Rotating Stars in Relativity

Total Page:16

File Type:pdf, Size:1020Kb

Rotating Stars in Relativity Living Rev Relativ (2017) 20:7 https://doi.org/10.1007/s41114-017-0008-x REVIEW ARTICLE Rotating stars in relativity Vasileios Paschalidis1,2 · Nikolaos Stergioulas3 Received: 8 December 2016 / Accepted: 3 October 2017 / Published online: 29 November 2017 © The Author(s) 2017. This article is an open access publication Abstract Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sec- tions on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r-modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects. Keywords Relativistic stars · Rotation · Stability · Oscillations · Magnetic fields · Numerical relativity This article is a revised version of https://doi.org/10.12942/lrr-2003-3. Change summary: Major revision, updated and expanded. Change details: The article has been substantially revised and updated. Expanded all sections, and moved former Subsect. 2.10 to Sect. 3. The number of references (now 863) has more than doubled. B Nikolaos Stergioulas [email protected] Vasileios Paschalidis [email protected] 1 Theoretical Astrophysics Program, Departments of Astronomy and Physics, University of Arizona, Tucson, AZ 85721, USA 2 Department of Physics, Princeton University, Princeton, NJ 08544, USA 3 Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece 123 7 Page 2 of 169 V. Paschalidis, N. Stergioulas Contents 1 Introduction ............................................... 2 The equilibrium structure of rotating relativistic stars ......................... 2.1 Assumptions ............................................ 2.2 Geometry of spacetime ...................................... 2.3 The rotating fluid ......................................... 2.4 Equations of structure ....................................... 2.5 Rotation law and equilibrium quantities ............................. 2.6 Equations of state ......................................... 2.6.1 Relativistic polytropes ................................... 2.6.2 Hadronic equations of state ................................ 2.6.3 Strange quark equations of state .............................. 2.7 Numerical schemes ........................................ 2.7.1 Hartle ........................................... 2.7.2 Butterworth and Ipser (BI) ................................ 2.7.3 Komatsu, Eriguchi, and Hachisu (KEH) ......................... 2.7.4 Bonazzola et al. (BGSM) ................................. 2.7.5 LORENE/rotstar ...................................... 2.7.6 Ansorg et al. (AKM) .................................... 2.7.7 IWM-CFC approximation ................................. 2.7.8 The virial identities .................................... 2.7.9 Direct comparison of numerical codes .......................... 2.8 Analytic approximations to the exterior spacetime ........................ 2.9 Properties of equilibrium models ................................. 2.9.1 Bulk properties and sequences of equilibrium models .................. 2.9.2 Multipole moments .................................... 2.9.3 Mass-shedding limit and the empirical formula ...................... 2.9.4 Upper limits on mass and rotation: theory versus observation .............. 2.9.5 Maximum mass set by causality .............................. 2.9.6 Minimum period set by causality ............................. 2.9.7 Moment of inertia and ellipticity ............................. 2.9.8 Rotating strange quark stars ................................ 2.9.9 Rotating magnetized neutron stars ............................ 2.10 Approximate universal relationships ............................... 2.11 Rapidly rotating equilibrium configurations in modified theories of gravitation ......... 2.12 Differentially rotating neutron stars ................................ 2.13 Proto-neutron stars ........................................ 3 Rotating relativistic stars in LMXBs .................................. 3.1 Particle orbits and kHz quasi-periodic oscillations ........................ 3.2 Angular momentum conservation during burst oscillations ................... 4 Oscillations and stability ........................................ 4.1 Quasi-normal modes of oscillation ................................ 4.2 Effect of rotation on quasi-normal modes ............................. 4.3 Axisymmetric perturbations .................................... 4.3.1 Secular and dynamical axisymmetric instability ..................... 4.3.2 Axisymmetric pulsation modes .............................. 4.4 Nonaxisymmetric perturbations .................................. 4.4.1 Nonrotating limit ..................................... 4.4.2 Slow rotation approximation ............................... 4.4.3 Post-Newtonian approximation .............................. 4.4.4 Cowling approximation .................................. 4.5 Nonaxisymmetric instabilities .................................. 4.5.1 Introduction ........................................ 4.5.2 CFS instability of polar modes .............................. 4.5.3 CFS instability of axial modes .............................. 4.5.4 Effect of viscosity on the CFS instability ......................... 123 Rotating stars in relativity Page 3 of 169 7 4.5.5 Gravitational radiation from CFS instability ....................... 4.5.6 Viscosity-driven instability ................................ 4.5.7 One-arm (spiral) instability ................................ 5 Dynamical simulations of rotating stars in numerical relativity .................... 5.1 Numerical evolution of equilibrium models ........................... 5.1.1 Stable equilibrium ..................................... 5.1.2 Instability to collapse ................................... 5.1.3 Dynamical bar-mode instability .............................. 5.2 Pulsations of rotating stars .................................... 5.3 Rotating core collapse ....................................... 5.3.1 Collapse to a rotating black hole ............................. 5.4 Formation of rotating neutron stars ................................ 5.4.1 Stellar collapse to a rotating neutron star ......................... 5.4.2 Binary neutron star mergers ................................ 5.4.3 One-arm instability .................................... 5.5 Evolution of magnetized, rotating neutron stars ......................... 5.5.1 Magnetic instabilities ................................... 5.5.2 Magnetically driven outflows ............................... 5.5.3 Magnetospheric studies .................................. References .................................................. Publisher’s Note ....................................... 1 Introduction Rotating relativistic stars are of fundamental interest in physics. Their bulk properties constrain the proposed equations of state for densities greater than the nuclear satu- ration density. Accreted matter in their gravitational fields undergoes high-frequency oscillations that could become a sensitive probe for general relativistic effects. Tem- poral changes in the rotational period of millisecond pulsars can also reveal a wealth of information about important physical processes inside the stars or of cosmological relevance. In addition, rotational instabilities can result in the generation of copious amounts of gravitational waves the detection of which would initiate a new field of observational asteroseismology of relativistic stars. The latter is of particular impor- tance because with the first direct detections of gravitational waves by the LIGO and VIRGO collaborations (Abbott et al. 2016a, b) the era of gravitational wave astronomy has arrived. There exist several independent numerical codes for obtaining accurate models of rotating neutron stars in full general relativity, including two that are publicly avail- able. The uncertainty in the high-density equation of state still allows numerically constructed maximum mass models to differ by more than 50% in mass, radius and angular velocity, and by a larger factor in the moment of inertia. Given these uncer- tainties, an absolute upper limit on the rotation of relativistic stars can be obtained by imposing causality as the only requirement on the equation of state. It then follows that gravitationally bound stars cannot rotate faster than 0.41 ms. In rotating stars, nonaxisymmetric oscillations have been studied in various approxi- mations (the Newtonian limit and the post-Newtonian approximation, the slow rotation limit, the Cowling approximation, the spatial conformal flatness approximation) as an eigenvalue problem. Normal modes in full general relativity have been obtained through numerical simulations only. Time evolutions of the linearized equations have 123 7 Page 4 of 169 V. Paschalidis, N. Stergioulas improved our understanding of the spectrum of axial and hybrid modes
Recommended publications
  • Rotating Stars in Relativity
    Noname manuscript No. (will be inserted by the editor) Rotating Stars in Relativity Vasileios Paschalidis Nikolaos Stergioulas · Received: date / Accepted: date Abstract Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densi- ties and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is re- viewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f-modes and r-modes have been updated. Several new sections have been added on equilibria in modi- fied theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativ- ity including both hydrodynamic and magnetohydrodynamic studies of these objects. Keywords Relativistic stars · Rotation · Stability · Oscillations · Magnetic fields · Numerical relativity Vasileios Paschalidis Theoretical Astrophysics Program, Departments of Astronomy and Physics, University of Arizona, Tucson, AZ 85721, USA Department of Physics, Princeton University Princeton, NJ 08544, USA E-mail: [email protected] http://physics.princeton.edu/~vp16/ Nikolaos Stergioulas Department of Physics, Aristotle University of Thessaloniki Thessaloniki, 54124, Greece E-mail: [email protected] http://www.astro.auth.gr/~niksterg arXiv:1612.03050v2 [astro-ph.HE] 30 Nov 2017 2 Vasileios Paschalidis, Nikolaos Stergioulas The article has been substantially revised and updated. New Section 5 and various Subsections (2.3 { 2.5, 2.7.5 { 2.7.7, 2.8, 2.10-2.11,4.5.7) have been added.
    [Show full text]
  • Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow Through Porous Media
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media Permalink https://escholarship.org/uc/item/6zv599hc Author Wu, Y.S. Publication Date 1990-02-01 eScholarship.org Powered by the California Digital Library University of California Lawrence Berkeley Laboratory e UNIVERSITY OF CALIFORNIA EARTH SCIENCES DlVlSlON Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media Y.-S. Wu (Ph.D. Thesis) February 1990 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. r- +. .zn Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. :0 DISCLAIMER I I This document was prepared as an account of work sponsored ' : by the United States Government. Neither the United States : ,Government nor any agency thereof, nor The Regents of the , I Univers~tyof California, nor any of their employees, makes any I warranty, express or implied, or assumes any legal liability or ~ : responsibility for the accuracy, completeness, or usefulness of t any ~nformation, apparatus, product, or process disclosed, or I represents that its use would not infringe privately owned rights. : Reference herein to any specific commercial products process, or I service by its trade name, trademark, manufacturer, or other- I wise, does not necessarily constitute or imply its endorsement, ' recommendation, or favoring by the United States Government , or any agency thereof, or The Regents of the University of Cali- , forma. The views and opinions of authors expressed herein do ' not necessarily state or reflect those of the United States : Government or any agency thereof or The Regents of the , Univers~tyof California and shall not be used for advertismg or I product endorsement purposes.
    [Show full text]
  • Fluid Inertia and End Effects in Rheometer Flows
    FLUID INERTIA AND END EFFECTS IN RHEOMETER FLOWS by JASON PETER HUGHES B.Sc. (Hons) A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Mathematics and Statistics Faculty of Technology University of Plymouth April 1998 REFERENCE ONLY ItorriNe. 9oo365d39i Data 2 h SEP 1998 Class No.- Corrtl.No. 90 0365439 1 ACKNOWLEDGEMENTS I would like to thank my supervisors Dr. J.M. Davies, Prof. T.E.R. Jones and Dr. K. Golden for their continued support and guidance throughout the course of my studies. I also gratefully acknowledge the receipt of a H.E.F.C.E research studentship during the period of my research. AUTHORS DECLARATION At no time during the registration for the degree of Doctor of Philosophy has the author been registered for any other University award. This study was financed with the aid of a H.E.F.C.E studentship and carried out in collaboration with T.A. Instruments Ltd. Publications: 1. J.P. Hughes, T.E.R Jones, J.M. Davies, *End effects in concentric cylinder rheometry', Proc. 12"^ Int. Congress on Rheology, (1996) 391. 2. J.P. Hughes, J.M. Davies, T.E.R. Jones, ^Concentric cylinder end effects and fluid inertia effects in controlled stress rheometry, Part I: Numerical simulation', accepted for publication in J.N.N.F.M. Signed ...^.^Ms>3.\^^. Date Ik.lp.^.m FLUH) INERTIA AND END EFFECTS IN RHEOMETER FLOWS Jason Peter Hughes Abstract This thesis is concerned with the characterisation of the flow behaviour of inelastic and viscoelastic fluids in steady shear and oscillatory shear flows on commercially available rheometers.
    [Show full text]
  • Lecture 1: Introduction
    Lecture 1: Introduction E. J. Hinch Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties. In general, these differences arise because the fluid has a microstructure that influences the flow. In section 2, we will present a collection of some of the interesting phenomena arising from flow nonlinearities, the inhibition of stretching, elastic effects and normal stresses. In section 3 we will discuss a variety of devices for measuring material properties, a process known as rheometry. 1 Fluid Mechanical Preliminaries The equations of motion for an incompressible fluid of unit density are (for details and derivation see any text on fluid mechanics, e.g. [1]) @u + (u · r) u = r · S + F (1) @t r · u = 0 (2) where u is the velocity, S is the total stress tensor and F are the body forces. It is customary to divide the total stress into an isotropic part and a deviatoric part as in S = −pI + σ (3) where tr σ = 0. These equations are closed only if we can relate the deviatoric stress to the velocity field (the pressure field satisfies the incompressibility condition). It is common to look for local models where the stress depends only on the local gradients of the flow: σ = σ (E) where E is the rate of strain tensor 1 E = ru + ruT ; (4) 2 the symmetric part of the the velocity gradient tensor. The trace-free requirement on σ and the physical requirement of symmetry σ = σT means that there are only 5 independent components of the deviatoric stress: 3 shear stresses (the off-diagonal elements) and 2 normal stress differences (the diagonal elements constrained to sum to 0).
    [Show full text]
  • A Fluid Is Defined As a Substance That Deforms Continuously Under Application of a Shearing Stress, Regardless of How Small the Stress Is
    FLUID MECHANICS & BIOTRIBOLOGY CHAPTER ONE FLUID STATICS & PROPERTIES Dr. ALI NASER Fluids Definition of fluid: A fluid is defined as a substance that deforms continuously under application of a shearing stress, regardless of how small the stress is. To study the behavior of materials that act as fluids, it is useful to define a number of important fluid properties, which include density, specific weight, specific gravity, and viscosity. Density is defined as the mass per unit volume of a substance and is denoted by the Greek character ρ (rho). The SI units for ρ are kg/m3. Specific weight is defined as the weight per unit volume of a substance. The SI units for specific weight are N/m3. Specific gravity S is the ratio of the weight of a liquid at a standard reference temperature to the o weight of water. For example, the specific gravity of mercury SHg = 13.6 at 20 C. Specific gravity is a unit-less parameter. Density and specific weight are measures of the “heaviness” of a fluid. Example: What is the specific gravity of human blood, if the density of blood is 1060 kg/m3? Solution: ⁄ ⁄ Viscosity, shearing stress and shearing strain Viscosity is a measure of a fluid's resistance to flow. It describes the internal friction of a moving fluid. A fluid with large viscosity resists motion because its molecular makeup gives it a lot of internal friction. A fluid with low viscosity flows easily because its molecular makeup results in very little friction when it is in motion. Gases also have viscosity, although it is a little harder to notice it in ordinary circumstances.
    [Show full text]
  • Arxiv:1912.00685V2 [Gr-Qc] 30 Mar 2020
    USTC-ICTS-19-29 Relativistic stars in mass-varying massive gravity Xue Sun1 and Shuang-Yong Zhou2 1School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China 2Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China and Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China (Dated: March 31, 2020) Mass-varying massive gravity allows the graviton mass to vary according to different environ- ments. We investigate neutron star and white dwarf solutions in this theory and find that the graviton mass can become very large near the compact stars and settle down quickly to small cosmological values away the stars, similar to that of black holes in the theory. It is found that there exists a tower of compact star solutions where the graviton mass decreases radially to zero non-trivially. We compute the massive graviton effects on the mass-radius relations of the compact stars, and also compare the relative strengths between neutron stars and white dwarfs in constraining the parameter space of mass-varying massive gravity. I. INTRODUCTION ton mass near the horizon, there is an extra potential barrier to the left of the photosphere barrier in the mod- ified Regge-Wheeler-Zerilli equation, and this can lead to Recent advances in astrophysics, particularly the ar- gravitational wave echoes [18, 19] in the late time ring- rival of gravitational wave astronomy [1, 2], have pro- down waveform when the black hole is perturbed [16]. vided fresh new opportunities to test gravity in the strong field regime with compact astronomical objects.
    [Show full text]
  • Rheology of Petroleum Fluids
    ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 20, 2012 Rheology of Petroleum Fluids Hans Petter Rønningsen, Statoil, Norway ABSTRACT NEWTONIAN FLUIDS Among the areas where rheology plays In gas reservoirs, the flow properties of an important role in the oil and gas industry, the simplest petroleum fluids, i.e. the focus of this paper is on crude oil hydrocarbons with less than five carbon rheology related to production. The paper atoms, play an essential role in production. gives an overview of the broad variety of It directly impacts the productivity. The rheological behaviour, and corresponding viscosity of single compounds are well techniques for investigation, encountered defined and mixture viscosity can relatively among petroleum fluids. easily be calculated. Most often reservoir gas viscosity is though measured at reservoir INTRODUCTION conditions as part of reservoir fluid studies. Rheology plays a very important role in The behaviour is always Newtonian. The the petroleum industry, in drilling as well as main challenge in terms of measurement and production. The focus of this paper is on modelling, is related to very high pressures crude oil rheology related to production. (>1000 bar) and/or high temperatures (170- Drilling and completion fluids are not 200°C) which is encountered both in the covered. North Sea and Gulf of Mexico. Petroleum fluids are immensely complex Hydrocarbon gases also exist dissolved mixtures of hydrocarbon compounds, in liquid reservoir oils and thereby impact ranging from the simplest gases, like the fluid viscosity and productivity of these methane, to large asphaltenic molecules reservoirs. Reservoir oils are also normally with molecular weights of thousands.
    [Show full text]
  • Lecture 2: (Complex) Fluid Mechanics for Physicists
    Application of granular jamming: robots! Cornell (Amend and Lipson groups) in collaboration with Univ of1 Chicago (Jaeger group) Lecture 2: (complex) fluid mechanics for physicists S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University of Houston 2012 Note: I have added links addressing questions and topics from lectures at: http://conradlab.chee.uh.edu/srsi_links.html Email me questions/comments/suggestions! 2 Soft condensed matter physics • Lecture 1: statistical mechanics and phase transitions via colloids • Lecture 2: (complex) fluid mechanics for physicists • Lecture 3: physics of bacteria motility • Lecture 4: viscoelasticity and cell mechanics • Lecture 5: Dr. Conrad!s work 3 Big question for today!s lecture How does the fluid mechanics of complex fluids differ from that of simple fluids? Petroleum Food products Examples of complex fluids: Personal care products Ceramic precursors Paints and coatings 4 Topic 1: shear thickening 5 Forces and pressures A force causes an object to change velocity (either in magnitude or direction) or to deform (i.e. bend, stretch). � dp� Newton!s second law: � F = m�a = dt p� = m�v net force change in linear mass momentum over time d�v �a = acceleration dt A pressure is a force/unit area applied perpendicular to an object. Example: wind blowing on your hand. direction of pressure force �n : unit vector normal to the surface 6 Stress A stress is a force per unit area that is measured on an infinitely small area. Because forces have three directions and surfaces have three orientations, there are nine components of stress. z z Example of a normal stress: δA δAx x δFx τxx = lim τxy δFy δAx→0 δAx τxx δFx y y Example of a shear stress: δFy τxy = lim δAx→0 δAx x x Convention: first subscript indicates plane on which stress acts; second subscript indicates direction in which the stress acts.
    [Show full text]
  • Relativistic Stars with a Linear Equation of State: Analogy with Classical Isothermal Spheres and Black Holes
    A&A 483, 673–698 (2008) Astronomy DOI: 10.1051/0004-6361:20078287 & c ESO 2008 Astrophysics Relativistic stars with a linear equation of state: analogy with classical isothermal spheres and black holes P. H. Chavanis Laboratoire de Physique Théorique (UMR 5152 du CNRS), Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France e-mail: [email protected] Received 16 July 2007 / Accepted 10 February 2008 ABSTRACT We complete our previous investigations concerning the structure and the stability of “isothermal” spheres in general relativity. This concerns objects that are described by a linear equation of state, P = q, so that the pressure is proportional to the energy density. In the Newtonian limit q → 0, this returns the classical isothermal equation of state. We specifically consider a self-gravitating radiation (q = 1/3), the core of neutron stars (q = 1/3), and a gas of baryons interacting through a vector meson field (q = 1). Inspired by recent works, we study how the thermodynamical parameters (entropy, temperature, baryon number, mass-energy, etc.) scale with the size of the object and find unusual behaviours due to the non-extensivity of the system. We compare these scaling laws with the area scaling of the black hole entropy. We also determine the domain of validity of these scaling laws by calculating the critical radius (for a given central density) above which relativistic stars described by a linear equation of state become dynamically unstable. For photon stars (self-gravitating radiation), we show that the criteria of dynamical and thermodynamical stability coincide. Considering finite spheres, we find that the mass and entropy present damped oscillations as a function of the central density.
    [Show full text]
  • Chapter 3 Newtonian Fluids
    CM4650 Chapter 3 Newtonian Fluid 2/5/2018 Mechanics Chapter 3: Newtonian Fluids CM4650 Polymer Rheology Michigan Tech Navier-Stokes Equation v vv p 2 v g t 1 © Faith A. Morrison, Michigan Tech U. Chapter 3: Newtonian Fluid Mechanics TWO GOALS •Derive governing equations (mass and momentum balances •Solve governing equations for velocity and stress fields QUICK START V W x First, before we get deep into 2 v (x ) H derivation, let’s do a Navier-Stokes 1 2 x1 problem to get you started in the x3 mechanics of this type of problem solving. 2 © Faith A. Morrison, Michigan Tech U. 1 CM4650 Chapter 3 Newtonian Fluid 2/5/2018 Mechanics EXAMPLE: Drag flow between infinite parallel plates •Newtonian •steady state •incompressible fluid •very wide, long V •uniform pressure W x2 v1(x2) H x1 x3 3 EXAMPLE: Poiseuille flow between infinite parallel plates •Newtonian •steady state •Incompressible fluid •infinitely wide, long W x2 2H x1 x3 v (x ) x1=0 1 2 x1=L p=Po p=PL 4 2 CM4650 Chapter 3 Newtonian Fluid 2/5/2018 Mechanics Engineering Quantities of In more complex flows, we can use Interest general expressions that work in all cases. (any flow) volumetric ⋅ flow rate ∬ ⋅ | average 〈 〉 velocity ∬ Using the general formulas will Here, is the outwardly pointing unit normal help prevent errors. of ; it points in the direction “through” 5 © Faith A. Morrison, Michigan Tech U. The stress tensor was Total stress tensor, Π: invented to make the calculation of fluid stress easier. Π ≡ b (any flow, small surface) dS nˆ Force on the S ⋅ Π surface V (using the stress convention of Understanding Rheology) Here, is the outwardly pointing unit normal of ; it points in the direction “through” 6 © Faith A.
    [Show full text]
  • 7. Fluid Mechanics
    7. Fluid mechanics Introduction In this chapter we will study the mechanics of fluids. A non-viscous fluid, i.e. fluid with no inner friction is called an ideal fluid. The stress tensor for an ideal fluid is given by T1= −p , which is the most simplest form of the stress tensor used in fluid mechanics. A viscous material is a material for which the stress tensor depends on the rate of deformation D. If this relation is linear then we have linear viscous fluid or Newtonian fluid. The stress tensor for a linear viscous fluid is given by T = - p 1 + λ tr D 1 + 2μ D , where λ and μ are material constants. If we assume the fluid to be incompressible, i.e. tr D 1 = 0 and the stress tensor can be simplified to contain only one material coefficient μ . Most of the fluids can not be modelled by these two simple types of stress state assumption and they are called non-Newtonian fluids. There are different types of non-Newtonian fluids. We have constitutive models for fluids of differential, rate and integral types. Examples non-Newtonian fluids are Reiner-Rivlin fluids, Rivlin-Ericksen fluids and Maxwell fluids. In this chapter we will concentrate on ideal and Newtonian fluids and we will study some classical examples of hydrodynamics. 7.1 The general equations of motion for an ideal fluid For an arbitrary fluid (liquid or gas) the stress state can be describe by the following constitutive relation, T1= −p (7.1) where p= p (r ,t) is the fluid pressure and T is the stress.
    [Show full text]
  • Equation of Motion for Viscous Fluids
    1 2.25 Equation of Motion for Viscous Fluids Ain A. Sonin Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139 2001 (8th edition) Contents 1. Surface Stress …………………………………………………………. 2 2. The Stress Tensor ……………………………………………………… 3 3. Symmetry of the Stress Tensor …………………………………………8 4. Equation of Motion in terms of the Stress Tensor ………………………11 5. Stress Tensor for Newtonian Fluids …………………………………… 13 The shear stresses and ordinary viscosity …………………………. 14 The normal stresses ……………………………………………….. 15 General form of the stress tensor; the second viscosity …………… 20 6. The Navier-Stokes Equation …………………………………………… 25 7. Boundary Conditions ………………………………………………….. 26 Appendix A: Viscous Flow Equations in Cylindrical Coordinates ………… 28 ã Ain A. Sonin 2001 2 1 Surface Stress So far we have been dealing with quantities like density and velocity, which at a given instant have specific values at every point in the fluid or other continuously distributed material. The density (rv ,t) is a scalar field in the sense that it has a scalar value at every point, while the velocity v (rv ,t) is a vector field, since it has a direction as well as a magnitude at every point. Fig. 1: A surface element at a point in a continuum. The surface stress is a more complicated type of quantity. The reason for this is that one cannot talk of the stress at a point without first defining the particular surface through v that point on which the stress acts. A small fluid surface element centered at the point r is defined by its area A (the prefix indicates an infinitesimal quantity) and by its outward v v unit normal vector n .
    [Show full text]