Pusa Caspica English – Caspian Seal Synonym(S): Phoca Caspica Gmelin

Total Page:16

File Type:pdf, Size:1020Kb

Pusa Caspica English – Caspian Seal Synonym(S): Phoca Caspica Gmelin Biologie und Bedrohung: Pusa caspica English – Caspian Seal Synonym(s): Phoca caspica Gmelin, 1788 The Caspian Seal belongs to the Phocina group of northern seals, which includes the ringed seals (Pusa), the harbour and largha seals (Phoca) and the grey seal (Halichoerus). The radiation of the Phocina group is now believed to have started in the northern seas of the late Pliocene, 2-3 MY ago, and was accompanied by invasion of the continental basins, though the paleogeography in this period is not clear (Palo and Väinöla). The taxonomic relationships between the seals of the continental lakes and those of the open ocean remain unclear, and the placement of the Caspian Seal has varied between the genera Pusa (Gmelin 1788) and Phoca. Following Wozencraft (2005): "Burns and Fay (1970), Rice (1977), McDermid and Bonner (1975), Gromov and Baranova (1981), King (1983), and Wyss (1988) considered Phoca, Pusa, Histriophoca, and Pagophilus a monophyletic group. Cladistic analysis based on morphology and mtDNA revealed two clades, Pagophilus+Histriophoca and the Phocina group, Phoca+Pusa+Halichoerus (Muizon 1982, Mouchaty et al. 1995, Perry et al. 1995, Carr and Perry 1997, Rice 1998, Bininda-Emonds et al. 2007). In the most recent phylogenetic studies using large mtDNA datasets, Palo and Väinöla (2006) consider Pusa to be basal to the Phocina, but suggest that the Caspian Seal is most closely related to Phoca and Halichoerus, while Arnason et al. (2006) suggest the Caspian Seal to be most closely related to the Gray Seal, with the Baikal Seal forming a sister taxon, and Phoca, Ringed Seals being basal to this group. Assessment Information [top] Red List Category & Criteria: Endangered A2abd+3bd+4abd ver 3.1 Year Published: 2008 Date Assessed: 2008-06-30 Assessor(s): Härkönen, T. (IUCN SSC Pinniped Specialist Group) Reviewer(s): Kovacs, K. & Lowry, L. (Pinniped Red List Authority) Geographic Range [top] Range Description: Caspian seals are confined to the Caspian Sea. They range throughout the sea with seasonal migration between the southern, middle and northern basins. Almost all breeding takes place on ice, which covers the shallow northern parts of the Caspian Sea in winter. Occasional observations of low numbers (tens) have been made at islets off Turkmenistan. Countries occurrence: Native: Azerbaijan; Iran, Islamic Republic of; Kazakhstan; Russian Federation; Turkmenistan Population: Historically, the population of Caspian seals was estimated to have exceeded one million (Krylov 1990, Härkönen et al. 2005). However, the most recent abundance estimate of the total population is in the region of 111,000 in 2005. This estimate was based on an estimate of pup production that year of about 21,000 pups (95% confidence intervals 19 329 to 22 797), derived from counts made during aerial transects across the winter ice conducted in late February 2005 (Härkönen et al. 2005, 2008). The population decline throughout the 20th century has been reconstructed by a demographic model using hunting statistics (Härkönen et al. 2005). By the 1950s–1960s, the population was estimated from this model to have been reduced to between 400,000- 500,000 seals (Härkönen et al. 2005), while an estimate based on a harvest of 86,000 pups in 1966, believed to be most pups born that year, also produced an estimate of 500,000 seals for that year (Badamsin 1969, cited by Krylov 1990). Aerial surveys conducted in 1976 and 1980 suggested an estimate of 450 000 animals (Krylov 1984, cited by Krylov 1990), although the hind-casting analysis suggests a population of only about 200,000 seals remaining at that time (Härkönen et al. 2005). Surveys in 1987 and 1989 resulted in an estimate of approximately 360,000-400,000 (Krylov 1990), but again the hind-casting analysis suggests this might again have been an over-estimate, with perhaps only about 148,000 seals remaining by the late 1980s. The hind-casting analysis suggests an ongoing population reduction averaging about 3-4% per year since 1960 and an 83% reduction in the size of the breeding female population since 1955 (approximately 3 generations, with one generation being 16.5-20 years , Härkönen et al. 2005). Habitat and Ecology: During late spring, summer, and early autumn, Caspian seals are distributed throughout the Caspian Sea. They feed throughout the sea, exploiting both the shallow basin in the north and the deep middle and southern basins. After the ice melts, the seals use sandy islands and reefs as haulout sites, preferring the tips of peninsulas and sand bars in many areas, although large concentrations of seals in reed-bed areas of islands also occur. In late autumn the breeding adults gather in the northeast, hauling out on sandy islands and reefs in increasing numbers until sea ice begins to form (Krylov 1990). When the surface freezes over, females form aggregations on the ice to give birth to their pups, tending to gather along cracks in the ice giving them ready access to the water, although they also construct and maintain holes in the ice for water access (Heptner 1996, Härkönen et al. 2008). Pups are generally born from mid-January to late February on the ice and nursed for 4-5 weeks. Females do not usually construct lairs (Frost and Lowry 1981), possibly because sufficient amounts of snow overlying the ice is normally lacking. Pupping on the ice has allowed direct counts of pups to be made in the recent aerial surveys (Härkönen et al. 2008). Pups do not enter the water until the ice melts in mid to late March. The first documented observations of small numbers of seals breeding in other parts of the Caspian were made in 1982, with females reported pupping on small sand islands in the southern part of the Caspian Sea, although it is likely this behaviour was not new (Krylov 1990). Large numbers of mostly nonbreeding seals spend the winter in the middle and southern Caspian, with one estimate of 15,000 seals along the Turkmenistan coast (Krylov 1990). A post-breeding moult occurs from April to May, during which the seals first use the ice and then islands and reefs for hauling out (Krylov 1990). Both sexes become sexually mature at around 6 years of age, with most breeding females (74% in a 1974 sample) aged between 8 and 17 years (Popov 1982). The pregnancy rate for females older than 9 is reported to be as low as 0.2-0.33 (Watanabe et al. 1999, Miyazaki 2002), and Krylov (1990) reports a similar low rate of 0.34 for females aged 10-14 years. Härkönen et al. (2005), acknowledge that the reproductive rate is low in females >20 years old, but suggest that the reproductive rate is >0.5 for females et al. (1999) and Härkönen et al. (2005) attribute the lower reproductive rates of older females to the effect of long term exposure to organochlorine contaminants in the older animals. Caspian seals feed on a variety of fish species. During the summer and autumn, seals move to and congregate where prey are abundant, particularly Caspian kilka (Clupeonella sp.), Caspian silverside (Atherina mochon), and Caspian gobies (Gobidae) (Krylov 1990), with Clupeonella species historically making up a major proportion of their total annual diet (Kosarev and Yablonskaya 1994). A report on fish found in the stomachs of seals in the northern Caspian in 1986-1987 (Piletskii and Krylov 1990) suggested that fish eaten in order of frequency were roach (Rutilus rutilus), zander (Lucioperca lucioperca), gobies (Knipowitschia sp., Neogobius kessleri and Benthophilus sp.), and bream Blicca bjoerkna and Abramis brama), followed by Clupeonella deliculata and other species. A preliminary study from faecal samples on the Apsheron Peninsula in June 2001 and March 2002 suggested that gobies, silverside and shrimp were important constituents of the diet of seals hauled out at that time (Eybatov et al. 2002). New studies of diet in Caspian seals are urgently required in order to get an accurate picture of current prey in different areas of the Caspian in light of potential changes to the abundance of fish species due to recent ecological changes occurring in the Caspian Sea. Systems: Terrestrial; Freshwater Major Threat(s): Caspian seals have been commercially exploited on an intensive basis since the early 1800s. Harvests averaged 119,000-174,000 per year throughout the 19th century, with peaks of 300,000 having been recorded. In the 20th century, harvest levels peaked in the 1930s with an average annual harvest of 164,000 and a maximum single year take of 227,600. The numbers of seals taken fell during World War II to an average of 60,800 per year, and subsequently ranged between a low of 41,400 and a high of 108,300 for the period 1951-1975 (Krylov 1990). Commercial harvesting was temporarily halted in 1996 after a much-reduced estimated take of 14,000 seals. Commercial and scientific hunting in the region of 3,000-4,000 seals a year – mainly pups - has continued at least since 2004, and is currently ongoing. The hunting quota, set by the Caspian Bioresources Commission for 2007, was 18,000 seals which exceeded the estimated annual pup production for that year (Harkonen et al. 2008). Significant population declines have been attributed to the high harvest levels (Härkönen et al. 2005). Another contributory cause to high pup mortality is natural predation by wolves (Canis lupus) and sea eagles (Haliaeetus spp.). Krylov (1990) estimated that wolves killed 17- 40% of Caspian seal pups on “some breeding grounds from 1974 to 1976”, while eagles took less than 1% of pups. The reverse was found during a systematic survey by Harkonen et al. (2008). Few wolves were observed during this survey, but about 2,000 eagles were seen on the ice preying on pups in 2005-2006; they likely took approximately 10% of the annual estimated births of 20 000 pups.
Recommended publications
  • Assessment of Impacts and Potential Mitigation for Icebreaking Vessels MARK Transiting Pupping Areas of an Ice-Breeding Seal
    Biological Conservation 214 (2017) 213–222 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Assessment of impacts and potential mitigation for icebreaking vessels MARK transiting pupping areas of an ice-breeding seal ⁎ Susan C. Wilsona, , Irina Trukhanovab, Lilia Dmitrievac, Evgeniya Dolgovad, Imogen Crawforda, Mirgaliy Baimukanove, Timur Baimukanove, Bekzat Ismagambetove, Meirambek Pazylbekovf, ⁎ Mart Jüssig, Simon J. Goodmanc, a Tara Seal Research, Killyleagh, Co. Down, N. Ireland, UK b Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, USA c School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK d Lomonosov Moscow State University, Russian Federation e Institute of Hydrobiology & Ecology, Karasaysky Raion, Almaty, Kazakhstan f Institute of Fisheries, Almaty, Kazakhstan g Pro Mare MTÜ, Saula, Kose, Harjumaa EE 75101, Estonia ARTICLE INFO ABSTRACT Keywords: Icebreaker operations in the Arctic and other areas are increasing rapidly to support new industrial activities and Caspian Sea shipping routes, but the impact on pinnipeds in these habitats is poorly explored. We present the first quantitative Pinniped study of icebreakers transiting ice-breeding habitat of a phocid seal and recommendations for mitigation. Impacts Marine mammal were recorded from the vessel bridge during seven ice seasons 2006–2013, for Caspian seals (Pusa caspica) Ship strikes breeding on the winter ice-field of the Caspian Sea. Impacts included displacement and separation of mothers and Aerial survey pups, breakage of birth or nursery sites and vessel-seal collisions. The flight distance of mothers with pups ahead Conservation was < 100 m, but measurable disturbance occurred at distances exceeding 200 m.
    [Show full text]
  • 56. Otariidae and Phocidae
    FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig.
    [Show full text]
  • Petition to List the Iliamna Lake Seal, a Distinct Population Segment of Eastern North Pacific Harbor Seal (Phoca Vitulina Richardii), Under the U.S
    Before the Secretary of Commerce Petition to List the Iliamna Lake Seal, a Distinct Population Segment of Eastern North Pacific Harbor Seal (Phoca vitulina richardii), under the U.S. Endangered Species Act Photo Credit: NOAA Fisheries/Dave Withrow Center for Biological Diversity 6 February 2020 i Notice of Petition Wilbur Ross, Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected], [email protected] Dr. Neil Jacobs, Acting Under Secretary of Commerce for Oceans and Atmosphere U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected] Petitioner: Kristin Carden, Oceans Program Scientist, on behalf of the Center for Biological Diversity 1212 Broadway #800 Oakland, CA 94612 Phone: 510.844.7100 x327 Email: [email protected] On November 19, 2012, the Center for Biological Diversity (Center, Petitioner) submitted to the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (NOAA) through the National Marine Fisheries Service (NMFS) a petition to list the Iliamna Lake population of eastern North Pacific harbor seal (Phoca vitulina richardii) as threatened or endangered under the U.S. Endangered Species Act (ESA). (See generally Center 2012.) On May 17, 2013, NMFS issued a positive 90- day finding “that the petition present[ed] substantial scientific or commercial information indicating that the petition action may be warranted” and initiated a status review. (78 Fed. Reg. 29,098 (May 17, 2013).). On November 17, 2016, NMFS issued a determination that listing was not warranted because “the seals in Iliamna Lake do not constitute a species, subspecies, or distinct population segment (DPS) under the ESA.” (81 Fed.
    [Show full text]
  • Biodiversity Assessment for Kyrgyzstan
    Biodiversity Assessment for Kyrgyzstan Task Order under the Biodiversity & Sustainable Forestry IQC (BIOFOR) USAID CONTRACT NUMBER: LAG-I-00-99-00014-00 SUBMITTED TO: USAID CENTRAL ASIAN REPUBLICS MISSION, ALMATY, KAZAKHSTAN SUBMITTED BY: CHEMONICS INTERNATIONAL INC. WASHINGTON, D.C. JUNE 2001 TABLE OF CONTENTS SECTION I INTRODUCTION I-1 SECTION II STATUS OF BIODIVERSITY II-1 A. Overview II-1 B. Major Ecoregions II-1 C. Species Diversity II-3 D. Agrobiodiversity II-5 E. Threats to Biodiversity II-6 F. Resource Trends II-7 SECTION III STATUS OF BIODIVERSITY CONSERVATION III-1 A. Protected Areas III-1 B. Agriculture III-2 C. Forests III-2 D. Fisheries III-3 SECTION IV STRATEGIC AND POLICY FRAMEWORK IV-1 A. Institutional Framework IV-1 B. Legislative Framework IV-3 C. International Conventions and Agreements IV-5 D. Internationally Funded Programs IV-5 SECTION V SUMMARY OF FINDINGS V-1 SECTION VI RECOMMENDATIONS FOR IMPROVED BIODIVERSITY CONSERVATION VI-1 SECTION VII USAID/KYRGYZSTAN VII-1 A. Impact of USAID Program on Biodiversity VII-1 B. Recommendations VII-1 ANNEX A SECTIONS 117 AND 119 OF THE FOREIGN ASSISTANCE ACT A-1 ANNEX B SCOPE OF WORK B-1 ANNEX C LIST OF PERSONS CONTACTED C-1 ANNEX D LISTS OF RARE AND ENDANGERED SPECIES OF KYRGYZSTAN D-1 ANNEX E MAP OF ECOSYSTEMS AND PROTECTED AREAS OF KYRGYZSTAN E-1 ANNEX F PROTECTED AREAS IN KYRGYZSTAN F-1 ANNEX G SCHEDULE OF TEAM VISITS G-1 ANNEX H INSTITUTIONAL CONSTRAINTS AND OPPORTUNITIES (FROM NBSAP) H-1 ANNEX I CENTRAL ASIA TRANSBOUNDARY BIODIVERSITY PROJECT I-1 ACRONYMS BEO Bureau Environmental Officer BIOFOR Biodiversity and Sustainable Forestry BSAP Biodiversity Strategy and Action Plan CAR Central Asian Republics CITES Convention on International Trade in Endangered Species CTO Contracting Technical Officer DC District of Columbia EE Europe and Eurasia FAA Foreign Assistance Act GEF Global Environment Fund GIS Geographic Information Systems GTZ German Agency for Technical Cooperation ha hectare I.A.
    [Show full text]
  • Inter-Year Variation in Pup Production of Caspian Seals Pusa Caspica 2005–2012 Determined from Aerial Surveys
    Vol. 28: 209–223, 2015 ENDANGERED SPECIES RESEARCH Published online October 7 doi: 10.3354/esr00689 Endang Species Res OPEN ACCESS Inter-year variation in pup production of Caspian seals Pusa caspica 2005–2012 determined from aerial surveys Lilia Dmitrieva1,*, Tero Härkönen2, Mirgaliy Baimukanov3, Anders Bignert2, Ivar Jüssi4, Mart Jüssi4, Yesbol Kasimbekov3, Mikhail Verevkin5, Vadim Vysotskiy6, Susan Wilson7, Simon J. Goodman1,* 1School of Biology, University of Leeds, Leeds LS2 9JT, UK 2Swedish Museum of Natural History, Box 50007, Stockholm 10405, Sweden 3Institute of Hydrobiology & Ecology, Karasaysky Raion, Almaty 040916, Kazakhstan 4Estonian Fund for Nature, PO Box 245, Tartu 50002, Estonia 5St. Petersburg State University, Universitetskaya nab.7/9, St. Petersburg 199034, Russia 6Zoological Institute, RAS, Universitetskaja nab. 1, St. Petersburg 199034, Russia 7Tara Seal Research, Killyleagh, Co. Down BT30 9QN, UK ABSTRACT: Assessing species abundance and reproductive output is crucial for evaluations of population dynamics, conservation status and the development of management objectives. The Caspian seal Pusa caspica is a key predator in the Caspian Sea ecosystem and is listed as Endan- gered by the IUCN. Here we report on fixed-wing aerial strip transect surveys of the breeding population on the Caspian Sea winter ice field carried out in February, 2005−2012. Potential detection biases were estimated by applying a Petersen mark–recapture estimator to the counts from double photographic observations. We also tested for effects of weather conditions on count results, and for correlations between pup production and ice conditions and net primary produc- tivity (npp). Fluctuations in pup production estimates were observed among years, ranging from 8200 pups (95% CI: 7130−9342) in 2010 to 34 000 (95% CI: 31 275−36 814) in 2005.
    [Show full text]
  • Biodiversity of the North East Caspian Region Introduction
    Biodiversity of the North East Caspian region Introduction This brochure has been produced on behalf of the con- variations, long-term sea level change, short-term sea sortium developing the hydrocarbon deposits beneath surges and retreats, high levels of turbidity and sediment the North East Caspian defined under the North Caspian movement, ice cover in winter and scouring of the seabed Sea Production Sharing Agreement of 1997. by moving ice. The concession area lies in a region of rich biodiversity This dynamic environment presents challenges for those recognized as being of international importance for its who live and work in the area. It also means that the fauna wildlife, including several species that are classified as and flora on land and at sea, are adapted to a significant endangered. The widely varying conditions in the North level of environmental stress from continually changing East Caspian include extreme seasonal temperature physical conditions. Contents Introduction 2 The Caspian Sea 5 Biodiversity 6 The North Caspian Sea Project 8 Environmental Responsibility 9 Offshore environmental surveys Onshore environmental surveys Environmental sensitivity maps Biodiversity Management 12 The Caspian Seal Bird monitoring Sturgeon Integrated Coastal Zone Management Masterplan 14 Seismicity Issues from the past: abandoned wells Russia Northern Kazakhstan Middle Azerbaijan Turkmenistan Southern Iran 4 5 The Caspian Sea The Caspian Sea is the largest enclosed body of water in the world. Bordered by Iran, Russia, Kazakhstan, Turkmenistan, and Azerbaijan, the Caspian Sea can be divided into three distinct physical regions, classified according to their differing water depths: a deep southern, a medium middle and a shallow northern.
    [Show full text]
  • The Ladoga Ringed Seal (Pusa Hispida Ladogensis) Under Changing Climatic Conditions
    Russian J. Theriol. 12(1): 4148 © RUSSIAN JOURNAL OF THERIOLOGY, 2013 The Ladoga ringed seal (Pusa hispida ladogensis) under changing climatic conditions Irina S. Trukhanova ABSTRACT. The Ladoga ringed seal is a Red listed subspecies of ringed seal, which most critical life cycle stages are closely related to ice presence on the lake. Climatic changes which are observed globally have their impact on local marine mammal populations resulting in shifts in distribution, abundance, migration pattern, disease occurrence, reproductive success. We considered trends in various ice related parameters on the Lake Ladoga since mid-XX century in relation to possible consequences to the Ladoga seal population. Analysis of the probability of winter with 100% ice coverage of the lake showed a statistically significant negative trend. Similarly, negative, though rather weak, trends were observed for sum of negative temperatures in the region and average ice thickness. The total duration of the ice period on the lake has reduced by 13.7% during the second part of the XX century. Maintenance of such trends, though non-significant on short term scale, can cause stress reactions in the Ladoga ringed seal living at the very southern edge of the species global range. KEY WORDS: Ladoga ringed seal, climate change, ice conditions. Irina S. Trukhanova [[email protected]], Baltic Fund for Nature, Birzhevaya liniya 8, Saint-Petersburg 199034, Russia. Ëàäîæñêàÿ êîëü÷àòàÿ íåðïà (Pusa hispida ladogensis) â óñëîâèÿõ èçìåíÿþùåãîñÿ êëèìàòà È.Ñ. Òðóõàíîâà ÐÅÇÞÌÅ: Ëàäîæñêàÿ êîëü÷àòàÿ íåðïà îõðàíÿåìûé ïîäâèä êîëü÷àòîé íåðïû, íàèáîëåå êðèòè- ÷åñêèå ôàçû æèçíåííîãî öèêëà êîòîðîãî ñâÿçàíû ñ íàëè÷èåì ëåäîâîãî ïîêðîâà.
    [Show full text]
  • A Review of Operational Interactions Between Pinnipeds and Fisheries. FAO Fisheries Technical Paper
    revieo o era ional in erac ions 1111111111111 eeeninnies an isenes 4 111111111111 mumlomni 111111111 Food and Agriculture Organization of the United Nations FAO rvìe 1c) FISHERIES TECHNICAL o sraticnall inter ctions PAPER et sonnnìe s anfisenes FISHERIES BRANCH LIBRARY FIDI NF 220 52174 by Paai A. Wickens Marine Biology Research Institute University of Cape Town Rondebosch 7700 South Africa Food and Agriculture Organization of the United Nations Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-40 ISBN 92-5-103687-X All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. 0 FAO 1995 PRETAilATION OF THE DOC Although the FAO recognizes the competence of the International Whaling Commission in matters related to the management of whales, the FAO has a clear interest in marine mammals when they are caught as bycatch (and thus their conservation) and their predationon commercially valuable fish as it affects the supply of fish for manldnd.
    [Show full text]
  • Biology; of the Seal
    7 PREFACE The first International Symposium on the Biology papers were read by title and are included either in of the Seal was held at the University of Guelph, On­ full or abstract form in this volume. The 139 particip­ tario, Canada from 13 to 17 August 1972. The sym­ ants represented 16 countries, permitting scientific posium developed from discussions originating in Dub­ interchange of a truly international nature. lin in 1969 at the meeting of the Marine Mammals In his opening address, V. B. Scheffer suggested that Committee of the International Council for the Ex­ a dream was becoming a reality with a meeting of ploration of the Sea (ICES). The culmination of such a large group of pinniped biologists. This he felt three years’ organization resulted in the first interna­ was very relevant at a time when the relationship of tional meeting, and this volume. The president of ICES marine mammals and man was being closely examined Professor W. Cieglewicz, offered admirable support as on biological, political and ethical grounds. well as honouring the participants by attending the The scientific session commenced with a seven paper symposium. section on evolution chaired by E. D. Mitchell which The programme committee was composed of experts showed the origins and subsequent development of representing the major international sponsors. W. N. this amphibious group of higher vertebrates. Many of Bonner, Head, Seals Research Division, Institute for the arguments for particular evolutionary trends are Marine Environmental Research (IMER), represented speculative in nature and different interpretations can ICES; A. W. Mansfield, Director, Arctic Biological be attached to the same fossil material.
    [Show full text]
  • Ebook Download Seals and Sea Lions Ebook
    SEALS AND SEA LIONS PDF, EPUB, EBOOK John Crossingham,Bobbie Kalman | 32 pages | 28 Feb 2006 | Crabtree Publishing Co,Canada | 9780778713234 | English | New York, Canada Seals and sea lions - CodyCross Answers Cheats and Solutions In one legend, seals, whales and other marine mammals were formed from her severed fingers. The Greeks associated them with both the sea and sun and were considered to be under the protection of the gods Poseidon and Apollo. Pinnipeds can be found in facilities around the world, as their large size and playfulness make them popular attractions. Zoologist Georges Cuvier noted during the 19th century that wild seals show considerable fondness for humans and stated that they are second only to some monkeys among wild animals in their easily tamability. Francis Galton noted in his landmark paper on domestication that seals were a spectacular example of an animal that would most likely never be domesticated despite their friendliness and desire for comfort due to the fact that they serve no practical use for humans. Some modern exhibits have rocky backgrounds with artificial haul-out sites and a pool, while others have pens with small rocky, elevated shelters where the animals can dive into their pools. More elaborate exhibits contain deep pools that can be viewed underwater with rock-mimicking cement as haul-out areas. The most common pinniped species kept in captivity is the California sea lion as it is both easy to train and adaptable. Other species popularly kept include the grey seal and harbor seal. Larger animals like walruses and Steller sea lions are much less common.
    [Show full text]
  • Center for Biological Diversity Petition to List Three Seal Species Under the ESA: Ringed Seal (Pusa Hispida), Bearded Seal (Eri
    BEFORE THE SECRETARY OF COMMERCE PETITION TO LIST THREE SEAL SPECIES UNDER THE ENDANGERED SPECIES ACT: RINGED SEAL (PUSA HISPIDA), BEARDED SEAL (ERIGNATHUS BARBATUS), AND SPOTTED SEAL (PHOCA LARGHA) © David S. Isenberg CENTER FOR BIOLOGICAL DIVERSITY MAY 28, 2008 Notice of Petition____________________________________________________ Carlos M. Gutierrez Secretary of Commerce U.S. Department of Commerce 1401 Constitution Avenue, N.W., Room 5516 Washington, D.C. 20230 James Balsiger, Acting Director NOAA Fisheries National Oceanographic and Atmospheric Administration 1315 East-West Highway Silver Springs, MD 20910 PETITIONER The Center for Biological Diversity 1095 Market Street, Suite 511 San Francisco, CA 94103 ph: (415) 436-9682 ext 301 fax: (415) 436-9683 __________________________ Date: this 28 day of May, 2008 Shaye Wolf, Ph.D. Brendan Cummings Kassie Siegel Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. §1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R. §424.14(a), the Center for Biological Diversity (“Petitioner”) hereby petitions the Secretary of Commerce, through the National Marine Fisheries Service (“NMFS”), to list the ringed seal (Pusa hispida), bearded seal (Erignathus barbatus), and spotted seal (Phoca largha) as threatened or endangered species and to designate critical habitat to ensure their survival and recovery. The Center for Biological Diversity (“Center”) is a non-profit, public interest environmental organization dedicated to the protection of native species and their habitats through science, policy, and environmental law. The Center has over 40,000 members in Alaska and throughout the United States.
    [Show full text]
  • Best Practice Guidelines for Pinnipeds (Otariidae and Phocidae)
    EAZA and EAAM BEST PRACTICE GUIDELINES FOR OTARIIDAE AND PHOCIDAE EAZA Marine Mammal TAG TAG chair : Claudia Gili Acquario di Genova (Costa Edutainment spa) Ponte Spinola 16128 Genova – Italy [email protected] Editors: Claudia Gili, Gerard Meijer, Geraldine Lacave First edition, approved August 2018 Page 1 of 106 EAZA Best Practice Guidelines disclaimer 2018 Copyright (January 2016) by EAZA Executive Office, Amsterdam. All rights reserved. No parts of this publication may be reproduced in hard copy, machine‐ readable or other forms without written permission from the European Association of Zoos and Aquaria (EAZA). Members of the European Association of Zoos and Aquaria (EAZA) may copy this information for their own use as needed. The information contained in this EAZA Best Practice Guidelines has been obtained from numerous sources believed to be reliable. EAZA and the EAZA Marine Mammal TAG make a diligent effort to provide a complete and accurate representation of the data in its reports, publications and services. However, EAZA does not guarantee the accuracy, adequacy, or completeness of any information. EAZA disclaims all liability for errors or omissions that may exist and shall not be liable for any incidental, consequential, or other damages (whether resulting from negligence or otherwise) including, without limitation, exemplary damages or lost profits arising out of or in connection with the use of this publication. Because the technical information provided in the EAZA Best Practice Guidelines can easily be misread or misinterpreted unless properly analysed, EAZA strongly recommends that users of this information consult with the editors in all matters related to data analysis and interpretation.
    [Show full text]