Development of an Ultrasensitive Cavity Ring Down Spectrometer in the 2.10-2.35 Μm Region : Application to Water Vapor and Carbon Dioxide Semen Vasilchenko
Total Page:16
File Type:pdf, Size:1020Kb
Development of an ultrasensitive cavity ring down spectrometer in the 2.10-2.35 µm region : application to water vapor and carbon dioxide Semen Vasilchenko To cite this version: Semen Vasilchenko. Development of an ultrasensitive cavity ring down spectrometer in the 2.10- 2.35 µm region : application to water vapor and carbon dioxide. Instrumentation and Detectors [physics.ins-det]. Université Grenoble Alpes, 2017. English. NNT : 2017GREAY037. tel-01704680 HAL Id: tel-01704680 https://tel.archives-ouvertes.fr/tel-01704680 Submitted on 8 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTE UNIVERSITE GRENOBLE ALPES Spécialité : Physique de la Matière Condensée et du Rayonnement Arrêté ministériel : 25 mai 2016 Présentée par Semen VASILCHENKO Thèse dirigée par Didier MONDELAIN codirigée par Alain CAMPARGUE préparée au sein du Laboratoire Interdisciplinaire de Physique dans l'École Doctorale Physique Development of an ultrasensitive cavity ring down spectrometer in the 2.10-2.35 µm region. Application to water vapor and carbon dioxide. Thèse soutenue publiquement le 8 juin 2017, devant le jury composé de : Madame Muriel LEPÈRE Professeur, Université de Namur, Rapporteur Monsieur Robert GEORGES Professeur, Université Rennes 1, Rapporteur Monsieur Hugues GUILLET DE CHATELLUS Chargé de recherche, CNRS LIPhy UMR5588, Examinateur Monsieur Olivier PIRALI Chargé de recherche, Institut des Sciences Moléculaires d'Orsay - UMR8214, Examinateur Monsieur Jean-Michel HARTMANN Directeur de recherche, Laboratoire de Météorologie Dynamique (UMR 8539), Président Monsieur Leonid SINITSA Professeur, V.E. Zuev Institute of Atmospheric Optics SB RAS (IAO SB RAS), Examinateur Acknowledgments First and foremost, I would like to express sincere gratitude to my supervisor Didier Mondelain for guidance, patience, and the experience he shared; he handled my pro- fessional and personal issues and read, and corrected the manuscripts of the thesis a multitude of times. I would also like to thank my co-supervisor Alain Campargue, who was always open to discussions and questions and created the perfect working conditions as the head of the scientific group. I am grateful to Peter Cerm´akforˇ tutoring me, giving advice, a great many fruitful discussions and being sociable Heartfelt thanks to all of the LAsers, Mol´eculeset Environnement group for a pleasant atmosphere at work. I am honored to be working with such a strong and productive scientific group. Samir Kassi, Jean-Luc Martin, Serge B´eguier,Semen Mikhailenko and Daniele Romanini deserve a special mention in the acknowledgments list for their help, advice, and useful discussions. Special thanks to my fellow PhD students Magdalena Konefal and Ekaterina Karlovets for sharing the same office and becoming good friends with me. I would like to thank the Universit´eGrenoble Alpes for a 3 years support of my PhD. This support was obtained in the relation of the strong collaboration between our group at LIPhy and my home institute, the Institute of Atmospheric Optics in Tomsk in the frame of the LIA SAMIA (Laboratoire International Associ´e\Spectro- scopie de Mol´eculesd'Int´er^etAtmosph´erique") But for the endeavor of Leonid Sinitsa, carrying out this research of mine would have been impossible. I am grateful to Gleb Lantsman for correcting the style and the language of this manuscript. Last but not least, I would like to give my warmest thanks to my family and friends for their support, communication, and genuine interest in my research. iii Abstract A cavity ring down spectrometer has been developed in the 2.00{2.35 µm spectral range to achieve highly sensitive absorption spectroscopy of molecules of atmospheric and planetologic interest and at high spectral resolution. This spectral region corre- sponds to a transparency window for water vapor and carbon dioxide. Atmospheric windows, where absorption is weak, are used to sound the Earth's and Venus' atmo- spheres where water vapor and carbon dioxide represent the main gaseous absorbers in the infrared, respectively. The CRDS technique consists in injecting photons inside a high finesse optical cavity and measuring the photon's life time of this cavity. This life-time depends on the mirror reflectivity and on the intra-cavity losses due to the absorbing gas in the cavity. Measuring these losses versus the wavelength allow obtaining the absorption spectrum of the gas. The extreme reflectivity of the mirrors allows reaching, for a 1-meter long cavity, a sensitivity equivalent to the one obtained classically with absorption cells of several thousands of kilometers. Three DFB laser diodes emitting around 2.35, 2.26, 2.21 µm were used with this spectrometer giving access to the 4249-4257, 4422-4442 and 4516-4534 cm−1 interval, respectively. Thanks to optical feedback from an external cavity, two of these diodes were spectrally narrowed leading to a better injection of the high finesse cavity thus reducing the noise level of the spectrometer. In parallel, we tested a VECSEL (Vertical-external-Cavity, Surface Emitting laser) through a collaboration with the Institut d'Electronique (IES, UMR 5214) in Montpellier and the Innoptics firm. This laser source is able to cover a 80 cm−1 spectral range centered at 4340 cm−1, equivalent to four DFB laser diodes. In routine the achieved sensitivity with this spectrometer, corresponding to the minimum detectable coefficient is typically of 1×10−10 cm−1. The introductive chapter (Chapter 1) makes the point on the different techniques allowing absorption spectra recordings in the studied spectral region and on their sensitivity. The experimental set-up, the characteristics and performances by the CRD spectrometer developed in this work are detailed in Chapter 2. To our knowledge this instrument is the most sensitive in the considered spectral region. In Chapter 3, detection of quadrupolar electric transitions of HD and N2 illustrate the level of sensitivity reached: (i) the S(3) transition in the 1{0 band of HD has been recorded for the first time and its intensity measured (s = 2:5 × 10−27 cm/molecule), (ii) the position and intensity of the highly forbidden O(14) quadrupolar electric transition of the 2{0 band of N2 have also been newly determined. The two last chapters are devoted to the characterization of the CO2 absorption, in the centre of the transparency window, and of the water vapor absorption. In both cases, we not only studied the allowed transitions of the monomer, but also v the continuum absorption. This latter correspond to a weak background absorption varying slowly with the wave length. The self-continuum cross-sections of the water vapor continuum were measured in many spectral points through the transparency window with a much better accuracy compared to existing measurements. These CRDS data constitute a valuable data set to validate the reference model (MT CKD) for the continuum which is implemented in most of the atmospheric radiative transfer codes. vi R´esum´e Un spectrom`etreutilisant la technique CRDS a ´et´ed´evelopp´eentre 2.00 et 2.35 µm afin de r´ealiserla spectroscopie en absorption de mol´eculesd'int´er^etatmosph´eriqueet plan´etologiqueavec une tr`esgrande sensibilit´eet `ahaute r´esolutionspectrale. Cette r´egiondu spectre correspond `aune fen^etrede transparence de la vapeur d'eau et du dioxyde de carbone. Ces fen^etressont des zones de tr`esfaible absorption utilis´eespour le sondage des atmosph`eresterrestre et v´enusienne dans lesquelles la vapeur d'eau et le dioxyde de carbone repr´esentent respectivement les absorbants gazeux principaux dans l'infrarouge. La technique CRDS consiste `ainjecter des photons dans une cavit´eoptique de haute finesse et `amesurer la dur´eede vie des photons dans cette cavit´e. Celle-ci est mesur´eeen interrompant l'injection des photons dans la cavit´eoptique lors du passage en r´esonancedu laser avec l'un des modes longitudinaux. Cette dur´eede vie d´epend de la r´eflectivit´edes miroirs et des pertes intra-cavit´ecomme celles induites par un gaz qui absorbe. Mesurer ces pertes en fonction de la longueur d'onde permet d'obtenir le spectre d'absorption du gaz en question. L'extr^emer´eflectivit´edes miroirs permet d'atteindre dans une cavit´ed'un peu plus d'1 m de longueur une sensibilit´e ´equivalente `acelle qui serait obtenue classiquement avec une cellule d'absorption longue de plusieurs milliers de kilom`etres. Trois diodes laser DFB ´emettant autour de 2.35, 2.26 et 2.21 µm ont ´et´eutilis´ees avec ce spectrom`etre. Gr^ace`aune r´etro-actionoptique provenant d'une cavit´eex- terne, certaines de ces diodes ont pu ^etre affin´ees,ce qui a permis de mieux injecter la cavit´ehaute finesse et ainsi de r´eduirele niveau de bruit du spectrom`etre. Par- all`element gr^ace`aune collaboration avec l'Institut d'Electronique (IES, UMR 5214) `aMontpellier et la soci´et´eInnoptics nous avons pu tester le prototype d'un VECSEL (Vertical-External-Cavity Surface-Emitting-Laser). Ce laser a permis de couvrir une gamme spectrale de 80 cm−1, entre 4300 et 4380 cm−1, ´equivalente `aquatre diodes laser DFB. La sensibilit´eobtenue en routine avec ce spectrom`etre,correspondant au coefficient minimum d´etectable,est typiquement de 1×10−10 cm−1. Le chapitre intro- ductif (Chapitre 1) fait le point sur les diff´erentes techniques permettant d'acqu´erir des spectres en absorption dans la gamme spectrale ´etudi´eeet sur les sensibilit´esat- teintes.