Spin and Orbital Polarons in Strongly Correlated Electron Systems

Total Page:16

File Type:pdf, Size:1020Kb

Spin and Orbital Polarons in Strongly Correlated Electron Systems Jagiellonian University Faculty of Physics, Astronomy & Applied Computer Science Marian Smoluchowski Institute of Physics Spin and Orbital Polarons in Strongly Correlated Electron Systems Krzysztof Bieniasz A Ph.D. Thesis prepared under the supervision of prof. dr hab. Andrzej Michał Oleś Kraków 4239 Oświadczenie Ja, niżej podpisany, Krzysztof Bieniasz (nr indeksu: 323673;), doktorant Wydziału Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiel- lońskiego, oświadczam, że przedłożona przeze mnie rozprawa doktorska pt. „Polarony spinowe i orbitalne w układach silnie skorelowanych elektronów” (tytuł w języku angielskim: “Spin and Orbital Polarons in Strongly Correlated Electron Systems”) jest oryginalna i przedstawia wyniki badań wykonanych przeze mnie osobiście, pod kierunkiem prof. dra hab. Andrzeja M. Olesia. Pracę napisałem samodzielnie. Oświadczam, że moja rozprawa doktorska została opracowana zgodnie z Ustawą o prawie autorskim i prawach pokrewnych z dnia 6 lutego 3;;6 r. (Dziennik Ustaw 3;;6 nr 46 poz. :5 wraz z późniejszymi zmianami). Jestem świadom, że niezgodność niniejszego oświadczenia z prawdą, ujaw- niona w dowolnym czasie, niezależnie od skutków prawnych wynikających z wyżej wymienionej ustawy, może spowodować unieważnienie stopnia naby- tego na podstawie tej rozprawy. Kraków, 45 czerwca 4239 r. .............................. Streszczenie Właściwości układów silnie skorelowanych elektronów, a w szczególności skorelowanych izolatorów Motta, które są często spotykane wśród tlenków metali przejściowych, są istotnym zagadnieniem w fizyce fazy skonden- sowanej. Jednym z głównych problemów w tej dziedzinie, zwłaszcza ze względu na jego znaczenie dla eksperymentów fotoemisyjnych, jest zachowanie się ładunku poruszającego się w izolatorze Motta, sprzęga- jącego się do spinowych i orbitalnych stopni swobody, tworząc polaron. Zagadnienie istnienia oraz dynamicznych właściwości powstającej w ten sposób kwazicząstki da się rozwiązać za pomocą obliczeń funkcji Greena z modeli efektywnych. Niniejsza rozprawa doktorska poświęcona jest teorii polaronów spinowych i orbitalnych, t.j. kwazicząstek powstają- cych przez oddziaływanie z magnetycznym lub orbitalnym porządkiem dalekozasięgowym. W ramach tych badań zaproponowano modele efek- tywne opisujące dwa strukturalnie podobne układy: rodzinę związków miedziowo-tlenowych (zwanych kupratami, opisywaną za pomocą modelu t-J oraz jego rozszerzeń) oraz perowskit miedziowo-fluorowy (KCuF3, opisywany za pomocą modelu Kugela-Khomskiego). Rozwinięte zostały również metody analityczne i numeryczne, służące do obliczania jednoelek- tronowych funkcji Greena za pomocą rozwinięcia wokół stanu uporząd- kowanego, t.j. przybliżenie wariacyjne funkcji Greena oraz samozgodne przybliżenie Borna. Metody te zostały następnie użyte do rozwiązania trzech blisko spokrewnionych modeli układów polaronowych: dwuwymia- rowego modelu spinowego reprezentującego kupraty, dwuwymiarowego modelu orbitalnego zainspirowanego płaszczyznami CuF2 w układzie KCuF3 oraz pełnego trójwymiarowego modelu spinowo-orbitalnego opi- sującego związek KCuF3, który nigdy wcześniej nie został rozwiązany. Poprzez porównanie wyników dla układów z jednym stopniem swobody wyciągnięte są wnioski na temat wpływu oddziaływań ze spinowymi i orbitalnymi stopniami swobody na właściwości polaronów, co stanowi podstawę dla rozważań dotyczących modelu spinowo-orbitalnego. Po- nadto przedstawione są interesujące zjawiska pojawiające się w modelu spinowo-orbitalnym, takie jak efekty wymiarowe w konkurencji między spinowymi i orbitalnymi stopniami swobody, zmiana charakteru orbital- nego na spinowy pod wpływem oddziaływania wymiennego czy znaczenie oddziaływania Hunda dla magnetycznego stanu podstawowego układu. Praca kończy się krótką dyskusją wciąż otwartych problemów oraz możli- wości dalszych badań w tej tematyce. Abstract The properties of strongly correlated electron systems, in particular the correlated Mott insulators commonly encountered among transition metal oxides, are at the forefront of current research in condensed matter physics. One of the central problems in the field, particularly due to its relevance to photoemission experiments, is the behaviour of a charge injected into a Mott insulator which can couple to the ordered spin-orbital degrees of freedom to form a polaron. The questions of the existence and the dynamical properties of the ensuing quasiparticle state can be elucidated by means of Green’s function calculations from effective models of the system. In this thesis we explore the theory of spin and orbital polarons, i.e., quasiparticles resulting from the charge coupling to magnetic or orbital long range order. To this end, we develop effective models for two structurally similar systems: the copper-oxide series of high temperat- ure superconductors (or cuprates, modeled using the t-J model and its extensions), and the copper-fluoride perovskite (KCuF3, modeled using the Kugel-Khomskii model). We then develop analytical and numerical methods for calculating single electron Green’s functions by means of expansion around an ordered ground state, namely the Green’s function variational approximation and the self-consistent Born approximation. Subsequently, we apply these methods to solve three related polaronic model systems: purely spin planar model based on cuprates, purely or- bital planar model inspired by CuF2 planes of KCuF3, and the full three dimensional spin-orbital model for KCuF3 which has never been solved before. By comparing the results for the two cases with a single degree of freedom we demonstrate the differences between the spin and orbital interactions for the polaronic properties and draw general conclusions about the spin-orbital model. Further, we demonstrate a number of inter- esting effects encountered in the spin-orbital problem, such as dimensional interplay between orbitals and spins leading to polarons of predominantly orbital nature in the strong coupling regime; the orbital to spin polaron crossover under varying superexchange strength; or the importance of the Hund’s exchange in the settling of the magnetic ground state. We conclude by discussing open problems and proposing possible routes of continuation of the present work. Acknowledgments I would like to thank my advisor, Professor Andrzej M. Oleś, whose help and support was the fuel that propelled this work to its conclusion. His guidance and knowledge were invaluable motivators in the process of my self-development. I would also like to thank my colleagues and scientific collaborators, without whose expertise and cooperation it would not have been possible for me to complete this thesis. I am particularly indebted to Professor Mona Berciu from the University of British Columbia, the ongoing collaboration with whom produced most of the results that went into this thesis. I would also like to thank my co-advisor, Doctor Krzysztof Wohlfeld, for insightful discussions and words of encouragement. Usually what follows is a long list of relatives and friends whose support had an impact on the author’s work. I will not list them here, however, I would like to thank all the people without whose involvement this thesis would not have been completed in the timely manner that it was. Finally, I would like to acknowledge financial support from the Polish National Science Centre (ncn) under the “Etiuda” scholarship, project number 4237/38/t/st5/22725. I would further like to acknowledge support from ncn under project number 4234/26/a/st5/22553 as well as from the Pol- ish Ministry of Science and Higher Education under project number n n424 28;85;. Lastly, I would like to thank the Quantum Matter Institute, which has generously sponsored my first visit to the University of British Columbia in 4236. 9 Contents Acknowledgments 9 Contents ; Motivation 33 I Preliminaries 35 3 Introduction 37 3.3 Correlated Insulators . 37 3.4 Cuprates . 39 3.5 Orbital Ordered Systems and KCuF3 ............... 47 4 The Models 4; 4.3 The t-J Model . 4; 4.4 The Spin-Orbital Model . 55 4.5 The Planar Orbital Model . 5: 5 Methodology 63 5.3 The Green’s Function . 63 5.4 Self-Consistent Born Approximation . 67 5.5 Variational Method . 6; II Results 77 6 Cuprates: Purely Spin Systems 79 6.3 Introductory Information . 79 6.4 Convergence of the Variational Results . 7; 6.5 Three Site Terms . 85 6.6 Conclusions . 88 7 KCuF3 Planes: Purely Orbital Systems 89 7.3 Convergence of the Ising Model . 89 ; 32 Contents 7.4 The Role of Variational Constraints . 94 7.5 Significance of Orbital Fluctuations . 96 7.6 Conclusions . 98 8 Spin-Orbital Polarons in KCuF3 9; 8.3 The Orbital-Flop State . :2 8.4 Self-Energy Analysis . :5 8.5 Weak Interaction Limit . :7 8.6 The Kugel-Khomskii State . :9 8.7 Many Magnon Expansion . :; 8.8 The Hund Exchange . ;2 8.9 Conclusions . ;6 9 Summary ;9 A Real Space Propagators 323 B SAGE 329 Bibliography 333 List of Publications 33; Motivation I killed him for money and for a woman. I didn’t get the money and I didn’t get the woman. Fred MacMurray as Walter Neff in Billy Wilder’s Double Indemnity (3;66) Transition metal oxides are a varied group of chemical compounds notable for their huge diversity of interesting and potentially useful physical properties, ranging from superconductivity in cuprate systems to colossal magnetoresist- ance in cubic manganites LaMnO3. They exhibit a full range of conduction properties, from insulators to metals, some of them even displaying a crossover under metal-insulator transitions, like for instance vanadates V2O3. In terms
Recommended publications
  • Undergraduate Catalog 14-16
    UNDERGRADUATE CATALOG: 2014-2016 Connecticut State Colleges and Universities ACADEMIC DEPARTMENTS, PROGRAMS, AND Accreditation and Policy COURSES Message from the President Ancell School of Business Academic Calendar School of Arts & Sciences Introduction to Western School of Professional Studies The Campus School of Visual and Performing Arts Admission to Western Division of Graduate Studies Student Expenses Office of Student Aid & Student Employment Directory Student Affairs Administration Academic Services and Procedures Faculty/Staff Academic Programs and Degrees Faculty Emeriti Graduation Academic Program Descriptions WCSU Undergraduate Catalog: 2014-2016 1 CONNECTICUT STATE COLLEGES & UNIVERSITIES The 17 Connecticut State Colleges & Universities (ConnSCU) provide affordable, innovative and rigorous programs that permit students to achieve their personal and career goals, as well as contribute to the economic growth of Connecticut. The ConnSCU System encompasses four state universities – Western Connecticut State University in Danbury, Central Connecticut State University in New Britain, Eastern Connecticut State University in Willimantic and Southern Connecticut State University in New Haven – as well as 12 community colleges and the online institution Charter Oak State College. Until the state’s higher education reorganization of 2011, Western was a member of the former Connecticut State Unviersity System that also encompassed Central, Eastern and Southern Connecticut state universities. With origins in normal schools for teacher education founded in the 19th and early 20th centuries, these institutions evolved into diversified state universities whose graduates have pursued careers in the professions, business, education, public service, the arts and other fields. Graduates of Western and other state universities contribute to all aspects of Connecticut economic, social and cultural life.
    [Show full text]
  • SMT Solving in a Nutshell
    SAT and SMT Solving in a Nutshell Erika Abrah´ am´ RWTH Aachen University, Germany LuFG Theory of Hybrid Systems February 27, 2020 Erika Abrah´ am´ - SAT and SMT solving 1 / 16 What is this talk about? Satisfiability problem The satisfiability problem is the problem of deciding whether a logical formula is satisfiable. We focus on the automated solution of the satisfiability problem for first-order logic over arithmetic theories, especially using SAT and SMT solving. Erika Abrah´ am´ - SAT and SMT solving 2 / 16 CAS SAT SMT (propositional logic) (SAT modulo theories) Enumeration Computer algebra DP (resolution) systems [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories CAD Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping Partial CAD Virtual CDCL [GRASP’97] [zChaff’04] DPLL(T) substitution Watched literals Equalities and uninterpreted Clause learning/forgetting functions Variable ordering heuristics Bit-vectors Restarts Array theory Arithmetic Decision procedures for first-order logic over arithmetic theories in mathematical logic 1940 Computer architecture development 1960 1970 1980 2000 2010 Erika Abrah´ am´ - SAT and SMT solving 3 / 16 SAT SMT (propositional logic) (SAT modulo theories) Enumeration DP (resolution) [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping CDCL [GRASP’97] [zChaff’04]
    [Show full text]
  • A Survey of User Interfaces for Computer Algebra Systems
    J. Symbolic Computation (1998) 25, 127–159 A Survey of User Interfaces for Computer Algebra Systems NORBERT KAJLER† AND NEIL SOIFFER‡§ †Ecole des Mines de Paris, 60 Bd. St-Michel, 75006 Paris, France ‡Wolfram Research, Inc., 100 Trade Center Drive, Champaign, IL 61820, U.S.A. This paper surveys work within the Computer Algebra community (and elsewhere) di- rected towards improving user interfaces for scientific computation during the period 1963–1994. It is intended to be useful to two groups of people: those who wish to know what work has been done and those who would like to do work in the field. It contains an extensive bibliography to assist readers in exploring the field in more depth. Work related to improving human interaction with computer algebra systems is the main focus of the paper. However, the paper includes additional materials on some closely related issues such as structured document editing, graphics, and communication protocols. c 1998 Academic Press Limited 1. Introduction There are several problems with current computer algebra systems (CASs) that are interface-related. These problems include: the use of an unnatural linear notation to enter and edit expressions, the inherent difficulty of selecting and modifying subexpressions with commands, and the display of large expressions that run off the screen. These problems may intimidate novice users and frustrate experienced users. The more natural and intuitive the interface (the closer it corresponds to pencil and paper manipulations), the more likely it is that people will want to take advantage of the CAS for its ability to do tedious computations and to verify derivations.
    [Show full text]
  • The Process of Urban Systems Integration
    THE PROCESS OF URBAN SYSTEMS An integrative approach towards the institutional process of systems integration in urban area development INTEGRATION MSc Thesis Eva Ros MSc Thesis November 2017 Eva Ros student number # 4188624 MSc Architecture, Urbanism and Building Sciences Delft University of Technology, department of Management in the Built Environment chair of Urban Area Development (UAD) graduation laboratory Next Generation Waterfronts in collaboration with the AMS institute First mentor Arie Romein Second mentor Ellen van Bueren This thesis was printed on environmentally friendly recycled and unbleached paper 2 THE PROCESS OF URBAN SYSTEMS INTEGRATION An integrative approach towards the institutional process of systems integration in urban area development 3 MANAGEMENT SUMMARY (ENG) INTRODUCTION Today, more than half of the world’s population lives in cities. This makes them centres of resource consumption and waste production. Sustainable development is seen as an opportunity to respond to the consequences of urbanisation and climate change. In recent years the concepts of circularity and urban symbiosis have emerged as popular strategies to develop sustainable urban areas. An example is the experimental project “Straat van de Toekomst”, implementing a circular strategy based on the Greenhouse Village concept (appendix I). This concept implements circular systems for new ways of sanitation, heat and cold storage and greenhouse-house symbiosis. Although many technological artefacts have to be developed for these sustainable solutions, integrating infrastructural systems asks for more than just technological innovation. A socio-cultural change is needed in order to reach systems integration. The institutional part of technological transitions has been underexposed over the past few years.
    [Show full text]
  • Modeling and Analysis of Hybrid Systems
    Building Bridges between Symbolic Computation and Satisfiability Checking Erika Abrah´ am´ RWTH Aachen University, Germany in cooperation with Florian Corzilius, Gereon Kremer, Stefan Schupp and others ISSAC’15, 7 July 2015 Photo: Prior Park, Bath / flickr Liam Gladdy What is this talk about? Satisfiability problem The satisfiability problem is the problem of deciding whether a logical formula is satisfiable. We focus on the automated solution of the satisfiability problem for first-order logic over arithmetic theories, especially on similarities and differences in symbolic computation and SAT and SMT solving. Erika Abrah´ am´ - SMT solving and Symbolic Computation 2 / 39 CAS SAT SMT (propositional logic) (SAT modulo theories) Enumeration Computer algebra DP (resolution) systems [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories CAD Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping Partial CAD Virtual CDCL [GRASP’97] [zChaff’04] DPLL(T) substitution Watched literals Equalities and uninterpreted Clause learning/forgetting functions Variable ordering heuristics Bit-vectors Restarts Array theory Arithmetic Decision procedures for first-order logic over arithmetic theories in mathematical logic 1940 Computer architecture development 1960 1970 1980 2000 2010 Erika Abrah´ am´ - SMT solving and Symbolic Computation 3 / 39 SAT SMT (propositional logic) (SAT modulo theories) Enumeration DP (resolution) [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62]
    [Show full text]
  • Satisfiability Checking and Symbolic Computation
    Satisfiability Checking and Symbolic Computation E. Abrah´am´ 1, J. Abbott11, B. Becker2, A.M. Bigatti3, M. Brain10, B. Buchberger4, A. Cimatti5, J.H. Davenport6, M. England7, P. Fontaine8, S. Forrest9, A. Griggio5, D. Kroening10, W.M. Seiler11 and T. Sturm12 1RWTH Aachen University, Aachen, Germany; 2Albert-Ludwigs-Universit¨at, Freiburg, Germany; 3Universit`adegli studi di Genova, Italy; 4Johannes Kepler Universit¨at, Linz, Austria; 5Fondazione Bruno Kessler, Trento, Italy; 6University of Bath, Bath, U.K.; 7Coventry University, Coventry, U.K.; 8LORIA, Inria, Universit´ede Lorraine, Nancy, France; 9Maplesoft Europe Ltd; 10University of Oxford, Oxford, U.K.; 11Universit¨at Kassel, Kassel, Germany; 12CNRS, LORIA, Nancy, France and Max-Planck-Institut f¨ur Informatik, Saarbr¨ucken, Germany. Abstract Symbolic Computation and Satisfiability Checking are viewed as individual research areas, but they share common interests in the development, implementation and application of decision procedures for arithmetic theories. Despite these commonalities, the two communities are currently only weakly con- nected. We introduce a new project SC2 to build a joint community in this area, supported by a newly accepted EU (H2020-FETOPEN-CSA) project of the same name. We aim to strengthen the connection between these communities by creating common platforms, initiating interaction and exchange, identi- fying common challenges, and developing a common roadmap. This abstract and accompanying poster describes the motivation and aims for the project, and reports on the first activities. 1 Introduction We describe a new project to bring together the communities of Symbolic Computation and Satisfiability Checking into a new joint community, SC2. Both communities have long histories, as illustrated by the tool development timeline in Figure 1, but traditionally they do not interact much even though they are now individually addressing similar problems in non-linear algebra.
    [Show full text]
  • Impossible Objects
    Some (Possibly) New Considerations Regarding Impossible Objects Aaron Sloman http://www.cs.bham.ac.uk/~axs School of Computer Science University of Birmingham Mathematical cognition is primarily about necessities and impossibilities, recognized through understanding of structural relationships NOT regularities and probabilities derived by collecting statistical evidence. E.g. if spatial volume V1 contains V2, and V2 contains V3, then V1 mustcontain V3. I.e. V1 contains V2, and V2 contains V3 and V1 does not contain V3 is impossible. Similarly 3+5 mustequal 8. It cannotequal 9. (Immanuel Kant pointed out this feature of mathematics in Kant(1781).) Neural nets that merely derive probabilities from statistical data cannot explain those key kinds of mathematical cognition. Surprisingly many neuroscientists, psychologists, philosophers and AI researchers are blind to this limitation of neural nets including some who are much admired for research on mathematical cognition! Perhaps they and their admirers are simply blind to key features of mathematical cognition pointed out by Kant. Euclid’s Elements is full of examples but misguided 20th century educational decisions deprived a high proportion of intelligent learners of opportunities to experience discovering geometrical proofs and refutations. Alternative titles: -- Impossibility: the dark face of necessity. -- What don’t we know about spatial perception/cognition? especially the perceptual abilities of ancient mathematicians? -- Aspects of mathematical consciousness, -- Possible impossible
    [Show full text]
  • Analytic Kantianism
    Philosophical Topics VOLUME 34, NUMBERS 1 & 2 SPRING AND FALL 2006 ANALYTIC KANTIANISM Contents Kantian Lessons about Mind, Meaning, and Rationality 1 Robert Brandom Meaning and Aesthetic Judgment in Kant 21 Eli Friedlander Carnap and Quine: Twentieth-Century Echoes of Kant and Hume 35 Michael Friedman Kant and the Problem of Experience 59 Hannah Ginsborg Kant on Beauty and the Normative Force of Feeling 107 Arata Hamawaki Spontaneity and Receptivity in Kant’s Theory of Knowledge 145 Andrea Kern Logicist Responses to Kant: (Early) Frege and (Early) Russell 163 Michael Kremer Kant’s Spontaneity Thesis 189 Thomas Land Prolegomena to a Proper Treatment of Mathematics in the Critique of Pure Reason 221 Thomas Lockhart Self-Consciousness and Consciousness of One’s Own Body: Variations on a Kantian Theme 283 Béatrice Longuenesse Sensory Consciousness in Kant and Sellars 311 John McDowell The Bounds of Sense 327 A. W. Moore Logical Form as a Relation to the Object 345 Sebastian Rödl Kant on the Nature of Logical Laws 371 Clinton Tolley PHILOSOPHICAL TOPICS VOL. 34, NOS. 1 & 2, SPRING AND FALL 2006 Kantian Lessons about Mind, Meaning, and Rationality Robert Brandom University of Pittsburgh Kant revolutionized our thinking about what it is to have a mind. Some of what seem to me to be among the most important lessons he taught us are often not yet sufficiently appreciated, however. I think this is partly because they are often not themes that Kant himself explicitly emphasized. To appreciate these ideas, one must look primarily at what he does, rather than at what he says about what he is doing.
    [Show full text]
  • Acegen Contents 2 Acegen Code Generator
    University of Ljubljana Ljubljana, 2012 Slovenia AceGen Contents 2 AceGen code generator AceGen Contents AceGen Tutorials .......................................................................................................................8 AceGen Preface ................................................................................................................8 AceGen Overview ............................................................................................................9 Introduction ........................................................................................................................10 AceGen Palettes ...............................................................................................................14 Standard AceGen Procedure ......................................................................................16 Mathematica syntax - AceGen syntax ....................................................................24 • Mathematica input • AceGen input • AceGen code profile • Mathematica input • AceGen input • AceGen code profile • Mathematica input • AceGen input • AceGen code profile • Mathematica input • AceGen input • AceGen code profile Auxiliary Variables ..........................................................................................................32 User Interface ....................................................................................................................37 Verification of Automatically Generated Code ...................................................43
    [Show full text]
  • Acegen Code Generator
    AAcceeGGeenn SMSInitialize "test", "Language" −> "Fortran" ; SMSModule "test", Real x$$, f$$ ; x£ SMSReal x$$ ; @ D Module : @test @ DD @ D SMSIf x<= 0 ; f• x2; SMSElse ; @ D f§ Sin x ; J. Korelc SMSEndIf f ; @D SMSExport@ D f, f$$ ; SMSWrite@"test"D ; Function :@ testD 4 formulae, 18 sub−expressions 0 File@ createdD : test.f Size : 850 @ D UNIVERSITY OF LJUBLJANA FACULTY OF CIVIL AND GEODETIC ENGINEERING 2006 2 AceGen code generator AceGen Contents AceGen Contents ................................................................................................................... 2 Tutorial ........................................................................................................................................ 7 Preface ............................................................................................................................... 7 Introduction ..................................................................................................................... 8 General .......... 8 AceGen .......... 8 Mathematica and AceGen ...... 10 Bibliography .. 11 Standard AceGen Procedure ................................................................................... 12 Load AceGen package ........... 12 Description of Introductory Example 12 Description of AceGen Characteristic Steps .. 12 Generation of C code . 15 Generation of MathLink code 16 Generation of Matlab code .... 18 Symbolic-Numeric Interface ..................................................................................... 19 Auxiliary Variables
    [Show full text]
  • Rules for Watt?
    Imke Lammers Imke Rules for Watt? INVITATION You are cordially invited Designing Appropriate Governance to the public defence of Arrangements for the Introduction of Smart Grids my PhD dissertation entitled: RULES FOR WATT? Designing Appropriate Governance Arrangements for the Introduction of Smart Grids Rules for Watt? for Watt? Rules On Friday, 23rd of November, 2018 at 12:30 in Prof. dr. G. Berkhoff room, Waaier Building, University of Twente. Paranymphs: Leila Niamir Karen S. Góngora Pantí Imke Lammers Imke Lammers [email protected] Rules for Watt? Designing Appropriate Governance Arrangements for the Introduction of Smart Grids Imke Lammers 525645-L-sub01-bw-Lammers Processed on: 31-10-2018 PDF page: 1 Members of the graduation committee: Chair and Secretary: Prof. dr. T.A.J. Toonen University of Twente Supervisors: Prof. mr. dr. M.A. Heldeweg University of Twente Dr. M.J. Arentsen University of Twente Co-supervisor: Dr. T. Hoppe Delft University of Technology Members: Prof. dr. J.Th.A. Bressers University of Twente Prof. dr. J.L. Hurink University of Twente Prof. mr. dr. H.H.B. Vedder University of Groningen Prof. dr. M.L.P. Groenleer Tilburg University This work is part of the research programme ‘Uncertainty Reduction in Smart Energy Systems’ (URSES) with project number 408-13-005, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). Department of Governance and Technology for Sustainability (CSTM), Faculty of Behavioural, Management and Social Sciences, University of Twente. Printed by: Ipskamp Printing Cover photo credits: istockphoto.com ISBN: 978-90-365-4644-7 DOI: 10.3990/1.9789036546447 Copyright © Imke Lammers, 2018, Enschede, The Netherlands.
    [Show full text]
  • An Overview of the Science Project F
    An overview of the SCIEnce Project F. Ollivier, LIX, UMR CNRS-École polytechnique no 7161 MAX Team With the support of the SCIEnce (Symbolic Computation Infrastructure for Related tools I will try here to give a few examples of the OpenMath syntax. The A few references Europe) Project 026133, Integrated Infrastructure Initiative, European most basic definitions are to be found in OpenMath CD (Content Commission, Research Infrastructures Action, Framework 6. A Java library has also been developped, that supports OpenMath Dictionary) calculus1. This is how [1] SCIEnce Project, http://www.symbolic-computation.org/The_ SCIEnce_Project representation and also offers LATEXexport. @2 (xyz) = z [2] , BLAD, http://www2.lifl.fr/~boulier/pmwiki/pmwiki.php/ Introduction OpenMath has been designed for communication between @x@y Main/BLAD computers, not humans. So, an OpenMath representation conve- looks like in OpenMath. [3], , http://www.lifl.fr/~lemaire/lepisme/ It should be first stated that this presentation has no claim for orig- nient for direct user interaction, Popcorn, which stands for “Only [4] Draheim (Dirk), Neun (Wilfrid) and Suliman (Dima), “Classifying Dif- inality and that its author has no personnal merits in the works Practical Convenient OpenMath Replacement Notation”, has been ferential Equations on the Web”, Mathematical Knowledge Management, that are described here, his team being mostly involved in other developped. The Java library mentioned above also supports Pop- LNCS 3119, 2004, 104-115. tasks of the project. corn. [5] Komendantsky (Vladimir), Konovalov (Alexander) and Linton (Steve), In- terfacing Coq + SSReflect with GAP, to appear in the ENTCS proceedings The aims of SCIEnce [1] are to allow sharing components WUPSI (Universal Popcorn SCSCP Interface) is a command of UITP 2010.
    [Show full text]