecimento à minha Mãe e Irmã que me apoiaram e incentivaram nesta etapa da minha vida. Ao Carlos Faim pelo seu amor, amizade e apoio incondicionais, a minha sincera e carinhosa gratidão. RESUMO A superfície das bagas da uva é habitada por uma grande diversidade de microrganismos, incluindo leveduras, bactérias e fungos filamentosos que desempenham um papel importante na produção de vinho, contribuindo significativamente para processo fermentativo e para propriedades aromáticas finais do vinho resultante.
    [Show full text]
  • Onion Thrips (Thrips Tabaci)
    Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-117-08PR March 2008 Onion Thrips (Thrips tabaci) Diane G. Alston, Entomologist • Daniel Drost, Vegetable Specialist What You Should Know • Onion thrips are the most injurious insect pest to onions in Utah. • Immature and adult thrips prefer to feed on young leaves in the inner neck of plants. • Moderate to severe thrips feeding causes reduced bulb size. • Insecticides are a major tool for their control, but thrips are prone to develop resistance. • Long-term, sustainable management of thrips includes crop cultural practices, onion varietal resistance, biological control, and insecticide resistance management. nion thrips, thrips Thrips tabaci (Order Thysanoptera, Thysanoptera OFamily Thripidae), is a key insect pest in most onion production regions of the world. Immature and adult thrips feed with a punch-and-suck behavior that removes leaf chlorophyll causing white to silver patches and Fig. 2. Adult onion thrips have fringed or hairy wings 2 streaks (Fig. 1). Thrips populations increase rapidly under and 7-segmented antennae. hot, arid conditions and can lead to economic crop unsustainable management. Life history characteristics loss. The early bulb enlargement stage of onion growth of onion thrips that enhance their pest status include is the most sensitive to thrips feeding. Insecticides have a short generation time, high reproductive potential, been the primary tactic for their management; however, asexual reproduction by females (parthenogenesis), repeated applications often lead to resistance in the and occurrence of protected, non-feeding life stages. thrips population, suppression of natural enemies, and Recent research has shown that the majority of onion thrips on a plant are in the non-feeding egg stage (60- 75% of total population on an onion plant during late June to August), and thus, not exposed to insecticides and other suppressive tactics.
    [Show full text]
  • Thrips Pollination of Mesozoic Gymnosperms
    Thrips pollination of Mesozoic gymnosperms Enrique Peñalvera, Conrad C. Labandeirab,c,1, Eduardo Barróna, Xavier Delclòsd, Patricia Nele, André Nele, Paul Tafforeauf, and Carmen Sorianof aMuseo Geominero, Instituto Geológico y Minero de España, Madrid E-28003, Spain; bDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013; cDepartment of Entomology and Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, MD 20742; dDepartament d’Estratigrafia, Paleontologia i Geociències Marines, Facultat de Geologia, Universitat de Barcelona, E-08071, Spain; eCentre National de la Recherche Scientifique Unité Mixte de Recherche 7205, Entomologie, Muséum National d’Histoire Naturelle, Paris F-75005; Département Sciences de la Vie et Santé, AgroParisTech, Paris F-75231, France; and fEuropean Synchrotron Radiation Facility, Grenoble, F-38000, France Edited by David L. Dilcher, Indiana University, Bloomington, IN, and approved April 10, 2012 (received for review December 13, 2011) Within modern gymnosperms, conifers and Ginkgo are exclusively several to a few hundred pollen grains to flowers (18) or cones wind pollinated whereas many gnetaleans and cycads are insect (Table S1); for example, Cycadothrips chadwicki can deliver up to pollinated. For cycads, thrips are specialized pollinators. We report 5,700 pollen grains per ovule to Macrozamia communis cycad such a specialized pollination mode from Early Cretaceous amber of cones in an afternoon (8). Several species of Cycadothrips are ef- Spain, wherein four female thrips representing a genus and two ficient pollinators of endemic Australian Macrozamia cycads (7, 8, species in the family Melanthripidae were covered by abundant 21). Besides pollination of gnetaleans and cycads, thrips species Cycadopites pollen grains.
    [Show full text]
  • <I>Thrips Palmi</I>
    ISPM 27 27 ANNEX 1 ENG DP 1: Thrips palmi Karny INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Fifth Session of the Commission on Phytosanitary Measures in March 2010. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 1: Thrips palmi Karny Adopted 2010; published 2016 CONTENTS 1. Pest Information .............................................................................................................................2 2. Taxonomic Information .................................................................................................................3 3. Detection ........................................................................................................................................3 4. Identification ..................................................................................................................................4 4.1 Morphological identification of the adult thrips ..................................................................5 4.1.1 Preparation of thrips for microscopic examination ..............................................................5 4.1.2 Identification of the family Thripidae ..................................................................................5 4.1.3 Identification of the genus Thrips ........................................................................................5
    [Show full text]
  • FURY 10 EW Active Substance: Zeta-Cypermethrin 100 G/L COUNTRY
    Part A Product name Registration Report –Central Zone National Assessment - FURY 10 EW Page 1 of 27 Federal Republic of Germany 024222-00/01 REGISTRATION REPORT Part A Risk Management Product name: FURY 10 EW Active Substance: zeta-cypermethrin 100 g/L COUNTRY: Germany Central Zone Zonal Rapporteur Member State: Germany NATIONAL ASSESSMENT Applicant: Cheminova Deutschland GmbH & Co. KG Submission Date: 02/01/2014 Date: 17/08/2018 Applicant (Cheminova Deutschland GmbH) Evaluator BVL / DE Date: 17/09/ 2018 Part A Product name Registration Report –Central Zone National Assessment - FURY 10 EW Page 2 of 27 Federal Republic of Germany 024222-00/01 Table of Contents PART A – Risk Management 4 1 Details of the application 4 1.1 Application background 4 1.2 Annex I inclusion 4 1.3 Regulatory approach 5 2 Details of the authorisation 6 2.1 Product identity 6 2.2 Classification and labelling 6 2.3.2.2 Specific restrictions linked to the intended uses 9 2.3 Product uses 10 3 Risk management 12 3.1 Reasoned statement of the overall conclusions taken in accordance with the Uniform Principles 12 3.1.1 Physical and chemical properties (Part B, Section 1, Points 2 and 4) 12 3.1.2 Methods of analysis (Part B, Section 2, Point 5) 12 3.1.2.1 Analytical method for the formulation (Part B, Section 2, Point 5.2) 12 3.1.2.2 Analytical methods for residues (Part B, Section 2, Points 5.3 – 5.8) 12 3.1.3 Mammalian Toxicology (Part B, Section 3, Point 7) 12 The PPP is already registered in Germany according to Regulation (EU) No 1107/2009.
    [Show full text]
  • Epidemiology of Grape Powdery Mildew, Uncinula Necator, in the Willamette Valley
    An Abstract of the Thesis of Tyrone W. Hall for the degree of Master of Science in Botany and Plant Pathology presented on February 07,2000. Title: Epidemiology of Grape Powdery Mildew, Uncinula necator, in the Willamette Valley. Redacted for Privacy Abstract approved: W Iter F. Mahaffee An important disease of Vitis vinifera production in Oregon and all other commercial growing regions is powdery mildew of grape, caused by the obligate fungal pathogen Unci nula necator (Schwein.) Burril. Grape production can be characterized as a long-term investment in the establishment and maintenance of the vineyard. Establishment times have been reduced with the use of plastic vine shelters, but powdery mildew disease pressure within vine shelters had been an unaddressed issue. Control of the pathogen requires frequent spray applications and costly cultural management of the grape canopy. Industry interest in forecasting programs have shown promise in regulating spray applications to times when they are most effective, or needed. The timing of when to begin spray programs is believed to be a point of weakness in the forecasting programs currently available for grape powdery mildew. The influence of vine shelter use on the development of powdery mildew was investigated in the field during the 1998 and 1999 growing season. Industry standard installations of various brands of vine shelters were tested against modified installations for both incidence and severity of Uncinula necator infection. The industry standard installation of76 ern high tubes hilled with 8 ern of soil at the bottom to prevent airflow, were effective in reducing the incidence of powdery mildew in both field seasons.
    [Show full text]
  • Genome and Transcriptome Analysis of the Latent Pathogen Lasiodiplodia Theobromae, an Emerging Threat to the Cacao Industry
    Genome Genome and transcriptome analysis of the latent pathogen Lasiodiplodia theobromae, an emerging threat to the cacao industry Journal: Genome Manuscript ID gen-2019-0112.R1 Manuscript Type: Article Date Submitted by the 05-Sep-2019 Author: Complete List of Authors: Ali, Shahin; Sustainable Perennial Crops Laboratory, United States Department of Agriculture Asman, Asman; Hasanuddin University, Department of Viticulture & Enology Draft Shao, Jonathan; USDA-ARS Northeast Area Balidion, Johnny; University of the Philippines Los Banos Strem, Mary; Sustainable Perennial Crops Laboratory, United States Department of Agriculture Puig, Alina; USDA/ARS Miami, Subtropical Horticultural Research Station Meinhardt, Lyndel; Sustainable Perennial Crops Laboratory, United States Department of Agriculture Bailey, Bryan; Sustainable Perennial Crops Laboratory, United States Department of Agriculture Keyword: Cocoa, Lasiodiplodia, genome, transcriptome, effectors Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 46 Genome 1 Genome and transcriptome analysis of the latent pathogen Lasiodiplodia 2 theobromae, an emerging threat to the cacao industry 3 4 Shahin S. Ali1,2, Asman Asman3, Jonathan Shao4, Johnny F. Balidion5, Mary D. Strem1, Alina S. 5 Puig6, Lyndel W. Meinhardt1 and Bryan A. Bailey1* 6 7 1Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville Agricultural Research Center-West, 8 Beltsville, MD 20705, USA. 9 2Department of Viticulture & Enology, University of California, Davis, CA 95616 10 3Department of Plant Pests and Diseases, Hasanuddin University, South Sulawesi, Indonesia. 11 4USDA/ARS, Northeast Area, Beltsville, MDDraft 20705, USA. 12 5 Institute of Weed Science, Entomology and Plant Pathology, University of the Philippines, Los Banos, 13 Laguna 4031, Philippines.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND ET MEDITERRANEENNE MEDITERRANEAN POUR LA PROTECTION DES PLANTES PLANT PROTECTION ORGANIZATION EPPO Reporting Service NO. 4 PARIS, 2018-04 General 2018/068 New data on quarantine pests and pests of the EPPO Alert List 2018/069 Quarantine lists of Kazakhstan (2017) 2018/070 EPPO report on notifications of non-compliance 2018/071 EPPO communication kits: templates for pest-specific posters and leaflets 2018/072 Useful publications on Spodoptera frugiperda Pests 2018/073 First report of Tuta absoluta in Tajikistan 2018/074 First report of Tuta absoluta in Lesotho 2018/075 First reports of Grapholita packardi and G. prunivora in Mexico 2018/076 First report of Scaphoideus titanus in Ukraine 2018/077 First report of Epitrix hirtipennis in France 2018/078 First report of Lema bilineata in Italy 2018/079 Eradication of Anoplophora glabripennis in Brünisried, Switzerland 2018/080 Update on the situation of Anoplophora glabripennis in Austria Diseases 2018/081 First report of Ceratocystis platani in Turkey 2018/082 Huanglongbing and citrus canker are absent from Egypt 2018/083 Xylella fastidiosa eradicated from Switzerland 2018/084 Update on the situation of Ralstonia solanacearum on roses in Switzerland 2018/085 First report of ‘Candidatus Phytoplasma fragariae’ in Slovenia Invasive plants 2018/086 Ambrosia artemisiifolia control in agricultural areas in North-west Italy 2018/087 Optimising physiochemical control of invasive Japanese knotweed 2018/088 Update on LIFE project IAP-RISK 2018/089 Conference: Management and sharing of invasive alien species data to support knowledge-based decision making at regional level (2018-09-26/28, Bucharest, Romania) 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 E-mail: [email protected] 75011 Paris Fax: 33 1 70 76 65 47 Web: www.eppo.int EPPO Reporting Service 2018 no.
    [Show full text]
  • Vegetable Insects Department of Entomology
    E-99-W Vegetable Insects Department of Entomology MANAGING INSECT PESTS OF COMMERCIALLY GROWN CRUCIFERS Ricky E. Foster, Extension Entomologist The crucifers include cabbage, caulifl ower, broccoli, The following practices will reduce cabbage maggot injury. Brussels sprouts, turnips, radishes, kale, rutabaga, mustard, • Disk crop residues immediately after harvest to reduce collards, horseradish, and other crucifers. All of the crucifers overwintering populations. are subject to attack by insects. Some, such as radishes, can • Plant in well-drained soils when soil temperatures exceed usually be grown without insect damage and others, such as 50°F. cabbage, must be managed carefully to avoid serious insect • Do not plant in fi elds to which animal manure has been damage. recently applied or in which a cover crop has been plowed down within 3-4 weeks of planting. CABBAGE MAGGOTS • Use the soil insecticides diazinon, Lorsban, or Capture LFR in the seed furrow or as transplant drenches. The fi rst insect of concern on crucifers is usually the cab- bage maggot. Cabbage maggot overwinters as pupae in the FLEA BEETLES soil. The fl ies, slightly smaller than a housefl y, emerge from the soil in late April or early May and lay white eggs at the Flea beetles are almost always a pest of crucifers, es- bases of newly set plants. Emergence usually coincides with pecially early in the growing season. Flea beetles are small, the time when yellow rocket, a common weed, is in full bloom. hard-shelled insects, so named because their enlarged hind Larvae from this fi rst generation tunnel in the roots of legs allow them to jump like fl eas when disturbed.
    [Show full text]