Optics of Gaussian Beams 16

Total Page:16

File Type:pdf, Size:1020Kb

Optics of Gaussian Beams 16 CHAPTER SIXTEEN Optics of Gaussian Beams 16 Optics of Gaussian Beams 16.1 Introduction In this chapter we shall look from a wave standpoint at how narrow beams of light travel through optical systems. We shall see that special solutions to the electromagnetic wave equation exist that take the form of narrow beams – called Gaussian beams. These beams of light have a characteristic radial intensity profile whose width varies along the beam. Because these Gaussian beams behave somewhat like spherical waves, we can match them to the curvature of the mirror of an optical resonator to find exactly what form of beam will result from a particular resonator geometry. 16.2 Beam-Like Solutions of the Wave Equation We expect intuitively that the transverse modes of a laser system will take the form of narrow beams of light which propagate between the mirrors of the laser resonator and maintain a field distribution which remains distributed around and near the axis of the system. We shall therefore need to find solutions of the wave equation which take the form of narrow beams and then see how we can make these solutions compatible with a given laser cavity. Now, the wave equation is, for any field or potential component U0 of Beam-Like Solutions of the Wave Equation 517 an electromagnetic wave ∂2U ∇2U − µ 0 =0 (16.1) 0 r 0 ∂t2 where r is the dielectric constant, which may be a function of position. The non-plane wave solutions that we are looking for are of the form i(ωt−k(r)·r) U0 = U(x, y, z)e (16.2) We allow the wave vector k(r) to be a function of r to include situations where the medium has a non-uniform refractive index. From (16.1) and (16.2) 2 2 ∇ U + µr0ω U =0 (16.3) where r and µ may be functions of r. We have shown√ previously that the propagation constant in the medium is k = ω r0µ so ∇2U + k(r)2U =0. (16.4) This is the time-independent form of the wave equation, frequently re- ferred to as the Helmholtz equation. In general, if the medium is absorbing, or exhibits gain, then its di- electric constant r has real and imaginary parts. r =1+χ(ω)=1+χ0(ω) − iχ00(ω)(16.5) and √ k = k0 r, (16.6) √ where k0 = ω 0µ If the medium were conducting, with conductivity σ, then its complex propagation vector would obey 2 2 σ k = ω µr0(1 − i )(16.7) ωr0 We know that simple solutions of the time-independent wave equation above are transverse plane waves. However, these simple solutions are not adequate to describe the field distributions of transverse modes in laser systems. Let us look for solutions to the wave equation which are related to plane waves, but whose amplitude varies in some way trans- verse to their direction of propagation. Such solutions will be of the form U = ψ(x, y, z)e−ikz for waves propagating in the positive z direc- tion. For functions ψ(x, y, z) which are localized near the z axis the propagating wave takes the form of a narrow beam. Further, because ψ(x, y, z) is not uniform, the surfaces of constant phase in the wave will no longer necessarily be plane. If we can find solutions of the wave equation where ψ(x, y, z) gives phase fronts which are spherical (or ap- proximately so over a small region) then we can make the propagating 518 Optics of Gaussian Beams Fig. 16.1. beam solution U = ψ(x, y, z)e−ikz satisfy the boundary conditions in a resonator with spherical reflectors, provided the mirrors are placed at the position of phase fronts whose curvature equals the mirror curvature. Thus the propagating beam solution becomes a satisfactory transverse mode of the resonator. For example in Fig. (16.1) if the propagating beam is to be a satisfactory transverse mode, then a spherical mirror of radius R1 must be placed at position 1 or one of radius R2 at 2, etc. Mirrors placed in this correct way lead to reflection of the wave back on itself. Substituting U = ψ(x, y, z)e−ikz in (16.4) we get ∂2ψ ∂2ψ e−ikz + e−ikz ∂x2 ∂y2 ∂2ψ ∂ψ + e−ikz − 2ik e−ikz − k2ψ(x, y, z)e−ikz ∂z2 ∂z +k2ψ(x, y, z)e−ikz =0 (16.8) which reduces to ∂2ψ ∂2ψ ∂ψ ∂2ψ + − 2ik + =0 (16.9) ∂x2 ∂y2 ∂z ∂z2 If the beam-like solution we are looking for remains paraxial then ψ will only vary slowly with z, so we can neglect ∂2ψ/∂z2 and get ∂2ψ ∂2ψ ∂ψ + − 2ik =0 (16.10) ∂x2 ∂y2 ∂z We try as a solution k ψ(x, y, z)=exp{−i(P (z)+ r2)} (16.11) 2q(z) where r2 = x2 + y2 is the square of the distance of the point x, y from Beam-Like Solutions of the Wave Equation 519 the axis of propagation. P (z) represents a phase shift factor and q(z)is called the beam parameter. Substituting in (16.10) and using the relations below that follow from (16.11) ∂ψ ik k = − exp{−i(P (z)+ r2)}·2x ∂x 2q(z) 2q(z) ∂2ψ ik k k2 = − exp{−i(P (z)+ r2)}− exp{−i(P (z) ∂x2 q(z) 2q(z) 4q2(z) k + r2)}·4x2 2q(z) ∂ψ k dP k dq = exp{−i(P (z)+ r2)}{−i − r2 } ∂z 2q(z) dz 2q2 dz we get dP i k2 − 2k( + ) − ( dz q(z) q2(z) k2 dq − )(r2)=0 (16.12) q2(z) dz Since this equation must be true for all values of r the coefficients of different powers of r must be independently equal to zero so dq =1 (16.13) dz and dP −i = (16.14) dz q(z) {− k 2 } The solution ψ(x, y, z)=exp i(P (z)+ 2q(z) r ) is called the funda- mental Gaussian beam solution of the time-independent wave equation since its “intensity” as a function of x and y is k k UU∗ = ψψ∗ = exp{−i(P (z)+ r2)}exp{i(P ∗(z)+ r2)} 2q(z) 2q∗(z) (16.15) where P ∗(z)andq∗(z) are the complex conjugates of P (z)andq(z), respectively, so −ikr2 1 1 UU∗ = exp{−i(P (z) − P ∗(z))} exp{ ( − )} (16.16) 2 q(z) q∗(z) For convenience we introduce 2 real beam parameters R(z)andw(z) that are related to q(z)by 1 1 iλ = − (16.17) q R πw2 where both R and w depend on z. It is important to note that λ = λo/n 520 Optics of Gaussian Beams is the wavelength in the medium. From (16.16) above we can see that − 2 ∗ ∝ ikr − iλ − iλ UU exp ( 2 2 ) 2 πw πw (16.18) −2r2 ∝ exp w2 Thus, the beam intensity shows a Gaussian dependence on r, the phys- ical significance of w(z) is that it is the distance from the axis at point z where the intensity of the beam has fallen to 1/e2 of its peak value on axis and its amplitude to 1/e of its axial value; w(z) is called the spot size. With these parameters kr2 1 iλ U = exp −i (kz + P (z)+ − . (16.19) 2 R πw2 We can integrate (16.13) and (16.14). From (16.13) q = q0 + z, (16.20) where q0 is a constant of integration which gives the value of the beam parameter at plane z = 0; and from (16.14) dP (z) −i −i = = (16.21) dz q(z) q0 + z so P (z)=−i[ln(z + q0)] − (θ + i ln q0)] (16.22) where the constant of integration, (θ + i ln q0), is written in this way so that substituting from (16.20) and (16.22) in (16.19) we get 2 {− − z kr 1 − iλ } U = exp i(kz i ln(1 + )+θ + [ 2 ]) (16.23) q0 2 R πw The factor e−iθ is only a constant phase factor which we can arbitrarily set to zero and get 2 − − z kr 1 − iλ U = exp i(kz i ln(1 + )+ [ 2 ]) (16.24) q0 2 R πw The radial variation in phase of this field for a particular value of z is kr2 z φ(z)=kz + − Re(i ln(1 + )) (16.25) 2R qo There is no radial phase variation if R →∞. We choose the value of z where this occurs as our origin z = 0. We call this location the beam waist; the complex beam parameter here has the value 1 − λ = i 2 (16.26) q0 πw0 where w0 = w(0) is called the minimum spot size. At an arbitrary point Beam-Like Solutions of the Wave Equation 521 Fig. 16.2. z iπw2 q = 0 + z (16.27) λ 1 1 − iλ and using q = R πw2 , we have the relationship for the spot size w(z) at position z 2 2 λz 2 w (z)=w0[1 + ( 2 ) ](16.28) πw0 So w0 is clearly the minimum spot size. The value of R at position z is 2 πw 2 R(z)=z[1 + 0 ](16.29) λz We shall see shortly that R(z) can be identified as the radius of curvature of the phase front at z. From (16.28) we can see that w(z) expands with distance z along the axis along a hyperbola which has asymptotes −1 inclined to the axis at an angle θbeam =tan (λ/πw0).
Recommended publications
  • Beam Profiling by Michael Scaggs
    Beam Profiling by Michael Scaggs Haas Laser Technologies, Inc. Introduction Lasers are ubiquitous in industry today. Carbon Dioxide, Nd:YAG, Excimer and Fiber lasers are used in many industries and a myriad of applications. Each laser type has its own unique properties that make them more suitable than others. Nevertheless, at the end of the day, it comes down to what does the focused or imaged laser beam look like at the work piece? This is where beam profiling comes into play and is an important part of quality control to ensure that the laser is doing what it intended to. In a vast majority of cases the laser beam is simply focused to a small spot with a simple focusing lens to cut, scribe, etch, mark, anneal, or drill a material. If there is a problem with the beam delivery optics, the laser or the alignment of the system, this problem will show up quite markedly in the beam profile at the work piece. What is Beam Profiling? Beam profiling is a means to quantify the intensity profile of a laser beam at a particular point in space. In material processing, the "point in space" is at the work piece being treated or machined. Beam profiling is accomplished with a device referred to a beam profiler. A beam profiler can be based upon a CCD or CMOS camera, a scanning slit, pin hole or a knife edge. In all systems, the intensity profile of the beam is analyzed within a fixed or range of spatial Haas Laser Technologies, Inc.
    [Show full text]
  • 5.Laser Vocabulary
    ! Laser Beam Measurement Vocabulary Wavelength: In physics, the wavelength of a sinusoidal wave is the spatial period of the wave— the distance over which the wave's shape repeats,[1] and the inverse of the spatial frequency. It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns.[2][3] Wavelength is commonly designated by the Greek letter lambda (λ). " λ: The Greek symbol lambda is used to express wavelength. Gaussian: The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a, is the height of the curve's peak, b is the position of the center of the peak and c (the standard deviation, sometimes called the Gaussian RMS width) controls the width of the "bell". Gaussian functions are widely used in statistics where they describe the normal distributions, in signal processing where they serve to define Gaussian filters, in image processing where two- dimensional Gaussians are used for Gaussian blurs, and in mathematics where they are used to solve heat equations and diffusion equations and to define the Weierstrass transform. 3050 North 300 West North Logan, UT 84341 Tel: 435-753-3729 www.ophiropt.com/photonics https://en.wikipedia.org/wiki/Gaussian_function " A Gaussian beam is a beam that has a normal distribution in all directions similar to the images below. The intensity is highest in the center of the beam and dissipates as it reaches the perimeter of the beam.
    [Show full text]
  • Fresnel Diffraction.Nb Optics 505 - James C
    Fresnel Diffraction.nb Optics 505 - James C. Wyant 1 13 Fresnel Diffraction In this section we will look at the Fresnel diffraction for both circular apertures and rectangular apertures. To help our physical understanding we will begin our discussion by describing Fresnel zones. 13.1 Fresnel Zones In the study of Fresnel diffraction it is convenient to divide the aperture into regions called Fresnel zones. Figure 1 shows a point source, S, illuminating an aperture a distance z1away. The observation point, P, is a distance to the right of the aperture. Let the line SP be normal to the plane containing the aperture. Then we can write S r1 Q ρ z1 r2 z2 P Fig. 1. Spherical wave illuminating aperture. !!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!! 2 2 2 2 SQP = r1 + r2 = z1 +r + z2 +r 1 2 1 1 = z1 + z2 + þþþþ r J þþþþþþþ + þþþþþþþN + 2 z1 z2 The aperture can be divided into regions bounded by concentric circles r = constant defined such that r1 + r2 differ by l 2 in going from one boundary to the next. These regions are called Fresnel zones or half-period zones. If z1and z2 are sufficiently large compared to the size of the aperture the higher order terms of the expan- sion can be neglected to yield the following result. l 1 2 1 1 n þþþþ = þþþþ rn J þþþþþþþ + þþþþþþþN 2 2 z1 z2 Fresnel Diffraction.nb Optics 505 - James C. Wyant 2 Solving for rn, the radius of the nth Fresnel zone, yields !!!!!!!!!!! !!!!!!!! !!!!!!!!!!! rn = n l Lorr1 = l L, r2 = 2 l L, , where (1) 1 L = þþþþþþþþþþþþþþþþþþþþ þþþþþ1 + þþþþþ1 z1 z2 Figure 2 shows a drawing of Fresnel zones where every other zone is made dark.
    [Show full text]
  • UFS Lecture 13: Passive Modelocking
    UFS Lecture 13: Passive Modelocking 6 Passive Mode Locking 6.2 Fast Saturable Absorber Mode Locking (cont.) (6.3 Soliton Mode Locking) 6.4 Dispersion Managed Soliton Formation 7 Mode-Locking using Artificial Fast Sat. Absorbers 7.1 Kerr-Lens Mode-Locking 7.1.1 Review of Paraxial Optics and Laser Resonator Design 7.1.2 Two-Mirror Resonators 7.1.3 Four-Mirror Resonators 7.1.4 The Kerr Lensing Effects (7.2 Additive Pulse Mode-Locking) 1 6.2.2 Fast SA mode locking with GDD and SPM Steady-state solution is chirped sech-shaped pulse with 4 free parameters: Pulse amplitude: A0 or Energy: W 2 = 2 A0 t Pulse width: t Chirp parameter : b Carrier-Envelope phase shift : y 2 Pulse width Chirp parameter Net gain after and Before pulse CE-phase shift Fig. 6.6: Modelocking 3 6.4 Dispersion Managed Soliton Formation in Fiber Lasers ~100 fold energy Fig. 6.12: Stretched pulse or dispersion managed soliton mode locking 4 Fig. 6.13: (a) Kerr-lens mode-locked Ti:sapphire laser. (b) Correspondence with dispersion-managed fiber transmission. 5 Today’s BroadBand, Prismless Ti:sapphire Lasers 1mm BaF2 Laser crystal: f = 10o OC 2mm Ti:Al2O3 DCM 2 PUMP DCM 2 DCM 1 DCM 1 DCM 2 DCM 1 BaF2 - wedges DCM 6 Fig. 6.14: Dispersion managed soliton including saturable absorption and gain filtering 7 Fig. 6.15: Steady state profile if only dispersion and GDD is involved: Dispersion Managed Soliton 8 Fig. 6.16: Pulse shortening due to dispersion managed soliton formation 9 7.
    [Show full text]
  • Lab 10: Spatial Profile of a Laser Beam
    Lab 10: Spatial Pro¯le of a Laser Beam 2 Background We will deal with a special class of Gaussian beams for which the transverse electric ¯eld can be written as, r2 1 Introduction ¡ 2 E(r) = Eoe w (1) Equation 1 is expressed in plane polar coordinates Refer to Appendix D for photos of the appara- where r is the radial distance from the center of the 2 2 2 tus beam (recall r = x +y ) and w is a parameter which is called the spot size of the Gaussian beam (it is also A laser beam can be characterized by measuring its referred to as the Gaussian beam radius). It is as- spatial intensity pro¯le at points perpendicular to sumed that the transverse direction is the x-y plane, its direction of propagation. The spatial intensity pro- perpendicular to the direction of propagation (z) of ¯le is the variation of intensity as a function of dis- the beam. tance from the center of the beam, in a plane per- pendicular to its direction of propagation. It is often Since we typically measure the intensity of a beam convenient to think of a light wave as being an in¯nite rather than the electric ¯eld, it is more useful to recast plane electromagnetic wave. Such a wave propagating equation 1. The intensity I of the beam is related to along (say) the z-axis will have its electric ¯eld uni- E by the following equation, formly distributed in the x-y plane. This implies that " cE2 I = o (2) the spatial intensity pro¯le of such a light source will 2 be uniform as well.
    [Show full text]
  • Performance Evaluation of a Thz Pulsed Imaging System: Point Spread Function, Broadband Thz Beam Visualization and Image Reconstruction
    applied sciences Article Performance Evaluation of a THz Pulsed Imaging System: Point Spread Function, Broadband THz Beam Visualization and Image Reconstruction Marta Di Fabrizio 1,* , Annalisa D’Arco 2,* , Sen Mou 2, Luigi Palumbo 3, Massimo Petrarca 2,3 and Stefano Lupi 1,4 1 Physics Department, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, 00185 Rome, Italy; [email protected] 2 INFN-Section of Rome ‘La Sapienza’, P.le Aldo Moro 2, 00185 Rome, Italy; [email protected] (S.M.); [email protected] (M.P.) 3 SBAI-Department of Basic and Applied Sciences for Engineering, Physics, University of Rome ‘La Sapienza’, Via Scarpa 16, 00161 Rome, Italy; [email protected] 4 INFN-LNF, Via E. Fermi 40, 00044 Frascati, Italy * Correspondence: [email protected] (M.D.F.); [email protected] (A.D.) Abstract: Terahertz (THz) technology is a promising research field for various applications in basic science and technology. In particular, THz imaging is a new field in imaging science, where theories, mathematical models and techniques for describing and assessing THz images have not completely matured yet. In this work, we investigate the performances of a broadband pulsed THz imaging system (0.2–2.5 THz). We characterize our broadband THz beam, emitted from a photoconductive antenna (PCA), and estimate its point spread function (PSF) and the corresponding spatial resolution. We provide the first, to our knowledge, 3D beam profile of THz radiation emitted from a PCA, along its propagation axis, without the using of THz cameras or profilers, showing the beam spatial Citation: Di Fabrizio, M.; D’Arco, A.; intensity distribution.
    [Show full text]
  • Laser Beam Profile Meaurement System Time
    Measurement of Laser Beam Profile and Propagation Characteristics 1. Laser Beam Measurement Capabilities Laser beam profiling plays an important role in such applications as laser welding, laser focusing, and laser free-space communications. In these applications, laser profiling enables to capture the data needed to evaluate the change in the beam width and determine the details of the instantaneous beam shape, allowing manufacturers to evaluate the position of hot spots in the center of the beam and the changes in the beam’s shape. Digital wavefront cameras (DWC) with software can be used for measuring laser beam propagation parameters and wavefronts in pulsed and continuous modes, for lasers operating at visible to far- infrared wavelengths: - beam propagation ratio M²; - width of the laser beam at waist w0; - laser beam divergence angle θ x, θ y; - waist location z-z0; - Rayleigh range zRx, zRy; - Ellipticity; - PSF; - Wavefront; - Zernike aberration modes. These parameters allow: - controlling power density of your laser; - controlling beam size, shape, uniformity, focus point and divergence; - aligning delivery optics; - aligning laser devices to lenses; - tuning laser amplifiers. Accurate knowledge of these parameters can strongly affect the laser performance for your application, as they highlight problems in laser beams and what corrections need to be taken to get it right. Figure 1. Characteristics of a laser beam as it passes through a focusing lens. http://www.SintecOptronics.com http://www.Sintec.sg 1 2. Beam Propagation Parameters M², or Beam Propagation Ratio, is a value that indicates how close a laser beam is to being a single mode TEM00 beam.
    [Show full text]
  • Gaussian Beams • Diffraction at Cavity Mirrors Creates Gaussian Spherical
    Gaussian Beams • Diffraction at cavity mirrors creates Gaussian Spherical Waves • Recall E field for Gaussian U ⎛ ⎡ x2 + y2 ⎤⎞ 0 ⎜ ( ) ⎟ u( x,y,R,t ) = exp⎜i⎢ω t − Kr − ⎥⎟ R ⎝ ⎣ 2R ⎦⎠ • R becomes the radius of curvature of the wave front • These are really TEM00 mode emissions from laser • Creates a Gaussian shaped beam intensity ⎛ − 2r 2 ⎞ 2P ⎛ − 2r 2 ⎞ I( r ) I exp⎜ ⎟ exp⎜ ⎟ = 0 ⎜ 2 ⎟ = 2 ⎜ 2 ⎟ ⎝ w ⎠ π w ⎝ w ⎠ Where P = total power in the beam w = 1/e2 beam radius • w changes with distance z along the beam ie. w(z) Measurements of Spotsize • For Gaussian beam important factor is the “spotsize” • Beam spotsize is measured in 3 possible ways • 1/e radius of beam • 1/e2 radius = w(z) of the radiance (light intensity) most common laser specification value 13% of peak power point point where emag field down by 1/e • Full Width Half Maximum (FWHM) point where the laser power falls to half its initial value good for many interactions with materials • useful relationship FWHM = 1.665r1 e FWHM = 1.177w = 1.177r 1 e2 w = r 1 = 0.849 FWHM e2 Gaussian Beam Changes with Distance • The Gaussian beam radius of curvature with distance 2 ⎡ ⎛π w2 ⎞ ⎤ R( z ) = z⎢1 + ⎜ 0 ⎟ ⎥ ⎜ λz ⎟ ⎣⎢ ⎝ ⎠ ⎦⎥ • Gaussian spot size with distance 1 2 2 ⎡ ⎛ λ z ⎞ ⎤ w( z ) = w ⎢1 + ⎜ ⎟ ⎥ 0 ⎜π w2 ⎟ ⎣⎢ ⎝ 0 ⎠ ⎦⎥ • Note: for lens systems lens diameter must be 3w0.= 99% of power • Note: some books define w0 as the full width rather than half width • As z becomes large relative to the beam asymptotically approaches ⎛ λ z ⎞ λ z w(z) ≈ w ⎜ ⎟ = 0 ⎜ 2 ⎟ ⎝π w0 ⎠ π w0 • Asymptotically light
    [Show full text]
  • Arxiv:1510.07708V2
    1 Abstract We study the fidelity of single qubit quantum gates performed with two-frequency laser fields that have a Gaussian or super Gaussian spatial mode. Numerical simulations are used to account for imperfections arising from atomic motion in an optical trap, spatially varying Stark shifts of the trapping and control beams, and transverse and axial misalignment of the control beams. Numerical results that account for the three dimensional distribution of control light show that a super Gaussian mode with intensity − n I ∼ e 2(r/w0) provides reduced sensitivity to atomic motion and beam misalignment. Choosing a super Gaussian with n = 6 the decay time of finite temperature Rabi oscillations can be increased by a factor of 60 compared to an n = 2 Gaussian beam, while reducing crosstalk to neighboring qubit sites. arXiv:1510.07708v2 [quant-ph] 31 Mar 2016 Noname manuscript No. (will be inserted by the editor) Comparison of Gaussian and super Gaussian laser beams for addressing atomic qubits Katharina Gillen-Christandl1, Glen D. Gillen1, M. J. Piotrowicz2,3, M. Saffman2 1 Physics Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA 2 Department of Physics, University of Wisconsin-Madison, 1150 University Av- enue, Madison, Wisconsin 53706, USA 3 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA April 4, 2016 1 Introduction Atomic qubits encoded in hyperfine ground states are one of several ap- proaches being developed for quantum computing experiments[1]. Single qubit rotations can be performed with microwave radiation or two-frequency laser light driving stimulated Raman transitions.
    [Show full text]
  • Angular Spectrum Description of Light Propagation in Planar Diffractive Optical Elements
    Angular spectrum description of light propagation in planar diffractive optical elements Rosemarie Hild HTWK-Leipzig, Fachbereich Informatik, Mathematik und Naturwissenschaften D-04251 Leipzig, PF 30 11 66 Tel.: 49 341 5804429 Fax:49 341 5808416 e-mail:[email protected] Abstract The description of the light propagation in or between planar diffractive optical elements is done with the angular spec- trum method. That means, the confinement to the paraxial approximation is removed. In addition it is not necessary to make a difference between Fraunhofer and Fresnel diffraction as usually done by the solution of the of the Rayleigh Sommerfeld formula. The diffraction properties of slits of varying width are analysed first. The transitional phenomena between Fresnel and Fraunhofer diffraction will be discussed from the view point of metrology. The transition phenomena is characterised as a problem of reduced resolution or low pass filtering in free space propagation. The light distributions produced by a plane screen , including slits, line and space structures or phase varying structures are investigated in detail. Keywords: Optical Metrology in Production Engineering, Photon Management- diffractive optics, microscopy, nanotechnology 1. Introduction The knowledge of the light intensity distributions that are created by planar diffractive optical elements is very important in modern technologies like microoptics, the optical lithography or in the combination of both techniques 1. The theoretical problem consists in the description of the imaging properties of small optical elements or small diffrac- tion apertures up to the region of the wave length. In general the light intensities created in free space or optical media by such elements, are calculated with the solution of the diffraction integral.
    [Show full text]
  • Chapter 7 Kerr-Lens and Additive Pulse Mode Locking
    Chapter 7 Kerr-Lens and Additive Pulse Mode Locking There are many ways to generate saturable absorber action. One can use real saturable absorbers, such as semiconductors or dyes and solid-state laser media. One can also exploit artificial saturable absorbers. The two most prominent artificial saturable absorber modelocking techniques are called Kerr-LensModeLocking(KLM)andAdditivePulseModeLocking(APM). APM is sometimes also called Coupled-Cavity Mode Locking (CCM). KLM was invented in the early 90’s [1][2][3][4][5][6][7], but was already predicted to occur much earlier [8][9][10] · 7.1 Kerr-Lens Mode Locking (KLM) The general principle behind Kerr-Lens Mode Locking is sketched in Fig. 7.1. A pulse that builds up in a laser cavity containing a gain medium and a Kerr medium experiences not only self-phase modulation but also self focussing, that is nonlinear lensing of the laser beam, due to the nonlinear refractive in- dex of the Kerr medium. A spatio-temporal laser pulse propagating through the Kerr medium has a time dependent mode size as higher intensities ac- quire stronger focussing. If a hard aperture is placed at the right position in the cavity, it strips of the wings of the pulse, leading to a shortening of the pulse. Such combined mechanism has the same effect as a saturable ab- sorber. If the electronic Kerr effect with response time of a few femtoseconds or less is used, a fast saturable absorber has been created. Instead of a sep- 257 258CHAPTER 7. KERR-LENS AND ADDITIVE PULSE MODE LOCKING soft aperture hard aperture Kerr gain Medium self - focusing beam waist intensity artifical fast saturable absorber Figure 7.1: Principle mechanism of KLM.
    [Show full text]
  • Optimal Focusing Conditions of Lenses Using Gaussian Beams
    BNL-112564-2016-JA File # 93496 Optimal focusing conditions of lenses using Gaussian beams Juan Manuel Franco, Moises Cywiak, David Cywiak, Mourad Idir Submitted to Optics Communications June 2016 Photon Sciences Department Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE- SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]