Overview of Myrtle Rust Response in Australia; Impact on Rhodamnia Rubescens and Rhodomyrtus Psidioides

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Myrtle Rust Response in Australia; Impact on Rhodamnia Rubescens and Rhodomyrtus Psidioides Overview of myrtle rust response in Australia; Impact on Rhodamnia rubescens and Rhodomyrtus psidioides Angus J. Carnegie Guava rust Eucalyptus rust Ohia rust Myrtle rust What’s in a name? • Austropuccinia psidii (Winter 1884): echinulate urediniospores • Many synonyms (~25) – “novel” species described from many hosts as Puccinia (sexual state) or Uredo (asexual state) • In 2006 Simpson et al. described Uredo rangelii, based on tonsure on urediniospores (from only two herbarium specimens) – Identified as Uredo rangelii when arrived in Australia Urediniospores & Teliospores J. Walker (1983) • Now accepted as Austropuccinia psidii – Single strain in Australia Australia’s Biosecurity System • Emergency Plant Pest Response Deed (“the Deed”) – Provides the framework for managing Exotic Plant Pest (EPP) incursions – Cost-sharing (Government / Industry) • PLANTPLAN – Technical response plan used by jurisdictions and industry in responding to an EPP incident – Provides nationally consistent guidelines for response procedures under the Deed – Outlines the Phases of an incursion response • Investigation, Alert, Response, Stand Down – Key roles and responsibilities of industry and government Australian myrtle rust Emergency Response - Stages • Stages of myrtle rust response 1. Detection, initial surveys, stand down [1 week] 2. NSW Response (not under the Deed) [minimal resources] 3. National Response (under the Deed) [large resources] 4. Transitional Management (living with it) Stage 1 Stage 2 Stage 3 Stage 4 April May June July August September October November December January 2010 2011 Carnegie & Cooper (2011) Australasian Plant Pathology 40: 446-459. Emergency Response – Stage 1 • Rust on Agonis flexuosa detected by grower 21 April – Identified by national expert 23 April – Surveys of IP1 24 April • 1100 Agonis plants, Syncarpia glomulifera windbreak • Consultative Committee EPP convened 27 April – “Require more information to make an informed decision” • Surveys continue – 25 sites; nurseries, native bush, road-sides, gardens; 2 survey teams IP1 • IP2 detected (nursery 8.5 km from IP1) • CCEPP re-convened 30 April – “myrtle rust not technically feasible to eradicate” • National response stood down 30 April IP2 21 22 23 24 25 26 27 28 29 30 Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Infected Premises (IP) 1 Emergency Response – Stage 2 • NSW land management agencies agree to continue containment and surveillance – Outside of the Deed & cost-sharing arrangements – May & June 2010 – Minimal resources • Interim Response Plan (CCEPP) • Plant Health Australia request CCEPP to reconsider decision – Decision to stand down too hasty • Surveillance: – 85 site visits; 55 sites (multiple visits, especially IPs) – 5 Infected Premises detected • 4 with small number of plants infected IP1 • Containment: – Informal quarantine on properties – IP1: continued fungicide regime and surveys • Infected plants & trees NOT destroyed IP2 – IP2 to IP5: plants destroyed and fungicide regime • Tracing: some track back and trace forward IP4 – No indication of original source IP3 – Some links between infected premises IP5 Emergency response – Stage 3 • Observations from Stage 2 indicated rust had not behaved as expected – Limited spread, limited hosts, not spread to native bush, good containment on infected premises • Decision to go into full-blown emergency response – Under the PLANTPLAN & the DEED (costs covered) – Quarantine (restrictions on movement of Myrtaceae) – Tracing (>20,000 traces identified and processed) – Surveillance (>1,600 sites surveyed) – Containment & destruction (16,000 plants destroyed) – Communication & education campaign – Resources: 350+ staff Stand Down - final • 2nd December CCEPP reviewed status – Increasing host range – Spread beyond Central Coast: • Large number of domestic, commercial, public & recreational sites • Native vegetation and forests – Wind-borne spread • NMG 22nd December: not technically feasible to eradicate Emergency response time-line Human-assisted transfer 200 180 160 focus - 140 120 Weather changes Weather Bushland 100 80 Austromyrtus Emergency response restarts response Emergency Detection Surveillance ramps up Surveillance ramps 60 Down Stood Cumulative number of IPs 40 20 0 April May June July August September October November December 2010 Key lessons • “Surveillance and eradication procedures should be implemented immediately” • Coordinated and well resourced response protocols – Speedy process & firm decisions – Strong (pre-arranged) links with industry and peak interest groups • Industry need to be prepared for emergency response • Appropriate length for Investigation and Alert phase (before decision is made to proceed or stand down) – Initial investigative stage need to be well resourced • Uredo rangelii & myrtle rust caused confusion • Staff need to be identified pre-incursion and accessible during incursion – Pathologists, botanists, biosecurity/surveillance • Training in emergency response procedures • Assume all species of Myrtaceae are a host • Don’t assume myrtle rust symptoms are easy to detect • Difficult to predict which species will be significantly impacted Distribution in Australia Berthon et al. (under review) Biological Conservation Rapidly expanding host range • Prior to reaching Australia (1884–2010): – 130 species, 33 genera, 9 tribes Acca Beaufortia Eremaea Agonis Callistemon Eucalyptus • Australia (2010–2013): Allosyncarpia Calothamnus Eugenia – 270 species, 51 genera, 15 tribes (naïve hosts) Angophora Calycorectes Gossia 300 Archirhodomyrtus Campomanesia Heteropyxis Astartea Chamelaucium Homoranthus NATIONALField & laboratory Asteromyrtus Choricarpia Hypocalymma 250 Austromyrtus Corymbia Kunzea FIELDField - NATIONALonly Backhousia Darwinia Lenwebbia 200 Barongia Decaspermum Leptospermum Lindsayomyrtus Osbornia Stockwellia 150 Lithomyrtus Pericallyma Syncarpia Number Lophomyrtus Pilidiostigma Syzygium 100 Lophostemon Pimenta Thryptomene Melaleuca Plinia Tristania Number of host species ofhost Number Metrosideros Tristaniopsis 50 Psidium Mitrantia Regelia Ugni Myrcia Rhodamnia Uromyrtus 0 Apr 2010 Nov 2010 July 2011 Dec 2011 Aug 2012 Myrcianthes Rhodomyrtus Verticordia Date Myrrhinium Ristantia Xanthostemon Myrtus Sphaerantia • Worldwide combined host list: – 450 species, 73 genera, 16 tribes Giblin F, Carnegie AJ (2014) https://www.anbg.gov.au/anpc/resources/Myrtle_Rust.html Impact on key Myrtaceae • Rhodamnia rubescens • Understory shrub to small tree (12 m) • Highly susceptible AVH 1 m 1 m 1 Unsprayed Sprayed Rhodamnia rubescens • 12% of trees surveyed were dead • 2017: increase in mortality (up to 50%) • Just listed as Critically Endangered Rhodomyrtus psidioides K. Kupsch G. Pegg Rhodomyrtus psidioides • 50% of trees surveyed were dead • Some 100% dead • Just listed as Critically Endangered Conservation model Start SUSCEPTIBLE N Y RANGE OVERLAPS? N Y > 80 % THREATENED < 80 % N Y NON-PRIORITY PRIORITY CAT. C PRIORITY CAT. B PRIORITY CAT. A Berthon et al. (under review) Biological Conservation .
Recommended publications
  • Two New Taxa of Verticordia (Myrtaceae: Chamelaucieae) from South-Western Australia
    A.S.Nuytsia George 20: 309–318 & M.D. (2010)Barrett,, Two new taxa of Verticordia 309 Two new taxa of Verticordia (Myrtaceae: Chamelaucieae) from south-western Australia Alex S. George1 and Matthew D. Barrett2,3 1 ‘Four Gables’, 18 Barclay Road, Kardinya, Western Australia 6163 Email: [email protected] 2 Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Ave, West Perth, Western Australia 6005 3 School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009 Email: [email protected] Abstract George, A.S. and Barrett, M.D. Two new taxa of Verticordia (Myrtaceae: Chamelaucieae) from south- western Australia. Nuytsia 20: 309–318 (2010). Verticordia mitchelliana subsp. implexior A.S.George & M.D.Barrett and Verticordia setacea A.S.George are described and discussed. Verticordia setacea belongs with V. gracilis A.S.George in section Platandra, previously a monotypic section. Introduction The genus Verticordia DC. (Myrtaceae: tribe Chamelaucieae) is a charismatic group of shrubs found mainly in south-western Australia, with several species in adjacent arid regions and three in tropical Australia (George 1991; George & Pieroni 2002). Verticordia is currently defined solely on the possession of divided calyx lobes, but the limits between Verticordia and the related genera Homoranthus A.Cunn. ex Schauer, Chamelaucium Desf. and Darwinia Rudge are difficult to define conclusively, and other characteristics such as anther morphology suggest conflicting relationships (Bentham 1867; Craven & Jones 1991; George 1991). A recent analysis using a single chloroplast gene, with limited sampling of Verticordia taxa (Ma et al. 2002), suggests that Verticordia may be polyphyletic.
    [Show full text]
  • Variation in Seed Production and Germination in 22 Rare and Threatened Western Australian Verticordia (Myrtaceae)
    Journal of the Royal Society of Western Australia, 84:103-110, 2001 Variation in seed production and germination in 22 rare and threatened Western Australian Verticordia (Myrtaceae) A Cochrane1, K Brown2, S Cunneen3 & A Kelly4 1Threatened Flora Seed Centre, Department of Conservation and Land Management, Locked Bag 104, Bentley Delivery Centre, Perth WA 6983 2Environmental Weeds Action Network, 108 Adelaide Terrace, East Perth WA 6000 3CSIRO Centre for Mediterranean Agricultural Research, Floreat WA 6014 424 Carnarvon St, East Victoria Park WA 6100 email: [email protected] Manuscript received August 2000, accepted March 2001 Abstract This study investigates the reproductive potential of 22 rare and threatened Western Australian taxa in the genus Verticordia (Myrtaceae) over a 5-year period. Considerable inter- and intra-specific variation in both seed production and germinability was demonstrated for the majority of taxa. The seed to flower ratio, or “seed set”, ranged from 0% to 68% with an overall mean of 21% in 82 accessions representing seed from 48 populations of the 22 taxa. Percentage germination ranged from 7% to 100% with an average of 49% for 68 accessions. The precariously low annual reproductive capacity of some of the more restricted and critically endangered taxa threatens their survival and unexpected disturbance events may result in population decline or even localised extinction. Mitigation measures such as the reintroduction of plant material into new sites and the enhancement of existing populations through additional plantings may be warranted for many of Western Australia’s rare and threatened Verticordia. Keywords: Verticordia, seed production, germination Introduction prominently displayed feathery flowers are borne singly but appear as heads or spikes and are generally brightly Verticordia (family Myrtaceae, sub-family coloured, ranging from yellow to red to purple.
    [Show full text]
  • Resistance and Tolerance to Root Herbivory in Maize Were Mediated by Domestication, Spread, and Breeding
    bioRxiv preprint doi: https://doi.org/10.1101/751982; this version posted September 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Resistance and Tolerance to Root Herbivory in Maize were Mediated by Domestication, Spread, and Breeding Ana A. Fontes-Puebla1,2, Julio S. Bernal1* 1Texas A&M University, Department of Entomology, College Station, TX, USA. 2Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP)-CECH-CIRNO, Hermosillo-Sonora, México. * Correspondence: Julio S. Bernal [email protected] Abstract Plants may defend against herbivory and disease through various means. Plant defensive strategies against herbivores include resistance and tolerance, which may have metabolic costs that affect plant growth and reproduction. Thus, expression of these strategies may be mediated by a variety of factors, such as resource availability, herbivory pressure, and plant genetic variation, among others. Additionally, artificial selection by farmers and systematic breeding by scientists may mediate the expression of resistance and tolerance in crop plants. In this study, we tested whether maize defense against Western corn rootworm (WCR) was mediated by the crop´s domestication, spread, and modern breeding. We expected to find a trend of decreasing resistance to WCR with maize domestication, spread, and breeding, and a trend of increasing tolerance with decreasing resistance. To test our expectations, we compared resistance and tolerance among four Zea plants spanning those processes: Balsas teosinte, Mexican landrace maize, US landrace maize, and US inbred maize.
    [Show full text]
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • Pilidiostigma Papuanum Click on Images to Enlarge
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pilidiostigma papuanum Click on images to enlarge Family Myrtaceae Scientific Name Pilidiostigma papuanum (Lauterb.) A.J.Scott Scott, A.J. (1978) Kew Bulletin 33: 327. Flowers [not vouchered]. Copyright G. Sankowsky Stem Can grow into a small tree but usually flowers and fruits as a shrub about 1-3 m tall. Leaves Leaf blades about 13 x 4 cm. Two intramarginal veins visible on the leaf blade, the outer vein about 0.5-2 mm from the margin and the inner vein about 2-5 mm from the margin. Lateral veins inconspicuous. Petiole flat or channelled on the upper surface. Oil dots quite numerous, pale brown (?) in colour. Flowers [not vouchered]. Copyright G. Sankowsky Flowers Calyx glabrous. Petals ovate or almost orbicular, about 7-9 x 6-7 mm, marked by numerous oil glands. Staminal disk flat-topped, stamens in many concentric circles. Pollen white. Stigma terminal, slightly wider than the style. Fruit Fruits ovoid, about 25-30 x 15-20 mm, calyx lobes persistent at the apex. Seeds variable in size, about 20-22 Leaves and fruit [not vouchered]. Copyright G. Sankowsky x 5-6 mm. Testa +/- smooth but marked by numerous oil glands. Anatomy of the seed difficult to interpret. Cotyledons fused together, radicle +/- at right angles to the long axis of the larger cotyledon and completely envelops the smaller cotyledon. Seedlings Cataphylls about 1-3 pairs, produced before the first pair of true leaves.
    [Show full text]
  • Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java a Checklist Including Sundanese Names, Distribution and Use
    Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman © 2010 Center for International Forestry Research. All rights reserved. Printed in Indonesia ISBN: 978-602-8693-22-6 Priyadi, H., Takao, G., Rahmawati, I., Supriyanto, B., Ikbal Nursal, W. and Rahman, I. 2010 Five hundred plant species in Gunung Halimun Salak National Park, West Java: a checklist including Sundanese names, distribution and use. CIFOR, Bogor, Indonesia. Photo credit: Hari Priyadi Layout: Rahadian Danil CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Center for International Forestry Research (CIFOR) CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is one of 15 centres within the Consultative Group on International Agricultural Research (CGIAR). CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America. | iii Contents Author biographies iv Background v How to use this guide vii Species checklist 1 Index of Sundanese names 159 Index of Latin names 166 References 179 iv | Author biographies Hari Priyadi is a research officer at CIFOR and a doctoral candidate funded by the Fonaso Erasmus Mundus programme of the European Union at Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences.
    [Show full text]
  • Northern Beaches 2019 June Caleyi
    p CALEYI i c A n d r e P o r t e n e r s NORTHERN BEACHES G R O U P austplants.com.au/northern-beaches June 2019 Australian Plants Society Northern Beaches APS NORTHERN BEACHES MAY MEETING [email protected] Anne Gray President Dr Conny Harris 9451 3231 At our May meeting Eleanor continued our education on Plant Families by Vice-President David Drage 9949 5179 presenting the Araliaceae Family. Secretary Penny Hunstead 9999 1847 Minutes Secretary Eleanor Eakins 9451 1883 This family is made up of 52 genera and 700 species worldwide. Eleanor Treasurer Lindy Monson 9953 7498 looked at the Astrotricha (star-hair) genus which is found in the Sydney area Regiona Delegate Harry Loots 9953 7498 and is closely related to the Apiaceae Family (flannel flowers). The plants Librarian Jennifer McLean 9970 6528 usually have star hairs on most parts of theAsplenium plant except obtusatum. the pic:Richard upper surface Hunstead of Website Administrator David Drage 9949 5179 the mature leaf. Membership Officer Jan Carnes 0416 101 327 Talk Co-ordinator Russell Beardmore 0404 023 223 Walk Co-ordinator Anne Gray 9402 4797 Catering Officer Georgine Jakobi 9981 7471 Newsletter Editor Jane March 0407 220 380 CALENDAR APS Northern Beaches meeting Thursday June 6, 2019 at Stony Range Botanic Garden, Dee Why. 7.00 pm Plant family. Campanulaceae - Estelle Burrows. 7.15 pm Presentation: Katriona Wragg: NBC Community Nursery Supervisor. Growing A Community Native Plant Nursery. Northern Beaches Council Community Native Plant Nursery started in 2009 and produced less than 1000 plants.
    [Show full text]
  • MEDIA FACTSHEET Habitat Enhancement Efforts at Pulau Ubin
    MEDIA FACTSHEET Habitat enhancement efforts at Pulau Ubin Reforestation efforts at Tanjong Tajam, Pulau Ubin 100 native trees were planted at Tanjong Tajam, Pulau Ubin as part of habitat enhancement efforts on 23 August 2014. Minister of State for National Development, Desmond Lee, planted a Pteleocarpa lamponga. About the Pteleocarpa lamponga The Pteleocarpa lamponga is a medium- sized tree with a bushy, open crown that can grow to more than 30m tall. Its leaves have a leathery texture. Bright yellow flowers are found in clusters at the ends of leafy twigs. Native to Singapore, and also found in Thailand, Malaysia, Sumatra and Borneo, the Pteleocarpa lamponga is presumed to be extinct in the wild in Singapore. Page 1 of 9 Aphanamixis polystachya (Common names: Pasak Lingga, Amoora, Cikih, Kasai Paya, Kulim Burung) Growing up to 20m tall, the leaves of the Aphanamixis polystachya are oblong and leathery. Its sweetly scented flowers are cream, yellow or bronze in colour. Oil extracted from its seeds have medicinal properties and used externally for rheumatism. However, its fruits are poisonous. The Aphanamixis polystachya is classified as endangered in Singapore. Erythroxylum cuneatum (Common names: Wild Cocaine, Baka, Beluntas Bukit, Cinatamula, Inai Inai, Mahang Wangi, Medang Lenggundi, Medang Wangi) Page 2 of 9 Growing up to 45m tall, the Erythroxylum cuneatum Has flattened green twigs. Its tiny flowers grow in clusters of 1-8, and are white to light green in colour. Its fruits are bright red when ripe, and are eaten by mammals and porcupines. The Erythroxylum cuneatum is classified as common in Singapore and can be found in Changi, Pulau Tekong, Pulau Ubin and St John’s Island.
    [Show full text]
  • In China: Phylogeny, Host Range, and Pathogenicity
    Persoonia 45, 2020: 101–131 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.04 Cryphonectriaceae on Myrtales in China: phylogeny, host range, and pathogenicity W. Wang1,2, G.Q. Li1, Q.L. Liu1, S.F. Chen1,2 Key words Abstract Plantation-grown Eucalyptus (Myrtaceae) and other trees residing in the Myrtales have been widely planted in southern China. These fungal pathogens include species of Cryphonectriaceae that are well-known to cause stem Eucalyptus and branch canker disease on Myrtales trees. During recent disease surveys in southern China, sporocarps with fungal pathogen typical characteristics of Cryphonectriaceae were observed on the surfaces of cankers on the stems and branches host jump of Myrtales trees. In this study, a total of 164 Cryphonectriaceae isolates were identified based on comparisons of Myrtaceae DNA sequences of the partial conserved nuclear large subunit (LSU) ribosomal DNA, internal transcribed spacer new taxa (ITS) regions including the 5.8S gene of the ribosomal DNA operon, two regions of the β-tubulin (tub2/tub1) gene, plantation forestry and the translation elongation factor 1-alpha (tef1) gene region, as well as their morphological characteristics. The results showed that eight species reside in four genera of Cryphonectriaceae occurring on the genera Eucalyptus, Melastoma (Melastomataceae), Psidium (Myrtaceae), Syzygium (Myrtaceae), and Terminalia (Combretaceae) in Myrtales. These fungal species include Chrysoporthe deuterocubensis, Celoporthe syzygii, Cel. eucalypti, Cel. guang­ dongensis, Cel. cerciana, a new genus and two new species, as well as one new species of Aurifilum. These new taxa are hereby described as Parvosmorbus gen.
    [Show full text]
  • Native Plants Sixth Edition Sixth Edition AUSTRALIAN Native Plants Cultivation, Use in Landscaping and Propagation
    AUSTRALIAN NATIVE PLANTS SIXTH EDITION SIXTH EDITION AUSTRALIAN NATIVE PLANTS Cultivation, Use in Landscaping and Propagation John W. Wrigley Murray Fagg Sixth Edition published in Australia in 2013 by ACKNOWLEDGEMENTS Reed New Holland an imprint of New Holland Publishers (Australia) Pty Ltd Sydney • Auckland • London • Cape Town Many people have helped us since 1977 when we began writing the first edition of Garfield House 86–88 Edgware Road London W2 2EA United Kingdom Australian Native Plants. Some of these folk have regrettably passed on, others have moved 1/66 Gibbes Street Chatswood NSW 2067 Australia to different areas. We endeavour here to acknowledge their assistance, without which the 218 Lake Road Northcote Auckland New Zealand Wembley Square First Floor Solan Road Gardens Cape Town 8001 South Africa various editions of this book would not have been as useful to so many gardeners and lovers of Australian plants. www.newhollandpublishers.com To the following people, our sincere thanks: Steve Adams, Ralph Bailey, Natalie Barnett, www.newholland.com.au Tony Bean, Lloyd Bird, John Birks, Mr and Mrs Blacklock, Don Blaxell, Jim Bourner, John Copyright © 2013 in text: John Wrigley Briggs, Colin Broadfoot, Dot Brown, the late George Brown, Ray Brown, Leslie Conway, Copyright © 2013 in map: Ian Faulkner Copyright © 2013 in photographs and illustrations: Murray Fagg Russell and Sharon Costin, Kirsten Cowley, Lyn Craven (Petraeomyrtus punicea photograph) Copyright © 2013 New Holland Publishers (Australia) Pty Ltd Richard Cummings, Bert
    [Show full text]
  • Take Another Look
    Take Contact Details Another SUNSHINE COAST REGIONAL COUNCIL Caloundra Customer Service Look..... 1 Omrah Avenue, Caloundra FRONT p: 07 5420 8200 e: [email protected] Maroochydore Customer Service 11-13 Ocean Street, Maroochydore p: 07 5475 8501 e: [email protected] Nambour Customer Service Cnr Currie & Bury Street, Nambour p: 07 5475 8501 e: [email protected] Tewantin Customer Service 9 Pelican Street, Tewantin p: 07 5449 5200 e: [email protected] YOUR LOCAL CONTACT Our Locals are Beauties HINTERLAND EDITION HINTERLAND EDITION 0 Local native plant guide 2 What you grow in your garden can have major impact, Introduction 3 for better or worse, on the biodiversity of the Sunshine Native plants 4 - 41 Coast. Growing a variety of native plants on your property can help to attract a wide range of beautiful Wildlife Gardening 20 - 21 native birds and animals. Native plants provide food and Introduction Conservation Partnerships 31 shelter for wildlife, help to conserve local species and Table of Contents Table Environmental weeds 42 - 73 enable birds and animals to move through the landscape. Method of removal 43 Choosing species which flower and fruit in different Succulent plants and cacti 62 seasons, produce different types of fruit and provide Water weeds 70 - 71 roost or shelter sites for birds, frogs and lizards can greatly increase your garden’s real estate value for native References and further reading 74 fauna. You and your family will benefit from the natural pest control, life and colour that these residents and PLANT TYPE ENVIRONMENTAL BENEFITS visitors provide – free of charge! Habitat for native frogs Tall Palm/Treefern Local native plants also improve our quality of life in Attracts native insects other ways.
    [Show full text]
  • Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]