Dear Author, Here Are the Proofs of Your Article. • You Can Submit Your Corrections Online, Via E-Mail Or by Fax. • for On

Total Page:16

File Type:pdf, Size:1020Kb

Dear Author, Here Are the Proofs of Your Article. • You Can Submit Your Corrections Online, Via E-Mail Or by Fax. • for On Dear Author, Here are the proofs of your article. • You can submit your corrections online, via e-mail or by fax. • For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers. • You can also insert your corrections in the proof PDF and email the annotated PDF. • For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page. • Remember to note the journal title, article number, and your name when sending your response via e-mail or fax. • Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown. • Check the questions that may have arisen during copy editing and insert your answers/ corrections. • Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript. • The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct. • Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof. • If we do not receive your corrections within 48 hours, we will send you a reminder. • Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible. • The printed version will follow in a forthcoming issue. Please note After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: http://dx.doi.org/[DOI]. If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: http://www.link.springer.com. Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned. Metadata of the article that will be visualized in OnlineFirst ArticleTitle Evolution of squat lobsters (Crustacea, Galatheoidea): mitogenomic data suggest an early divergent Porcellanidae Article Sub-Title Article CopyRight Springer Nature Switzerland AG (This will be the copyright line in the final PDF) Journal Name Hydrobiologia Corresponding Author Family Name Palero Particle Given Name Ferran Suffix Division Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection Organization University of Lodz Address ul. Banacha 12/16, 90-237, Łódź, Poland Division Organization Centre d’Estudis Avançats de Blanes (CEAB-CSIC) Address Carrer d’Accés a la Cala Sant Francesc 14, 17300, Blanes, Spain Phone Fax Email [email protected] URL ORCID http://orcid.org/0000-0002-0343-8329 Author Family Name Rodríguez-Flores Particle Given Name Paula C. Suffix Division Organization Centre d’Estudis Avançats de Blanes (CEAB-CSIC) Address Carrer d’Accés a la Cala Sant Francesc 14, 17300, Blanes, Spain Division Organization Museo Nacional de Ciencias Naturales (MNCN-CSIC) Address José Gutiérrez Abascal, 2, 28006, Madrid, Spain Phone Fax Email [email protected] URL ORCID Author Family Name Cabezas Particle Given Name Patricia Suffix Division Organization Museo Nacional de Ciencias Naturales (MNCN-CSIC) Address José Gutiérrez Abascal, 2, 28006, Madrid, Spain Phone Fax Email [email protected] URL ORCID Author Family Name Machordom Particle Given Name Annie Suffix Division Organization Museo Nacional de Ciencias Naturales (MNCN-CSIC) Address José Gutiérrez Abascal, 2, 28006, Madrid, Spain Phone Fax Email [email protected] URL ORCID Author Family Name Macpherson Particle Given Name Enrique Suffix Division Organization Centre d’Estudis Avançats de Blanes (CEAB-CSIC) Address Carrer d’Accés a la Cala Sant Francesc 14, 17300, Blanes, Spain Phone Fax Email [email protected] URL ORCID Author Family Name Corbari Particle Given Name Laure Suffix Division Organization Institut de Systématique, Évolution, Biodiversité (ISYEB UMR 7205), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE Address 57 rue Cuvier, CP 51, 75005, Paris, France Phone Fax Email [email protected] URL ORCID Received 1 October 2018 Schedule Revised 19 January 2019 Accepted 25 January 2019 Abstract Squat lobsters constitute an exceptional group to address evolutionary studies in marine species because of their high diversity at multiple taxonomic levels. The families included within Galatheoidea are characterized by morphological, molecular, and ecological differences. Previous phylogenetic reconstructions have considered either Galatheidae, Porcellanidae, or even Munidopsidae as the most derived family within Galatheoidea, but evolutionary relationships within the superfamily have not been fully resolved yet. In order to test previous phylogenetic hypotheses on the relative placement of Porcellanidae within the Galatheoidea, and further characterize mitochondrial gene order in Munidopsidae, the first complete mitochondrial genomic sequence of a Galatheidae squat lobster (Galathea aegyptiaca) and the partial mitogenome of Munidopsis polymorpha are reported here. These new sequences complement previous studies to include all extant families and provide further evidence on the importance of mitochondrial gene rearrangements in Galatheoidea. Implications of the new phylogenetic data on the evolution of carcinization within Anomura are also discussed. Keywords (separated by '-') Crustacea - Gene rearrangement - Deep sea - Squat lobsters - Mitochondrial evolution Footnote Information Handling editor: Begoña Santos Hydrobiologia https://doi.org/10.1007/s10750-019-3898-7 (0123456789().,-volV)(0123456789().,-volV) 1 PRIMARY RESEARCH PAPER 2 Evolution of squat lobsters (Crustacea, Galatheoidea): 3 mitogenomic data suggest an early divergent Porcellanidae 4 Ferran Palero . Paula C. Rodrı´guez-Flores . Patricia Cabezas . 5 Annie Machordom . Enrique Macpherson . Laure Corbari Author Proof 6 Received: 1 October 2018 / Revised: 19 January 2019 / Accepted: 25 January 2019 7 Ó Springer Nature Switzerland AG 2019 8 Abstract Squat lobsters constitute an exceptional not been fullyPROOF resolvedPROOF yet. In order to test previous 18 9 group to address evolutionary studies in marine phylogenetic hypotheses on the relative placement of 19 10 species because of their high diversity at multiple Porcellanidae within the Galatheoidea, and further 20 11 taxonomic levels. The families included within characterize mitochondrial gene order in Munidopsi- 21 12 Galatheoidea are characterized by morphological, dae, the first complete mitochondrial genomic 22 13 molecular, and ecological differences. Previous phy- sequence of a Galatheidae squat lobster (Galathea 23 14 logenetic reconstructions have considered either aegyptiaca) and the partial mitogenome of Munidop- 24 15 Galatheidae, Porcellanidae, or even Munidopsidae as sis polymorpha are reported here. These new 25 16 the most derived family within Galatheoidea, but sequences complement previous studies to include 26 17 evolutionary relationships within the superfamily have all extant families and provide further evidence on the 27 importance of mitochondrial gene rearrangements in 28 Galatheoidea. Implications of the new phylogenetic 29 A1 Handling editor: Begon˜a Santos A2 F. Palero (&) A21 L. Corbari A3 Department of Invertebrate Zoology and Hydrobiology, A22 Institut de Syste´matique, E´ volution, Biodiversite´ (ISYEB A4 Faculty of Biology and Environmental Protection, A23 UMR 7205), Muse´um national d’Histoire naturelle, A5 University of Lodz, ul. Banacha 12/16, 90-237 Ło´dz´, A24 CNRS, Sorbonne Universite´, EPHE, 57 rue Cuvier, CP A6 Poland A25 51, 75005 Paris, France A7 e-mail: [email protected] A26 e-mail: [email protected] A8 F. Palero Á P. C. Rodrı´guez-Flores Á E. Macpherson A9 Centre d’Estudis Avanc¸ats de Blanes (CEAB-CSIC), A10 Carrer d’Acce´s a la Cala Sant Francesc 14, 17300 Blanes, A11 Spain A12 e-mail: [email protected] A13 E. Macpherson A14 e-mail: [email protected] A15 P. C. Rodrı´guez-Flores Á P. Cabezas Á A. Machordom A16 Museo Nacional de Ciencias Naturales (MNCN-CSIC), A17 Jose´ Gutie´rrez Abascal, 2, 28006 Madrid, Spain A18 e-mail: [email protected] A19 A. Machordom A20 e-mail: [email protected] 123 Journal : Medium 10750 Dispatch : 2-2-2019 Pages : 12 Article No. : 3898 h LE h TYPESET MS Code : HYDR-D-18-00797 h44CP h DISK Hydrobiologia 30 data on the evolution of carcinization within Anomura (Porcellanidae) are the only galatheoids with a crab- 74 31 are also discussed. like body form. They have the entire pleon folded 75 under the cephalothorax, and their carapace is usually 76 32 Keywords Crustacea Á Gene rearrangement Á Deep broader than long (Ahyong et al., 2010; Keiler et al., 77 33 sea Á Squat lobsters
Recommended publications
  • Basal Position of Two New Complete Mitochondrial Genomes of Parasitic
    Hua et al. Parasites & Vectors (2018) 11:628 https://doi.org/10.1186/s13071-018-3162-4 RESEARCH Open Access Basal position of two new complete mitochondrial genomes of parasitic Cymothoida (Crustacea: Isopoda) challenges the monophyly of the suborder and phylogeny of the entire order Cong J. Hua1,2, Wen X. Li1, Dong Zhang1,2, Hong Zou1, Ming Li1, Ivan Jakovlić3, Shan G. Wu1 and Gui T. Wang1,2* Abstract Background: Isopoda is a highly diverse order of crustaceans with more than 10,300 species, many of which are parasitic. Taxonomy and phylogeny within the order, especially those of the suborder Cymothoida Wägele, 1989, are still debated. Mitochondrial (mt) genomes are a useful tool for phylogenetic studies, but their availability for isopods is very limited. To explore these phylogenetic controversies on the mt genomic level and study the mt genome evolution in Isopoda, we sequenced mt genomes of two parasitic isopods, Tachaea chinensis Thielemann, 1910 and Ichthyoxenos japonensis Richardson, 1913, belonging to the suborder Cymothoida, and conducted comparative and phylogenetic mt genomic analyses across Isopoda. Results: The complete mt genomes of T. chinensis and I. japonensis were 14,616 bp and 15,440 bp in size, respectively, with the A+T content higher than in other isopods (72.7 and 72.8%, respectively). Both genomes code for 13 protein-coding genes, 21 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and possess a control region (CR). Both are missing a gene from the complete tRNA set: T. chinensis lacks trnS1 and I. japonensis lacks trnI. Both possess unique gene orders among isopods.
    [Show full text]
  • Mmmm• Mmm^M. Tise-Ooeiw^Ummmmmmmm2-1 S X, •Ismt£M7mmtit^^Fmkmmmimm^Tix\^I> Ii
    ripa #»: iw^m^o^fithont'Domm'mt B:^^ y b^ -^^m S8: 84-88 (2003) Japanese Journal of BenthoUtgy MW>WM. y ^y insist" S n'^x ^ y 3 ^/;t U X h'- Shinkaia crosnieri Distribution and Population Structure of the Galatheid Crab Shinkaia crosnieri (Decapoda: Anomura: Galatheidae) in the Southern Okinawa Trough mmm^mm^y^~mmmm• mmm^m. Tise-ooeiw^ummmmmMMm2-1 s Shinji TSUCHIDA*, Yoshihiro FUJIWARA and Katsunori FUJIKURA Marine Ecosystems Research Department, Japan Marine Science and Technology Center, 2-15 Natstishima-cho, Yokosu- ka-shi, Kanagawa 236-0061, Japan Abstract: The spatial distribution around hydrothermal vents, population structure, and relative growth parametei^ of the galatheid crab Shinkaia crosnieri were examined. Surveys were done by the Shinkai 2000 on the Hatoma and Dai-yon Yonaguni KnoUs in the southern Okinawa Trough. On the Hatoma Knoll, S. crosnieri inhabited areas (temp. 4.(>-6.2°C) about 0.2-2 m away from the active vent (temp. 30f C). In the outer area of the habitat of S. crosnieri (.ew. 3.M.rc,. dense bei .r Ba„ymo,,o,u. mu.eU occjd and aggregations cf ^/v,V„c»^ sM„p were observed. In this survey, 248 specimens of S. crosnieri were collected. Small, probably just post-metamorphic juveniles and large, mature aduL eo-orurred. Chelipeds of males were proportionally largir tl^ *ose of ^malL. whUe abdomens of females were proportionally larger than those of males. Larger chelip«is in males are thought to have evolved through male-male competition for females, and wider abdomens in females are thought to be related to the attachment of fertEized eggs to the abdominal appendages.
    [Show full text]
  • (Southern Ocean) Hydrothermal Vents: What More Can We Learn from an Ellipse?
    Vol. 542: 13–24, 2016 MARINE ECOLOGY PROGRESS SERIES Published January 19 doi: 10.3354/meps11571 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Isotopic niche variability in macroconsumers of the East Scotia Ridge (Southern Ocean) hydrothermal vents: What more can we learn from an ellipse? W. D. K. Reid1,*, C. J. Sweeting2, B. D. Wigham3, R. A. R. McGill4, N. V. C. Polunin5 1Ridley Building, School of Biology, Newcastle University, Newcastle, NE1 7RU, UK 2Marine Management Organisation, Lancaster House, Hampshire Court, Newcastle upon Tyne, NE4 7YH, UK 3Dove Marine Laboratory, School of Marine Science & Technology, Newcastle University, Cullercoats, NE30 4PZ, UK 4NERC Life Sciences Mass Spectrometry Facility, Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, UK 5Ridley Building, School of Marine Science & Technology, Newcastle University, Newcastle, NE1 7RU, UK ABSTRACT: Aspects of between-individual trophic niche width can be explored through the iso- topic niche concept. In many cases isotopic variability can be influenced by the scale of sampling and biological characteristics including body size or sex. Sample size-corrected (SEAc) and Bayesian (SEAb) standard ellipse areas and generalised least squares (GLS) models were used to explore the spatial variability of δ13C and δ15N in Kiwa tyleri (decapod), Gigantopelta chessoia (peltospirid gastropod) and Vulcanolepas scotiaensis (stalked barnacle) collected from 3 hydrothermal vent field sites (E2, E9N and E9S) on the East Scotia Ridge (ESR), Southern Ocean. SEAb only revealed spatial differences in isotopic niche area in male K. tyleri. However, the parameters used to draw the SEAc, eccentricity (E) and angle of the major SEAc axis to the x-axis (θ), indicated spatial differences in the relationships between δ13C and δ15N in all 3 species.
    [Show full text]
  • Kiwa Tyleri, a New Species of Yeti Crab from the East Scotia Ridge, Antarctica
    RESEARCH ARTICLE Adaptations to Hydrothermal Vent Life in Kiwa tyleri, a New Species of Yeti Crab from the East Scotia Ridge, Antarctica Sven Thatje1*, Leigh Marsh1, Christopher Nicolai Roterman2, Mark N. Mavrogordato3, Katrin Linse4 1 Ocean and Earth Science, University of Southampton, European Way, Southampton, SO14 3ZH, United Kingdom, 2 National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, United Kingdom, 3 Engineering Sciences, μ-VIS CT Imaging Centre, University of Southampton, Southampton, SO17 1BJ, United Kingdom, 4 British Antarctic Survey, High Cross Madingley Road, CB3 0ET, Cambridge, United Kingdom a11111 * [email protected] Abstract Hydrothermal vents in the Southern Ocean are the physiologically most isolated chemosyn- OPEN ACCESS thetic environments known. Here, we describe Kiwa tyleri sp. nov., the first species of yeti Citation: Thatje S, Marsh L, Roterman CN, crab known from the Southern Ocean. Kiwa tyleri belongs to the family Kiwaidae and is the Mavrogordato MN, Linse K (2015) Adaptations to visually dominant macrofauna of two known vent sites situated on the northern and southern Hydrothermal Vent Life in Kiwa tyleri, a New Species segments of the East Scotia Ridge (ESR). The species is known to depend on primary pro- of Yeti Crab from the East Scotia Ridge, Antarctica. ductivity by chemosynthetic bacteria and resides at the warm-eurythermal vent environment PLoS ONE 10(6): e0127621. doi:10.1371/journal. pone.0127621 for most of its life; its short-range distribution away from vents (few metres) is physiologically constrained by the stable, cold waters of the surrounding Southern Ocean. Kiwa tylerihas Academic Editor: Steffen Kiel, Universität Göttingen, GERMANY been shown to present differential life history adaptations in response to this contrasting thermal environment.
    [Show full text]
  • A New Vent Limpet in the Genus Lepetodrilus (Gastropoda: Lepetodrilidae) from Southern Ocean Hydrothermal Vent Fields Showing High Phenotypic Plasticity
    fmars-06-00381 July 15, 2019 Time: 15:56 # 1 ORIGINAL RESEARCH published: 16 July 2019 doi: 10.3389/fmars.2019.00381 A New Vent Limpet in the Genus Lepetodrilus (Gastropoda: Lepetodrilidae) From Southern Ocean Hydrothermal Vent Fields Showing High Phenotypic Plasticity Katrin Linse1*, Christopher Nicolai Roterman2 and Chong Chen3 1 British Antarctic Survey, Cambridge, United Kingdom, 2 Department of Zoology, University of Oxford, Oxford, United Kingdom, 3 X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan The recently discovered hydrothermal vent ecosystems in the Southern Ocean host a suite of vent-endemic species, including lepetodrilid limpets dominating in abundance. Limpets were collected from chimneys, basalts and megafauna of the East Scotia Ridge Edited by: segments E2 and E9 and the Kemp Caldera at the southern end of the South Sandwich Wei-Jen Chen, Island arc. The limpets varied in size and shell morphology between vent fields and National Taiwan University, Taiwan displayed a high degree of phenotypic plasticity. Size frequency analyses between vent Reviewed by: fields suggests continuous reproduction in the limpet and irregular colonisation events. Marjolaine Matabos, Institut Français de Recherche pour Phylogenetic reconstructions and comparisons of mitochondrial COI gene sequences l’Exploitation de la Mer (IFREMER), revealed a level of genetic similarity between individuals from the three vent fields France Junlong Zhang, consistent with them belonging to a single molecular operational taxonomic unit. Here Institute of Oceanology (CAS), China we describe Lepetodrilus concentricus n. sp., and evaluate its genetic distinctness and *Correspondence: pylogenetic position with congeners based on the same gene. Results indicate that Katrin Linse L.
    [Show full text]
  • Comparative Population Structure of Two Dominant Species, Shinkaia Crosnieri
    Comparative population structure of two dominant species, Shinkaia crosnieri (Munidopsidae: Shinkaia) and Bathymodiolus platifrons (Mytilidae: Bathymodiolus), inhabiting both deep-sea vent and cold seep inferred from mitochondrial multi-genes Yanjun Shen1,2,*, Qi Kou3,*, Weitao Chen1,2, Shunping He1, Mei Yang3, Xinzheng Li3 & Xiaoni Gan1 1The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China 2University of the Chinese Academy of Sciences, Beijing 100039, China 3Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China Keywords Abstract Chemosynthetic fauna, environmental heterogeneity, genetic diversity, genetic Deep-sea hydrothermal vents and cold seeps, limited environments without isolation, population distribution patterns. sunlight, are two types of extreme habitat for marine organisms. The differences between vents and cold seeps may facilitate genetic isolation and produce popu- Correspondence lation heterogeneity. However, information on such chemosynthetic fauna taxa Xiaoni Gan, The Key Laboratory of Aquatic is rare, especially regarding the population diversity of species inhabiting both Biodiversity and Conservation of the Chinese vents and cold seeps. In this study, three mitochondrial DNA fragments (the Academy of Sciences, Institute of cytochrome c oxidase submit I (COI), cytochrome b gene (Cytb), and 16S) Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China were concatenated as a mitochondrial concatenated dataset (MCD) to examine Tel: 027-68780089; the genetic diversity, population structure, and demographic history of Shinkaia Fax: 027-68780071; crosnieri and Bathymodiolus platifrons. The genetic diversity differences between E-mail: [email protected] vent and seep populations were statistically significant for S. crosnieri but not and for B.
    [Show full text]
  • Thatje and Marsh 2018
    1 The Scientific Naturalist 2 3 From hot waters of polar seas: the mysterious life of the male yeti crab 4 5 Sven Thatje*, Leigh Marsh 6 7 Ocean and Earth Science, University of Southampton, National Oceanography Centre 8 Southampton, Waterfront Campus, Southampton SO14 3ZH, UK 9 10 *Email: [email protected] 11 In 2010, a new biogeographic province of hydrothermal vent fauna was discovered on the East Scotia Ridge 12 (ESR), Southern Ocean, situated to a maximum depth of 2,600 m (Rogers et al. 2012). Two hydrothermal vent 13 fields, named E2 and E9, were found on the northern and southern branch of the ESR, respectively. The 14 chemosynthetic dependent benthic macrofauna that dominate these sites were new to science, and many of the 15 species appear to be endemic to the Southern Ocean province. A member of the enigmatic family of Kiwaidae – 16 commonly known as yeti crabs or squat lobsters – visually dominates the vent fauna (Fig. 1A– C) (Marsh et al. 17 2012, Rogers et al. 2012). This species, Kiwa tyleri, sustains itself on chemosynthetic bacteria, which grow on 18 two types of specialized setae that cover the ventral side of its carapace and pereopods in dense rows (Thatje et 19 al. 2015a, b). For the majority of individuals, their habitat is limited to a thermally well-defined, narrow envelope 20 of warm-water surrounding the hydrothermal vent system, bound in the cold temperatures of the deep Southern 21 Ocean, which were found to be as cold as 0 and 1.3°C at E2 and E9, respectively.
    [Show full text]
  • Crustacea, Decapoda, Anomura) from Hydrothermal Systems in the West Pacific Océan: Bismarck Archipelago and Okinawa Trough
    New Galatheoidea (Crustacea, Decapoda, Anomura) from hydrothermal Systems in the West Pacific Océan: Bismarck Archipelago and Okinawa Trough Keiji BABA Kumamoto University, Faculty of Education Kumamoto 860-8555 (Japan) [email protected] Austin B. WILLIAMS National Marine Fisheries Service Systematics Laboratory National Muséum of Natural History, Smithsonian Institution Washington D.C. 20560 (U.S.A.) [email protected] Baba K. & Williams A. B. 1998. — New Galatheoidea (Crustacea, Decapoda, Anomura) from hydrothermal Systems in the West Pacific Océan: Bismarck Archipelago and Okinawa Trough. Zoosystema 20 (2): 143-156. ABSTRACT Two anomuran decapod crustaceans of the superfamily Galatheoidea that are new to science are described from hydrothermally active areas of the western Pacific Océan. Uroptychus edisonicus n.sp., family Chirostylidae, from a vol- canic crater on Edison Seamount near Lihir Island, Bismarck Archipelago, Papua New Guinea, is the third species of the genus known to occur in hydrothermally active areas, both of the others coming from the North Fiji Basin. The new species is more similar to non-hydrothermal congeners from the Banda Sea and the central North Pacific Océan than to those known KEYWORDS from vent areas. Shinkaia crosnieri n.g. n.sp., family Galatheidae, from active hydrothermal Systems, hydrothermal areas in the Okinawa Trough and Edison Seamount is placed West Pacific Océan, in the monotypic Shinkaiinae n. subfam. having similarities to the Chirostylidae, Uroptychus, Munidopsinae, but with distinctive characters of its own including carapace Galatheidae, shape and ornamentation, very short (or reduced) epipods on the third Shinkaiinae, maxillipeds, features of thoracic sternum, legs, and dense ventral mat of Shinkaia, biogeography.
    [Show full text]
  • 1 SUPPORTING INFORMATION APPENDIX 1: Data Sources The
    SUPPORTING INFORMATION APPENDIX 1: Data Sources The next 64 pages comprise a reference list for all literary sources given as references for trait scores and/or comments in the sFDvent raw (marked with an asterisk (*) if not then included in recommended) and/or recommended datasets (Tables S4.3 and S4.2, respectively). These references are not in alphabetical order, as the database is a ‘living’ record, so new references will be added and a new number assigned. In the recommended dataset (Table S4.2), the references are recorded according to the numbers listed below (and in Table S1.1), to ensure that citations are relatively easy for users to carry through when conducting analyses using subsets of the data, for example. If a score in the recommended dataset is supported by more than one reference, multiple reference identifiers are provided and separated by a semi-colon (;). The references are not provided as numbers / identifiers in the other versions of the dataset, as information is lost during this processing step (e.g., ‘expert opinion’, or 66, replaces comments made by experts in each reference column regarding additional observations, rationale for certainty scores, etc.), which may prove useful for some users. Other versions of the dataset thus maintain raw reference entries for transparency and as potentially useful metadata. We provide a copy of the recommended dataset without the references as numbers (Table S4.2A), in case it is easier for users to cross-reference between the two sheets to seek additional comments for a given data subset of interest. 1. Aguado, M.
    [Show full text]
  • Handbook of Deep-Sea Hydrothermal Vent Fauna
    HANDBOOK OF DEEP-SEA HYDROTHERMAL VENT FAUNA Second completely revised edition Editors: Daniel Desbruyeres, Michel Segonzac & Monika Bright Arthropoda: Decapoda, Anomura Worldwide, there are over 2500 species of anomouran The vent fauna contains representatives of the superfami­ crabs, which comprise ca 5% of all crustacean species. The In- lies Galatheoidea and Paguroidea, including species of four fa­ fraorder Anomura represents a paraphyletic group that includes milies and a recent new family (Kiwaidae). Despite their ecolo­ the superfamilies Lomisoidea, Hippoidea, and the much more gical importance and high diversity, many aspects of their Sys­ diverse Galatheoidea and Paguroidea. Species of these taxa are tematics and distribution are still poorly known. commonly found living from the intertidal zone to the abyssal The anomurans exhibit a considerable diversity of repro­ plain >2000 m, including one terrestrial representative. Mor­ duction modes, life cycles and capacities for dispersal. The vast phologically they have little in common, some are like crabs majority of species have relatively small pelagic eggs, with the (e.g. Lithodidae) and others are like hermit crabs (e.g. Paguri- exception of some representatives of the families Galatheidae dae). They only share one character: the small fifth pereiopod. and Chirostylidae, and a pelagic larval phase, which enhances Molecular studies have shown that Galatheoidea and Paguroi­ their capacity for dispersal. There is evidence for prolonged dea are more related to each other than to Hippoidea, although brooding periods. Usually they produce only a few large eggs, more work is needed to completely resolve these relationships. probably related to an abbreviated or direct larval develop­ ment.
    [Show full text]
  • SUPPLEMENTARY INFORMATION Ecology and Biogeography Of
    Title Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow- spreading Southwest Indian Ridge Authors Copley, JT; Marsh, L; Glover, AG; Hühnerbach, V; Nye, VE; Reid, WDK; Sweeting, CJ; Wigham, BD; Wiklund, H Description 0000-0002-9489-074X Date Submitted 2017-05-02 SUPPLEMENTARY INFORMATION Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge Copley JT 1,* , Marsh L 1, Glover AG 2, Hühnerbach V 3, Nye VE 1, Reid WDK 4, Sweeting CJ 5, Wigham BD 5, Wiklund H 2 1Ocean & Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK 2Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK 3formerly at National Oceanography Centre, European Way, Southampton SO14 3ZH, UK 4School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK 5Dove Marine Laboratory, School of Marine Science & Technology, Newcastle University, Cullercoats NE30 4PZ, UK *email [email protected] (corresponding author) SUPPLEMENTARY FIGURE: Images of faunal assemblages observed at Longqi vent field, Southwest Indian Ridge, during the first remotely operated vehicle (ROV) dives in November 2011: (a) active “black smoker” chimneys occupied by Rimicaris kairei ; (b) assemblage of Chrysomallon squamiferum , Hesiolyra cf. bergi , Kiwa n. sp. “SWIR”, Mirocaris fortunata in close proximity to vent fluid source; (c) abundant Chrysomallon squamiferum and Gigantopelta aegis , with Kiwa n. sp. “SWIR”, Bathymodiolus marisindicus , and Mirocaris fortunata on platform of “Tiamat” vent chimney (d) zonation of Chysomallon squamiferum , Gigantopelta aegis , Bathymodiolus marisindicus , and Neolepas sp.
    [Show full text]
  • Evidence for Protracted and Lecithotrophic Larval Development in the Yeti Crab Kiwa Tyleri from Hydrothermal Vents of the East Scotia Ridge, Southern Ocean
    Vol. 1: 109–116, 2015 SEXUALITY AND EARLY DEVELOPMENT IN AQUATIC ORGANISMS Published online April 28 doi: 10.3354/sedao00011 Sex Early Dev Aquat Org OPENPEN ACCESSCCESS Evidence for protracted and lecithotrophic larval development in the yeti crab Kiwa tyleri from hydrothermal vents of the East Scotia Ridge, Southern Ocean Sven Thatje1,*, Kathryn E. Smith1,2, Leigh Marsh1, Paul A. Tyler1 1Ocean and Earth Science, University of Southampton, European Way, Southampton, SO14 3ZH, UK 2Present address: Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA ABSTRACT: The deep-sea squat lobster Kiwa tyleri (also known as yeti crab) is the dominant macroinvertebrate inhabiting hydrothermal vents on the northern and southern segments of the East Scotia Ridge in the Southern Ocean. Here, we describe the first zoeal stage of the species — which is morphologically advanced — and provide evidence for its lecithotrophy in development. This morphologically advanced stage at hatching suggests that dispersal potential during early ontogeny may be limited. Adults of K. tyleri typically inhabit a warm-eurythermal, and spatially defined, temperature envelope of vent chimneys. In contrast, ovigerous females with late embryos are found away from these temperatures, off the vent site. This implies that at least part of embryogenesis takes place away from the chemosynthetic environment. Larvae are released into the cold waters of the Southern Ocean that are known to pose physiological limits on the survival of reptant decapods. Larval lecithotrophy may aid long developmental periods under these condi- tions and facilitate development independent of pronounced seasonality in primary production. It remains uncertain, however, how population connectivity between distant vent sites may be achieved.
    [Show full text]