Relativistic Fluid Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Relativistic Fluid Dynamics Living Reviews in Relativity (2021) 24:3 https://doi.org/10.1007/s41114-021-00031-6 REVIEW ARTICLE Relativistic fluid dynamics: physics for many different scales Nils Andersson1 · Gregory L. Comer2 Received: 1 June 2020 / Accepted: 22 January 2021 © The Author(s) 2021 Abstract The relativistic fluid is a highly successful model used to describe the dynam- ics of many-particle systems moving at high velocities and/or in strong gravity. It takes as input physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process—e.g., drawing on astrophysi- cal observations—an understanding of relativistic features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model sys- tems as “small” as colliding heavy ions in laboratory experiments, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theo- retical physics underpinnings of the relativistic (multi-) fluid model. We focus on the variational principle approach championed by Brandon Carter and collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book deriva- tion of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion) interesting and relevant applications This article is a revised version of https://doi.org/10.12942/lrr-2007-1. Change summary: Major revision, updated and expanded. Change details: This revision represents a significant revision/update of the review. We have expanded the discussion to make it more pedagogical (introducing new sections on thermodynamics and matter equations of state as well as general variational principles), added sections to account for more physics (electromagnetism, elasticity and heat conductivity) and made contact with state of the art numerical relativity simulations and a range of issues (from cosmology to AdS/CFT and field theory models). The discussion of the relevant literature has been expanded by the addition of more than 300 new references. B Nils Andersson [email protected] Gregory L. Comer [email protected] 1 Mathematical Sciences and STAG Research Centre, University of Southampton, Southampton SO17 1BJ, UK 2 Department of Physics, Saint Louis University, St. Louis, MO 63156-0907, USA 0123456789().: V,-vol 123 3 Page 2 of 251 N. Andersson, G. L. Comer of the general theory. The formalism provides a foundation for complex models, e.g., including electromagnetism, superfluidity and elasticity—all of which are relevant for state of the art neutron-star modelling. Keywords Fluid dynamics · Relativistic hydrodynamics · Relativistic astrophysics · Variational methods · Field theory Contents 1 Setting the stage ........................................... 3 1.1 A brief history of fluids .................................... 5 1.2 Why are fluid models useful? ................................. 7 1.3 Notation and conventions ................................... 10 2 Thermodynamics and equations of state .............................. 11 2.1 Fundamental, or Euler, relation ................................ 11 2.2 Case study: neutron stars ................................... 13 3 Physics in a curved spacetime ................................... 19 3.1 The metric and spacetime curvature ............................. 20 3.2 Parallel transport and the covariant derivative ........................ 22 3.3 The Lie derivative and spacetime symmetries ........................ 27 3.4 Spacetime curvature ..................................... 32 3.5 The Einstein field equations ................................. 33 4 Variational analysis ......................................... 35 4.1 A simple starting point: the point particle .......................... 36 4.2 More general Lagrangians .................................. 38 4.3 Electromagnetism ....................................... 42 4.4 The Einstein field equations ................................. 44 4.5 The stress-energy tensor as obtained from the action principle ............... 46 5 Case study: single fluids ...................................... 47 5.1 General stress decomposition ................................. 47 5.2 “Off-the-shelf” analysis ................................... 49 5.3 Conservation laws ...................................... 54 5.4 A couple of steps towards relative flows ........................... 56 5.5 From microscopic models to the equation of state ...................... 58 6 Variational approach for a single-fluid system ........................... 59 6.1 The action principle ...................................... 60 6.2 Lagrangian perturbations ................................... 66 6.3 Working with the matter space ................................ 67 6.4 A step towards field theory .................................. 69 7 Newtonian limit and Lagrangian perturbations ........................... 71 7.1 The Newtonian limit ..................................... 71 7.2 Local dynamics ........................................ 74 7.3 Newtonian fluid perturbations ................................ 76 7.4 The CFS instability ...................................... 78 7.5 The relativistic problem .................................... 83 8 A step towards multi-fluids ..................................... 84 8.1 The two-constituent, single fluid ............................... 86 8.2 Speed of sound (again) .................................... 88 8.3 Multi-component cosmology ................................. 92 9 The “pull-back” formalism for two fluids ............................. 94 10 Waves in multi-fluid systems .................................... 98 10.1 Two-fluid case ........................................ 98 10.2 The two-stream instability .................................. 101 11 Numerical simulations: fluid dynamics in a live spacetime .................... 107 123 Relativistic fluid dynamics: physics for many different… Page 3 of 251 3 11.1 Spacetime foliation ...................................... 108 11.2 Perfect fluids ......................................... 111 11.3 Conservative to primitive ................................... 115 11.4 The state of the art ...................................... 116 12 Relativistic elasticity ........................................ 117 12.1 The matter space metric ................................... 118 12.2 Elastic variations ....................................... 120 12.3 Lagrangian perturbations of an unstrained medium ..................... 125 13 Superfluidity ............................................ 127 13.1 Bose–Einstein condensates .................................. 128 13.2 Helium: the original two-fluid model ............................. 132 13.3 Relativistic models ...................................... 137 13.4 Vortices and mutual friction ................................. 142 13.5 The Kalb–Ramond variation ................................. 144 13.6 String fluids .......................................... 148 13.7 Vortex dynamics ....................................... 151 14 Perspectives on electromagnetism ................................. 156 14.1 The Lorentz force ....................................... 156 14.2 Maxwell in the fluid frame .................................. 158 14.3 Variational approach for coupled charged fluids ....................... 161 14.4 The foliation equations .................................... 163 14.5 Electron dynamics and Ohm’s law .............................. 166 14.6 Tetrad formulation ...................................... 171 14.7 A brief status report of magnetic field models ........................ 178 15 The problem with heat ....................................... 179 15.1 The “standard” approach ................................... 180 15.2 Case study: neutron star cooling ............................... 182 15.3 The multi-fluid view ..................................... 184 15.4 A linear model and the second sound ............................. 189 16 Modelling dissipation ........................................ 197 16.1 Eckart versus Landau–Lifshitz ................................ 199 16.2 The Israel–Stewart approach ................................. 202 16.3 Application: heavy-ion collisions ............................... 204 16.4 The fluid-gravity correspondence ............................... 207 16.5 Completing the derivative expansion ............................. 210 16.6 Carter’s canonical framework ................................. 211 16.7 Add a bit of chemistry... ................................... 216 16.8 Towards a dissipative action principle ............................ 218 16.9 A reactive/resistive example ................................. 222 16.10Adding dissipative stresses .................................. 226 16.11A few comments ....................................... 229 17 Concluding remarks ......................................... 230 The volume tensor in n-dimensions ................................... 231 The matter space Levi-Civita symbol .................................. 232 References ................................................ 233 1 Setting the stage If one performs
Recommended publications
  • Rotating Stars in Relativity
    Noname manuscript No. (will be inserted by the editor) Rotating Stars in Relativity Vasileios Paschalidis Nikolaos Stergioulas · Received: date / Accepted: date Abstract Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densi- ties and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is re- viewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f-modes and r-modes have been updated. Several new sections have been added on equilibria in modi- fied theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativ- ity including both hydrodynamic and magnetohydrodynamic studies of these objects. Keywords Relativistic stars · Rotation · Stability · Oscillations · Magnetic fields · Numerical relativity Vasileios Paschalidis Theoretical Astrophysics Program, Departments of Astronomy and Physics, University of Arizona, Tucson, AZ 85721, USA Department of Physics, Princeton University Princeton, NJ 08544, USA E-mail: [email protected] http://physics.princeton.edu/~vp16/ Nikolaos Stergioulas Department of Physics, Aristotle University of Thessaloniki Thessaloniki, 54124, Greece E-mail: [email protected] http://www.astro.auth.gr/~niksterg arXiv:1612.03050v2 [astro-ph.HE] 30 Nov 2017 2 Vasileios Paschalidis, Nikolaos Stergioulas The article has been substantially revised and updated. New Section 5 and various Subsections (2.3 { 2.5, 2.7.5 { 2.7.7, 2.8, 2.10-2.11,4.5.7) have been added.
    [Show full text]
  • Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow Through Porous Media
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media Permalink https://escholarship.org/uc/item/6zv599hc Author Wu, Y.S. Publication Date 1990-02-01 eScholarship.org Powered by the California Digital Library University of California Lawrence Berkeley Laboratory e UNIVERSITY OF CALIFORNIA EARTH SCIENCES DlVlSlON Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media Y.-S. Wu (Ph.D. Thesis) February 1990 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. r- +. .zn Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. :0 DISCLAIMER I I This document was prepared as an account of work sponsored ' : by the United States Government. Neither the United States : ,Government nor any agency thereof, nor The Regents of the , I Univers~tyof California, nor any of their employees, makes any I warranty, express or implied, or assumes any legal liability or ~ : responsibility for the accuracy, completeness, or usefulness of t any ~nformation, apparatus, product, or process disclosed, or I represents that its use would not infringe privately owned rights. : Reference herein to any specific commercial products process, or I service by its trade name, trademark, manufacturer, or other- I wise, does not necessarily constitute or imply its endorsement, ' recommendation, or favoring by the United States Government , or any agency thereof, or The Regents of the University of Cali- , forma. The views and opinions of authors expressed herein do ' not necessarily state or reflect those of the United States : Government or any agency thereof or The Regents of the , Univers~tyof California and shall not be used for advertismg or I product endorsement purposes.
    [Show full text]
  • Fluid Inertia and End Effects in Rheometer Flows
    FLUID INERTIA AND END EFFECTS IN RHEOMETER FLOWS by JASON PETER HUGHES B.Sc. (Hons) A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Mathematics and Statistics Faculty of Technology University of Plymouth April 1998 REFERENCE ONLY ItorriNe. 9oo365d39i Data 2 h SEP 1998 Class No.- Corrtl.No. 90 0365439 1 ACKNOWLEDGEMENTS I would like to thank my supervisors Dr. J.M. Davies, Prof. T.E.R. Jones and Dr. K. Golden for their continued support and guidance throughout the course of my studies. I also gratefully acknowledge the receipt of a H.E.F.C.E research studentship during the period of my research. AUTHORS DECLARATION At no time during the registration for the degree of Doctor of Philosophy has the author been registered for any other University award. This study was financed with the aid of a H.E.F.C.E studentship and carried out in collaboration with T.A. Instruments Ltd. Publications: 1. J.P. Hughes, T.E.R Jones, J.M. Davies, *End effects in concentric cylinder rheometry', Proc. 12"^ Int. Congress on Rheology, (1996) 391. 2. J.P. Hughes, J.M. Davies, T.E.R. Jones, ^Concentric cylinder end effects and fluid inertia effects in controlled stress rheometry, Part I: Numerical simulation', accepted for publication in J.N.N.F.M. Signed ...^.^Ms>3.\^^. Date Ik.lp.^.m FLUH) INERTIA AND END EFFECTS IN RHEOMETER FLOWS Jason Peter Hughes Abstract This thesis is concerned with the characterisation of the flow behaviour of inelastic and viscoelastic fluids in steady shear and oscillatory shear flows on commercially available rheometers.
    [Show full text]
  • Lecture 1: Introduction
    Lecture 1: Introduction E. J. Hinch Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties. In general, these differences arise because the fluid has a microstructure that influences the flow. In section 2, we will present a collection of some of the interesting phenomena arising from flow nonlinearities, the inhibition of stretching, elastic effects and normal stresses. In section 3 we will discuss a variety of devices for measuring material properties, a process known as rheometry. 1 Fluid Mechanical Preliminaries The equations of motion for an incompressible fluid of unit density are (for details and derivation see any text on fluid mechanics, e.g. [1]) @u + (u · r) u = r · S + F (1) @t r · u = 0 (2) where u is the velocity, S is the total stress tensor and F are the body forces. It is customary to divide the total stress into an isotropic part and a deviatoric part as in S = −pI + σ (3) where tr σ = 0. These equations are closed only if we can relate the deviatoric stress to the velocity field (the pressure field satisfies the incompressibility condition). It is common to look for local models where the stress depends only on the local gradients of the flow: σ = σ (E) where E is the rate of strain tensor 1 E = ru + ruT ; (4) 2 the symmetric part of the the velocity gradient tensor. The trace-free requirement on σ and the physical requirement of symmetry σ = σT means that there are only 5 independent components of the deviatoric stress: 3 shear stresses (the off-diagonal elements) and 2 normal stress differences (the diagonal elements constrained to sum to 0).
    [Show full text]
  • A Fluid Is Defined As a Substance That Deforms Continuously Under Application of a Shearing Stress, Regardless of How Small the Stress Is
    FLUID MECHANICS & BIOTRIBOLOGY CHAPTER ONE FLUID STATICS & PROPERTIES Dr. ALI NASER Fluids Definition of fluid: A fluid is defined as a substance that deforms continuously under application of a shearing stress, regardless of how small the stress is. To study the behavior of materials that act as fluids, it is useful to define a number of important fluid properties, which include density, specific weight, specific gravity, and viscosity. Density is defined as the mass per unit volume of a substance and is denoted by the Greek character ρ (rho). The SI units for ρ are kg/m3. Specific weight is defined as the weight per unit volume of a substance. The SI units for specific weight are N/m3. Specific gravity S is the ratio of the weight of a liquid at a standard reference temperature to the o weight of water. For example, the specific gravity of mercury SHg = 13.6 at 20 C. Specific gravity is a unit-less parameter. Density and specific weight are measures of the “heaviness” of a fluid. Example: What is the specific gravity of human blood, if the density of blood is 1060 kg/m3? Solution: ⁄ ⁄ Viscosity, shearing stress and shearing strain Viscosity is a measure of a fluid's resistance to flow. It describes the internal friction of a moving fluid. A fluid with large viscosity resists motion because its molecular makeup gives it a lot of internal friction. A fluid with low viscosity flows easily because its molecular makeup results in very little friction when it is in motion. Gases also have viscosity, although it is a little harder to notice it in ordinary circumstances.
    [Show full text]
  • Arxiv:0809.1487V2 [Cond-Mat.Stat-Mech] 25 Oct 2008 the first Two Authors Acknowledge Equal Contributions to This Review
    Advances in Physics Vol. 00, No. 00, Month-Month 200x, 1–111 Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques P. B. Blakiea∗, A. S. Bradleya;b, M. J. Davisb, R. J. Ballagha, and C. W. Gardinera aJack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, Dunedin, New Zealand; bThe University of Queensland, School of Physical Sciences, ARC Centre of Excellence for Quantum-Atom Optics, Qld 4072, Australia (Received 00 Month 200x; In final form 00 Month 200x) We review phase space techniques based on the Wigner representation that provide an approximate description of dilute ultra-cold Bose gases. In this approach the quantum field evolution can be represented using equations of motion of a similar form to the Gross-Pitaevskii equation but with stochastic modifications that include quantum effects in a controlled degree of approximation. These techniques provide a practical quantitative description of both equilibrium and dynamical properties of Bose gas systems. We develop versions of the formalism appropriate at zero temperature, where quantum fluctuations can be important, and at finite temperature where thermal fluctuations dominate. The numerical techniques necessary for implementing the formalism are discussed in detail, together with methods for extracting observables of interest. Numerous applications to a wide range of phenomena are presented. Keywords: Ultra-cold Bose gas, quantum and finite temperature dynamics. ∗Corresponding author. Email: [email protected] arXiv:0809.1487v2 [cond-mat.stat-mech] 25 Oct 2008 The first two authors acknowledge equal contributions to this review. 2 Contents 1. Introduction 4 2. Background formalism 7 2.1.
    [Show full text]
  • Arxiv:1912.00685V2 [Gr-Qc] 30 Mar 2020
    USTC-ICTS-19-29 Relativistic stars in mass-varying massive gravity Xue Sun1 and Shuang-Yong Zhou2 1School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China 2Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China and Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China (Dated: March 31, 2020) Mass-varying massive gravity allows the graviton mass to vary according to different environ- ments. We investigate neutron star and white dwarf solutions in this theory and find that the graviton mass can become very large near the compact stars and settle down quickly to small cosmological values away the stars, similar to that of black holes in the theory. It is found that there exists a tower of compact star solutions where the graviton mass decreases radially to zero non-trivially. We compute the massive graviton effects on the mass-radius relations of the compact stars, and also compare the relative strengths between neutron stars and white dwarfs in constraining the parameter space of mass-varying massive gravity. I. INTRODUCTION ton mass near the horizon, there is an extra potential barrier to the left of the photosphere barrier in the mod- ified Regge-Wheeler-Zerilli equation, and this can lead to Recent advances in astrophysics, particularly the ar- gravitational wave echoes [18, 19] in the late time ring- rival of gravitational wave astronomy [1, 2], have pro- down waveform when the black hole is perturbed [16]. vided fresh new opportunities to test gravity in the strong field regime with compact astronomical objects.
    [Show full text]
  • Rheology of Petroleum Fluids
    ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 20, 2012 Rheology of Petroleum Fluids Hans Petter Rønningsen, Statoil, Norway ABSTRACT NEWTONIAN FLUIDS Among the areas where rheology plays In gas reservoirs, the flow properties of an important role in the oil and gas industry, the simplest petroleum fluids, i.e. the focus of this paper is on crude oil hydrocarbons with less than five carbon rheology related to production. The paper atoms, play an essential role in production. gives an overview of the broad variety of It directly impacts the productivity. The rheological behaviour, and corresponding viscosity of single compounds are well techniques for investigation, encountered defined and mixture viscosity can relatively among petroleum fluids. easily be calculated. Most often reservoir gas viscosity is though measured at reservoir INTRODUCTION conditions as part of reservoir fluid studies. Rheology plays a very important role in The behaviour is always Newtonian. The the petroleum industry, in drilling as well as main challenge in terms of measurement and production. The focus of this paper is on modelling, is related to very high pressures crude oil rheology related to production. (>1000 bar) and/or high temperatures (170- Drilling and completion fluids are not 200°C) which is encountered both in the covered. North Sea and Gulf of Mexico. Petroleum fluids are immensely complex Hydrocarbon gases also exist dissolved mixtures of hydrocarbon compounds, in liquid reservoir oils and thereby impact ranging from the simplest gases, like the fluid viscosity and productivity of these methane, to large asphaltenic molecules reservoirs. Reservoir oils are also normally with molecular weights of thousands.
    [Show full text]
  • Lecture 2: (Complex) Fluid Mechanics for Physicists
    Application of granular jamming: robots! Cornell (Amend and Lipson groups) in collaboration with Univ of1 Chicago (Jaeger group) Lecture 2: (complex) fluid mechanics for physicists S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University of Houston 2012 Note: I have added links addressing questions and topics from lectures at: http://conradlab.chee.uh.edu/srsi_links.html Email me questions/comments/suggestions! 2 Soft condensed matter physics • Lecture 1: statistical mechanics and phase transitions via colloids • Lecture 2: (complex) fluid mechanics for physicists • Lecture 3: physics of bacteria motility • Lecture 4: viscoelasticity and cell mechanics • Lecture 5: Dr. Conrad!s work 3 Big question for today!s lecture How does the fluid mechanics of complex fluids differ from that of simple fluids? Petroleum Food products Examples of complex fluids: Personal care products Ceramic precursors Paints and coatings 4 Topic 1: shear thickening 5 Forces and pressures A force causes an object to change velocity (either in magnitude or direction) or to deform (i.e. bend, stretch). � dp� Newton!s second law: � F = m�a = dt p� = m�v net force change in linear mass momentum over time d�v �a = acceleration dt A pressure is a force/unit area applied perpendicular to an object. Example: wind blowing on your hand. direction of pressure force �n : unit vector normal to the surface 6 Stress A stress is a force per unit area that is measured on an infinitely small area. Because forces have three directions and surfaces have three orientations, there are nine components of stress. z z Example of a normal stress: δA δAx x δFx τxx = lim τxy δFy δAx→0 δAx τxx δFx y y Example of a shear stress: δFy τxy = lim δAx→0 δAx x x Convention: first subscript indicates plane on which stress acts; second subscript indicates direction in which the stress acts.
    [Show full text]
  • Relativistic Stars with a Linear Equation of State: Analogy with Classical Isothermal Spheres and Black Holes
    A&A 483, 673–698 (2008) Astronomy DOI: 10.1051/0004-6361:20078287 & c ESO 2008 Astrophysics Relativistic stars with a linear equation of state: analogy with classical isothermal spheres and black holes P. H. Chavanis Laboratoire de Physique Théorique (UMR 5152 du CNRS), Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France e-mail: [email protected] Received 16 July 2007 / Accepted 10 February 2008 ABSTRACT We complete our previous investigations concerning the structure and the stability of “isothermal” spheres in general relativity. This concerns objects that are described by a linear equation of state, P = q, so that the pressure is proportional to the energy density. In the Newtonian limit q → 0, this returns the classical isothermal equation of state. We specifically consider a self-gravitating radiation (q = 1/3), the core of neutron stars (q = 1/3), and a gas of baryons interacting through a vector meson field (q = 1). Inspired by recent works, we study how the thermodynamical parameters (entropy, temperature, baryon number, mass-energy, etc.) scale with the size of the object and find unusual behaviours due to the non-extensivity of the system. We compare these scaling laws with the area scaling of the black hole entropy. We also determine the domain of validity of these scaling laws by calculating the critical radius (for a given central density) above which relativistic stars described by a linear equation of state become dynamically unstable. For photon stars (self-gravitating radiation), we show that the criteria of dynamical and thermodynamical stability coincide. Considering finite spheres, we find that the mass and entropy present damped oscillations as a function of the central density.
    [Show full text]
  • Chapter 3 Newtonian Fluids
    CM4650 Chapter 3 Newtonian Fluid 2/5/2018 Mechanics Chapter 3: Newtonian Fluids CM4650 Polymer Rheology Michigan Tech Navier-Stokes Equation v vv p 2 v g t 1 © Faith A. Morrison, Michigan Tech U. Chapter 3: Newtonian Fluid Mechanics TWO GOALS •Derive governing equations (mass and momentum balances •Solve governing equations for velocity and stress fields QUICK START V W x First, before we get deep into 2 v (x ) H derivation, let’s do a Navier-Stokes 1 2 x1 problem to get you started in the x3 mechanics of this type of problem solving. 2 © Faith A. Morrison, Michigan Tech U. 1 CM4650 Chapter 3 Newtonian Fluid 2/5/2018 Mechanics EXAMPLE: Drag flow between infinite parallel plates •Newtonian •steady state •incompressible fluid •very wide, long V •uniform pressure W x2 v1(x2) H x1 x3 3 EXAMPLE: Poiseuille flow between infinite parallel plates •Newtonian •steady state •Incompressible fluid •infinitely wide, long W x2 2H x1 x3 v (x ) x1=0 1 2 x1=L p=Po p=PL 4 2 CM4650 Chapter 3 Newtonian Fluid 2/5/2018 Mechanics Engineering Quantities of In more complex flows, we can use Interest general expressions that work in all cases. (any flow) volumetric ⋅ flow rate ∬ ⋅ | average 〈 〉 velocity ∬ Using the general formulas will Here, is the outwardly pointing unit normal help prevent errors. of ; it points in the direction “through” 5 © Faith A. Morrison, Michigan Tech U. The stress tensor was Total stress tensor, Π: invented to make the calculation of fluid stress easier. Π ≡ b (any flow, small surface) dS nˆ Force on the S ⋅ Π surface V (using the stress convention of Understanding Rheology) Here, is the outwardly pointing unit normal of ; it points in the direction “through” 6 © Faith A.
    [Show full text]
  • Title the Effects of Rotation on Thermal X-Ray Afterglows Resulting from Pulsar Glitches Author(S)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HKU Scholars Hub The effects of rotation on thermal X-ray afterglows resulting Title from pulsar glitches Author(s) Hui, CY; Cheng, KS Citation Astrophysical Journal Letters, 2004, v. 608 n. 2 I, p. 935-944 Issued Date 2004 URL http://hdl.handle.net/10722/43448 The Astrophysical Journal. Copyright © University of Chicago Rights Press. The Astrophysical Journal, 608:935–944, 2004 June 20 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE EFFECTS OF ROTATION ON THERMAL X-RAY AFTERGLOWS RESULTING FROM PULSAR GLITCHES C. Y. Hui and K. S. Cheng Department of Physics, University of Hong Kong, Chong Yuet Ming Physics Building, Pokfulam Road, Hong Kong, China; [email protected], [email protected] Received 2003 December 3; accepted 2004 March 1 ABSTRACT We derive the anisotropic heat transport equation for rotating neutron stars, and we also derive the thermal equilibrium condition in a relativistic rotating axisymmetric star through a simple variational argument. With a simple model of a neutron star, we model the propagation of heat pulses resulting from transient energy releases inside the star. Such sudden energy release can occur in pulsars during glitches. Even in a slow rotation limit ( 1 ; 103 sÀ1), the results with rotational effects involved could be noticeably different from those obtained with a spherically symmetric metric in terms of the timescales and magnitudes of thermal afterglow. We also study the effects of gravitational lensing and frame dragging on the X-ray light curve pulsations.
    [Show full text]