<<

EE 485, Winter 2004, Lih Y. Lin

Chapter 3 Beam

- An important paraxial wave solution that satisfies is Gaussian beam. Example: .

3.1 The Gaussian Beam A. Complex Amplitude * W  ρ 2  U (r) = A 0 exp−  Amplitude factor 0 W (z)  W 2 (z)      −1 z  × exp− jkz − tan   Longitudinal phase (3.1-7)    z0   kρ 2  × exp− j  Radial phase  2R(z)  2 = +  z  W (z) W0 1   (3.1-8)  z0    z 2  R(z) = z1+  0   (3.1-9)   z   πW 2 z ≡ 0 (3.1-11) 0 λ λ → Knowing W0 and (or z0 ), a Gaussian beam is determined! Ref: Verdeyen, “Laser Electronics,” Chapter 3, Prentice-Hall

B. Properties of Gaussian Beam

Intensity and power

1 EE 485, Winter 2004, Lih Y. Lin

2  W   2ρ 2  I(ρ, z) = I  0  exp−  (3.1-12) 0 W (z)  W 2 (z) 1 P = I ()πW 2 (3.1-14) 2 0 0

Beam radius and divergence 1 I(ρ, z) = I(0, z) when ρ = W (z) e2  2 = +  z  W (z) W0 1   : Beam radius (3.1-17)  z0 

W0 : Waist radius

2W0 : Spot size = W (z0 ) 2W0 λ θ θ = : Divergence angle (= in Fig. 3.2 shown above) 0 π W0 2 (3.1-19) λ → Highly directional beam requires short and large W0 .

Depth of focus (Confocal parameter)

2 EE 485, Winter 2004, Lih Y. Lin

2πW 2 2z = 0 (3.1-21) 0 λ

Longitudinal phase

−  z  ϕ(z) = kz − tan 1   z0  → Second term: phase retardation  ϕ −1 = = c > Phase velocity v p   c ! ωz  λ −  z  1− tan 1  π   2 z  z0 

Wavefront bending Surface of constant phase velocity: 2 ρ λ −  z  z + = qλ + ξ , ξ ≡ tan 1  π   2R 2  z0  → Parabolic surface with radius of curvature R

3 EE 485, Winter 2004, Lih Y. Lin

3.2 Transmission through Optical Components Gaussian beam remains a Gaussian beam after transmitting through a set of circularly symmetrical optical components aligned with the beam axis. Only the beam waist and curvature are altered.

A. Transmission through a Thin

1 = 1 − 1 R' R R' (3.2-2) W '= W W W '= (3.2-3) 0 2 πW 2  1+    λR' 

4 EE 485, Winter 2004, Lih Y. Lin

R' z'= (3.2-4)  λR' 2 1+   πW 2  = Waist radius W0 ' MW0 (3.2-5) Waist locatioin (z'− f ) = M 2 (z − f ) (3.2-6) = 2 Depth of focus 2z0 ' M (2z0 ) (3.2-7) 2θ Divergence 2θ '= 0 (3.2-8) 0 M M Magnification M = r (3.2-9) 1+ r 2 f z M ≡ , r ≡ 0 (3.2-9a) r z − f z − f Example: A planar wave transmitting through a thin lens is focused at distance z'= f .

B. Beam Shaping

Waist of incident Gaussian beam is at lens location. R'= − f W W '= 0 (3.2-13) 0 2  z  1+  0   f  → To focus into a small spot, we need large incident beam width, short focal length, short .

5 EE 485, Winter 2004, Lih Y. Lin

= f z' 2 (3.2-14)  f  1+    z0  F number of a lens f F ≡ # D = D 2W0 : Diameter of the lens 4 Focal spot size 2W '= λF (3.2-17) 0 π #

C. Reflection from a Spherical Mirror Same as transmission through a thin lens, f = − R 2 = W2 W1 (3.2-19) 1 1 2 = + (3.2-20) R2 R1 R

D. Transmission through an Arbitrary Optical System The ABCD Law

Aq + B q = 1 (3.2-9) 2 + Cq1 D

6 EE 485, Winter 2004, Lih Y. Lin

Like in the case of ray-transfer matrix, the ABCD matrix of a cascade of optical components (or systems) is a product of the ABCD matrices of the individual components (or systems).

3.3 Hermite-Gaussian Beams Modulated version of Gaussian beam → distribution not Gaussian, but same wavefronts and angular divergence as the Gaussian beam.

7